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On the use of quadratic approximants to model diatomic potential energy curvesy
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Quadratic approximants are shown to have an appropriate functional form for modelling the mathematical
structure of the full configuration interaction energy as a function of internuclear distance. The problem of
spurious singularities is discussed. Quadratic approximants with additional constraints are constructed so as to
avoid spurious singularities and to have the correct dissociation limits. It is shown that these approximants are
appropriate for interpolating between computed ab initio energies. The method is tested with a set of full
configuration interaction energies for the hydrogen fluoride molecule. The approximants are shown to give an
accurate interpolation through the region of moderate bond stretching where direct approximate ab initio
computations are difficult. A procedure for parameterizing the approximants to empirical data is developed.
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1. Introduction

The molecular potential energy hypersurface pro-

vides a bridge from fundamental physical theory to

chemical applications. Within the Born–Oppenheimer

approximation, an electronic Schrödinger equation

is formulated for fixed nuclear configurations. The

electronic energy is then added to the potential energy

of nucleus–nucleus repulsion. The result is a continu-

ous function, E(x1,x2, x3, . . .) of coordinates xi specify-

ing the relative positions of the nuclei, that can be

used as a potential energy function for the nuclear

dynamics.
There are three commonly used approaches for

obtaining this function. (1) A series approximation is

generated about a stable minimum of the potential

energy [1,2]. (2) An arbitrary functional form is

parameterized to provide a global model of the

potential [3–8]. (3) A numerical interpolation is devel-

oped to reproduce a set of discrete points and smoothly

connect between them [9–11]. These approaches can be

very useful for practical applications but they make no

serious attempt to analytically model the functional

form of the actual function E.
A systematic procedure for constructing a diatomic

potential energy curve by modelling its fundamental

mathematical structure was proposed by Jordan

[12,13]. He used a quadratic approximant to model

the branch-point singularities of E in the plane of the
internuclear distance treated as a variable over the
complex numbers. The branch points correspond to
avoided crossings between the ground state and an
excited state of the same symmetry. The quadratic
approximant has two branches. One branch interpo-
lates between known ground state energy values while
the other branch models an excited state.

Here Jordan’s method is extended by imposing
constraints at known limits, in order to construct an
analytic functional form for the global potential energy
function. Linear algebraic equations are formulated for
the parameterization and then possible applications are
illustrated using a data set of full configuration
interaction (FCI) energies for the hydrogen fluoride
molecule.

2. Theory

2.1. Mathematical structure of the energy function

Consider the electronic Schrödinger equation for a
diatomic molecule,

ĤðxÞC ¼ EC: ð1Þ

The Hamiltonian operator Ĥ depends parametrically
on the internuclear distance x. Let us express the
eigenfunctions as linear combinations of n
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orthonormal functions fi from the Hilbert space. These

functions are a basis for a finite-dimension subset of

the Hilbert space. By diagonalizing the Hamiltonian
matrix H(x) comprised of the elements Hi,jðxÞ ¼

h fijĤðxÞj fji, one can obtain variational upper bounds
to the energy eigenvalues ~Ek, which approach the true

eigenvalues Ek in the limit n!1.
The configuration interaction method uses spin-

adapted Hartree–Fock wavefunctions expressed as

linear combinations of the n-dimensional basis set.

These wavefunctions are then used to compute the
Hamiltonian matrix [14]. If the determinants

corresponding to all possible excitations are included,
then we have the full configuration interaction method.

The computational cost scales as n!, which makes this
too expensive for general use, but with current com-

putational resources it is quite feasible for benchmark

computations for molecules in which the number of
correlated electrons is on the order of 10.

The Hij(x) are entire functions of x, which is to say

that they are nonsingular (i.e. finite, single-valued, with
a well-defined derivative) at all finite points in the

plane of complex x. The resulting eigenfunctions ~EkðxÞ
are not entire, but have a rich structure of branch-point

singularities, as described by the following theorem
[15–19]:

Theorem 2.1: Consider an n� n matrix eigenvalue
problem HðxÞv ¼ ~Ev in which H is an Hermitian matrix

and the elements of H are entire functions of x. Assume
that no two eigenvalues are equal at any real value of x.

Let ~E0ðxÞ, ~E1ðxÞ, ~E2ðxÞ, . . . , ~EnðxÞ be the eigenvalues of a

given symmetry (e.g. with the same angular momentum
quantum numbers) in order of increasing value. Then for

each pair ~EkðxÞ, ~E‘ ðxÞ there exists a complex-conjugate
pair of branch points xk‘, x

�
k‘, with non-zero imaginary

parts, that connect the functions ~EkðxÞ and ~E‘ ðxÞ. In the

neighbourhood of xk‘ the functions behave as

~Ek‘ � �k‘ðx� xk‘Þ
1=2,

with constants �k‘ and with ~Ekðxk‘Þ ¼ ~E‘ ðxk‘Þ ¼ ~Ek‘.

Thus, each branch ~EkðxÞ of the FCI energy function

will have n� 1 complex-conjugate pairs of square-root
branch points somewhere in the complex plane off the

real axis. If one plots the eigenvalues over a domain of

real x they exhibit avoided crossings, avoided because
there are no branch points on the real axis. The real

part of the branch point location is about equal to the
real x value at the closest approach between the

corresponding pairs of eigenstates. The imaginary part
is approximately proportional to the energy difference

at the closest approach and to the amount of overlap

of the wavefunctions.

2.2. Quadratic approximants

Jordan’s method consists of constructing a double-
valued approximant S(x), for the lowest two eigen-
values, such that S contains square-root branch points.
The approximant is constructed from three
polynomials,

PðxÞ ¼ p0 þ p1xþ p2x
2 þ � � � pLx

L, ð2Þ

QðxÞ ¼ 1þ q1xþ q2x
2 þ � � � qMxM, ð3Þ

RðxÞ ¼ r0 þ r1xþ r2x
2 þ � � � rNx

N, ð4Þ

such that

QðxkÞ ~E2
k � PðxkÞ ~Ek þ RðxkÞ ¼ 0 ð5Þ

for each point from a data set

fðx1, ~E1Þ, ðx2, ~E2Þ, ðx3, ~E3Þ, . . . ðxK, ~EKÞg:

This gives a set of K linear algebraic equations that
uniquely determines the values of the polynomial
coefficients pi, qi, and ri. For a set of K data points,
the polynomial degrees satisfy the constraint

LþMþNþ 2 ¼ K: ð6Þ

The approximant is obtained from Equation (5) using
the quadratic formula,

SðxÞ ¼
1

2Q
P� P2 � 4QR

� �1=2� �
: ð7Þ

We will label S according to the degrees of P, Q, and R,
with an index [L/M, N]. Each choice of the index yields
a different approximant to the same data set. Square-
root branch points occur at roots of the discriminant
polynomial

DðxÞ ¼ P2 � 4QR: ð8Þ

Equation (7) is called a quadratic approximant
(QA). These approximants were originally proposed in
the 1890s by Padé [20] as a method for summing
Taylor series. (Instead of parameterizing to a set of
points, the polynomial coefficients are determined
from the condition that the Taylor series of one of
the roots of S agree with the Taylor series of interest at
each power of the expansion variable up to some
specified series order.) They were largely unexploited
until being rediscovered by mathematicians in the
1970s. Jordan seems to have been the first to apply
them to a problem in chemical physics. Since then, they
have found many applications to perturbation theories
for atomic and molecular problems [21].

Figure 1 compares interpolation using a QA with
interpolation using a polynomial, for a set of FCI
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energies for the hydrogen fluoride molecule.

(These FCI energies will be presented and discussed

in Section 3.) The dotted curve is a polynomial

interpolation between the nine circled points. It does

a poor job of extrapolating beyond the region covered

by the data set. At large x it becomes infinite, where it

ought to approach a constant value. At small x it

approaches a constant, where it ought to become

infinite.
The solid curves show the two roots of S[1/3,3](x),

the QA with index [1/3,3]. The choice of index is

important. In the limit of large x, Equation (7)

becomes

SðxÞ �
1

2qMxM
pLx

L � pLx
2L � 4qMrNx

MþN
� �1=2� �

:

ð9Þ

This will approach a non-zero constant only under the

following conditions:

L ¼M, N �M or N ¼M, L �M: ð10Þ

With K¼ 9 as the number of data points, the only

acceptable approximant indices are [3/3, 1] and [1/3, 3],

which give essentially identical results. One of the roots

of the approximant does behave qualitatively correctly

at large x. However, the small-x behaviour is wrong,

and the ‘excited’ state seems to cross the ‘ground’ state,

falling below it at large x.

Although the performance of the QA here is

admittedly not very good, it is not without promise.
The branch points of S(x) are found at the roots of the
discriminant polynomial P2

� 4QR, which in this
case are

2:1297�0:8100i, 2:2388�0:0032i, 0:8402�0:1420i,

with x in units of the equilibrium bond distance xe. The
first branch-point pair is in fact quite accurate. The
closest approach in this case occurs at x¼ 2.37xe,

which could be modelled rather well by the branch
point at 2.1297� 0.8100i if it were not for the presence
of the spurious pair of branch points at
2.2388� 0.0032i. Nearly coincident spurious branch
points are a common phenomenon with QAs. In this

case they introduce a factor of (x� 2.2388� 0.0032i)
(x� 2.2388þ 0.0032i) into the discriminant polyno-
mial, which is very nearly equal to the perfect square
(x� 2.2388)2. The square root of a perfect square is
nonsingular. This branch point pair does not corre-

spond to a branch point pair of the true energy
function, but it has a significant effect on the behaviour
of the approximant, causing an extremely sharp
avoided crossing. (Contrary to appearances, the two
curves do not actually cross.)

2.3. Constrained approximants

Our strategy is to improve the accuracy of the QA by

constraining it to have the desired behaviour in known
limits. We begin with an analysis of the x!1 limit.
The desired behaviour is

lim
x!1

SðxÞ ¼
~Ed,1,

~Ed,0,

(
ð11Þ

where ~Ed,0 and ~Ed,1 are the energies of the dissociated
fragments for the ground state and the first excited
state, respectively. For large x, Equation (5) becomes

xMqM
~E2
d � xLpL

~Ed þ xNrN � 0, ð12Þ

where ~Ed is ~Ed,0 or ~Ed,1. Suppose that M¼N and
L5M. Then the middle term disappears for x!1
and we obtain the two solutions ~Ed ¼ �ð�rM=qMÞ

1=2.
Either both solutions are pure imaginary or one is

negative real while the other is positive real. We want
~Ed,0 and ~Ed,1 to be real numbers with the same sign.
Consider the case M¼L, N5M. Then we have only a
single branch, with ~Ed ¼ pM=qM. It follows that the
only reasonable choice is a diagonal index,

L ¼M ¼ N: ð13Þ
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Figure 1. Potential energies for the ground state and the first
two excited states with the same symmetry as the ground
state for the hydrogen fluoride molecule. The solid points are
FCI energies. The dotted curve shows the eighth-degree
polynomial that interpolates between the nine circled points.
The solid and dashed curves show the two solutions for the
[1/3, 3] quadratic approximant.
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This gives the constraint equations

qM
~E2
d,0� pM

~Ed,0þ rM ¼ 0, qM
~E2
d,1� pM

~Ed,1þ rM ¼ 0,

ð14Þ

which allow arbitrary values for ~Ed,0 and ~Ed,1.

Combining these equations to eliminate pM, we obtain

rM ¼
~Ed,0

~Ed,1qM: ð15Þ

Eliminating rM, we obtain

pM ¼ ð
~Ed,0 þ ~Ed,1ÞqM: ð16Þ

Consider the x! 0 limit, the limit of united nuclei.

The electronic energy remains finite but the inter-

nuclear potential introduces a first-order pole. Either

we should apply the QA just to the electronic energy

before adding the internuclear potential, using

Equations (2)–(4), or we should design the QA so that

SðxÞ � ZAZB=x ð17Þ

in the limit x! 0 for both branches of the approx-

imant. (We are using atomic units, with energy in

hartrees and distance in bohrs. ZA and ZB are the

atomic numbers of the two nuclei.) The function ~EðxÞ

can be expanded in a Laurent series,

~EðxÞ � ��1x
�1 þ �0 þ �1xþ �2x

2 þ � � � þ �mx
m: ð18Þ

Substituting this into the quadratic equation gives the

asymptotic equation

Q ~E2 � P ~Eþ R � Oðxmþ1Þ: ð19Þ

After collecting terms according to the power of x,

it becomes clear that in order to implement

Equation (17) our polynomials should have the forms

PðxÞ ¼ p�1x
�1 þ p0 þ p1xþ p2x

2 þ � � � þ pMxM, ð20Þ

QðxÞ ¼ 1þ q0 þ q1xþ q2x
2 þ � � � þ qMxM, ð21Þ

RðxÞ ¼ r�2x
�2 þ r�1x

�1 þ r0 þ r1xþ r2x
2 þ � � � þ rMxM:

ð22Þ

The x! 0 limit yields an expression for ��1 in terms of

p�1 and r�2,

��1 ¼
1

2
p�1 � p2�1 � 4r�2

� �1=2� �
: ð23Þ

We want both states to have the pole at x¼ 0 with the

same residue ��1. This is accomplished with the

constraints

p�1 ¼ 2��1, r�2 ¼ �
2
�1, ð24Þ

with

��1 ¼ ZAZB: ð25Þ

Looking at the explicit expression for S(x),

Equation (7), one can anticipate another kind of

spurious singularity. Consider what happens when the

value of the denominator polynomial, Q(x), passes

through zero. In the limit of small Q, we have

SðxÞ � P
1� ð1� 2QR=P2Þ

2Q
: ð26Þ

The ‘� ’ branch is nonsingular for Q¼ 0, with the

finite value R/P. The ‘þ ’ branch, however, has a first-

order pole, becoming infinite as P/Q. This happens at

each of the M roots of Q(x). In the absence of any

spurious branch points on or very close to the positive

real axis, the ‘� ’ branch describes the ground state

energy, and the accuracy of that branch of the

approximant will not be significantly affected by this

phenomenon. However, the description of the excited

state will be qualitatively incorrect.
To prevent any positive real roots from appearing

in Q, let us write

QðxÞ ¼ 1þ qMxM ð27Þ

and then treat qM as an arbitrary parameter. If qM is set

to a positive number, then the poles will be at

x ¼ q�1=MM exp½ipð2mþ 1Þ=M	, m ¼ 1, 2, . . . ,M,

ð28Þ

and this can never lie on the positive real axis. It will be

seen in Section 3.1 that there will be a range of qM
values for which the branch-point structure of the QA

is reasonable and for which the result is insensitive to

the choice of qM. Thus, an added benefit of having qM
as a free parameter is the opportunity to choose its

value so as to optimize the description of the branch-

point structure. This will be used to advantage in

Section 3.2.
We have imposed five constraints: Equations (15)

and (16) for the large-x behaviour, which determine rM
and qM; Equations (24) for the small-x behaviour,

which determine p�1 and r�2; and the treatment of qM
as an arbitrary parameter with Q in the form of

Equation (27). For the approximant with the index [M/

M, M] with P and R as in Equations (20) and (22),

there will be 2Mþ 1 remaining parameters,

p0, . . . , pM�1 and r�1, r0, . . . , rM�1, to be determined

from the set of linear equations, Equations (5). The

number of data points needed for this is

K ¼ 2Mþ 1: ð29Þ
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If the QA is applied only to the electronic energy, with

P and R as in Equations (2) and (4), then the number

of data points is

K ¼ 2M: ð30Þ

With an odd number of data points the QA is to be

applied to the total energy, and with an even number of

points, to the electronic energy.

2.4. Approximants constrained to empirical data

As an alternative, instead of or in addition to param-

eterizing the approximant to ab initio energies, linear

constraint equations can be formulated to incorporate

empirical data such as the following:

(1) De, the ground-state well depth;

De ¼ Ed,0 � Ee, ð31Þ

where Ee¼E(xe). To impose this constraint, we

can simply define the zero of energy as the

bottom of the well, Ee¼ 0, and then let

Ed,0¼De. Evaluating the quadratic equation

for E at xe then gives the constraint

RðxeÞ ¼ 0: ð32Þ

(2) xe, the equilibrium bond distance;

dE

dx

����
xe

¼ 0: ð33Þ

To impose this constraint, we take the deriva-

tive of the quadratic equation for E and then

evaluate it at x¼ xe, with E¼ 0 and E0 ¼ 0. The

result is

R0ðxeÞ ¼ 0: ð34Þ

(3) Ke, the harmonic force constant;

d2E

dx2

�����
xe

¼ Ke: ð35Þ

Evaluating the second derivative of the qua-

dratic equation at xe, with E00 ¼Ke, gives

R00ðxeÞ � KePðxeÞ ¼ 0: ð36Þ

(4) The energy difference between the fragments

from the two states,

Dd ¼ Ed,1 � Ed,0: ð37Þ

This sets the value of Ed,1.

3. Applications

The accuracy of constrained quadratic approximants
will now be examined using FCI energies for the
hydrogen fluoride molecule. Two kinds of applications
will be considered: (1) interpolation of ab initio energy
values, and (2) the use of spectroscopic data to
construct an empirical potential energy curve.

The FCI energies were computed with the cc-pVDZ
basis set within the frozen core approximation using
the PSI3 software package [22]. The values at dissoci-
ation were computed separately for the two fragments
using the cc-pVDZ basis. The dissociation energy for
the first excited state corresponds to a fluorine atom in
its ground state and a hydrogen atom in a singly
excited state.

The energy values for the ground state and for the
first two excited states of the same symmetry as the
ground state are plotted in Figure 2 and listed in
Table 1. The lower panel of Figure 2 shows the energy
differences between the ground state and the excited
states. Note the points of closest approach, to the first
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Figure 2. FCI potential energies for the electronic ground
state of the hydrogen fluoride molecule and for the first two
excited states of the same symmetry. The lower panel shows
the energy difference between the ground state and the first
excited state (diamonds) and between the ground state and
the second excited state (triangles). Internuclear distance is
given in units of the equilibrium bond length, xe¼ 0.92025 Å.
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excited state at x/xe¼ 2.37 and to the second excited
state at 0.13 and 2.42. The ground-state energy
function is expected in principle to have complex-
conjugate branch point pairs with real parts
approximately equal to these values.

3.1. An ab initio potential energy curve

Adding the constraints at x! 0 and x!1, we obtain
the curves shown in Figure 3, interpolating between the
nine circled points. These are from the [4/4, 4]
approximant using Q(x)¼ 1þ q4x

4 as the denominator
polynomial with q4¼ 50. The ground-state curve is
insensitive to the choice of q4, as long as it is positive.
The singularity structure stabilizes for q44 40, with
two stable branch point pairs in the positive half-plane
ranging only from 0.59� 0.48i and 2.028� 0.792i for
q4¼ 41 to 0.58� 0.33i and 2.020� 0.779i in the limit of
extremely large q4, with all other singularities in the
negative half-plane. With q5 40 there is an additional
branch point pair, evidently spurious, that shifts with
the value of q4; its real part ranges from 0.0 for q4¼ 40
up to 1.95 for q4 approaching zero.

There are true branch points in the positive half-
plane at

2:05� 0:77i, 0:6� 0:3i, 0:2� 0:3i:

These values were determined by noting the stable
singularities in various approximants parameterized to
points concentrated in the relevant regions of x. The
singularity position at x
 2 is much more stable than
those at x5 1. One can expect that there will be very
many avoided crossings in the approach to the united
atom limit as the molecular electronic spectrum
degenerates to an atomic spectrum. The approximants
have difficulty distinguishing between closely spaced
branch points.

The most obvious benefit from imposing the
constraints is that the branch of the approximant
corresponding to the ‘þ ’ sign in Equation (7) now
gives a qualitatively reasonable description of the
excited states. For q44 10, this branch is insensitive
to q4. For smaller q4 the upper branch of the QA
becomes qualitatively incorrect, rising far above the
FCI values. The figure shows the QA with q4¼ 50, but
the curves from higher q4 are virtually indistinguish-
able. Notice, though, that the ‘þ ’ branch of the QA at
large x describes the first excited state but at small x it
switches to the second excited state. The QA has only
two branches while the true E(x) has many branches.
The lower panel of Figure 2 showed an avoided
crossing of the ground state with the first excited state
at 2.37xe and with the second excited state at 0.13xe.

Table 1. FCI energies, in hartrees, for the hydrogen fluoride
molecule as function of internuclear distance, in units of the
equilibrium bond distance xe¼ 0.92025 Å. The energies of
the ground state and the first two excited states (of the same
symmetry as the ground state) are shown. The basis set is cc-
pVDZ.

x/xe Ground state 1st excited state 2nd excited state

0.025 79.985062 80.691363 81.300933
0.05 �20.926807 �20.188094 �19.609113
0.10 �68.296122 �67.485491 �66.982577
0.15 �82.689297 �81.838712 �81.382365
0.20 �89.416500 �88.561117 �88.111140
0.25 �93.206565 �92.361303 �91.896057
0.30 �95.545225 �94.714176 �94.223614
0.35 �97.059567 �96.243660 �95.722290
0.40 �98.068748 �97.268154 �96.712699
0.45 �98.753986 �97.968798 �97.377642
0.50 �99.225007 �98.455542 �97.829480
0.55 �99.551169 �98.798035 �98.152626
0.60 �99.777758 �99.041755 �98.397681
0.65 �99.935048 �99.217042 �98.578244
0.70 �100.043602 �99.344435 �98.713637
0.75 �100.117562 �99.438013 �98.818386
0.80 �100.166769 �99.507527 �98.902669
0.85 �100.198168 �99.559809 �98.973347
0.90 �100.216720 �99.599682 �99.034850
0.95 �100.226011 �99.630576 �99.089830
1.00 �100.228652 �99.654935 �99.139721
1.05 �100.226550 �99.674505 �99.185222
1.10 �100.221103 �99.690528 �99.226656
1.20 �100.204017 �99.715245 �99.297981
1.30 �100.182835 �99.733617 �99.354963
1.40 �100.160622 �99.748030 �99.399234
1.50 �100.139130 �99.759739 �99.432710
1.60 �100.119327 �99.769357 �99.457305
1.70 �100.101697 �99.777131 �99.474757
1.80 �100.086429 �99.783118 �99.484479
1.90 �100.073531 �99.787305 �99.495463
2.00 �100.062895 �99.789692 �99.502086
2.10 �100.054329 �99.790339 �99.505355
2.20 �100.047585 �99.789382 �99.506100
2.30 �100.042379 �99.787030 �99.504960
2.40 �100.038425 �99.783534 �99.502448
2.50 �100.035458 �99.779159 �99.498940
2.60 �100.033249 �99.774154 �99.494728
2.70 �100.031613 �99.768739 �99.490033
2.80 �100.030404 �99.763087 �99.485026
3.00 �100.028859 �99.751580 �99.474573
3.20 �100.028024 �99.740343 �99.464107
3.50 �100.027430 �99.724784 �99.449279
4.00 �100.027110 �99.703341 �99.428175
4.50 �100.027034 �99.686923 �99.411529
5.00 �100.027018 �99.674015 �99.398320
5.50 �100.027015 �99.663522 �99.387597
6.00 �100.027014 �99.654792 �99.378706
1 �100.027013 �99.652555
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The approximant’s transition between the two excited
states in Figure 3 occurs at the approximate midpoint
of these two avoided crossings. The constraints
improve the quantitative agreement for the ground
state. This is shown in Figure 4, which compares the
error with and without the constraints.

A possibly useful application of these approxi-
mants is to interpolate between regions of x that can be
accurately treated with approximate quantum chemis-
try methods that are less costly than FCI. The accuracy
of the commonly used approximate quantum chemical
ab initio methods begins to fail as internuclear sepa-
rations are stretched much beyond the equilibrium
bond distances [23–26]. If the spin of the wavefunction
is left unrestricted, then the accuracy improves at large
separation, but in the intermediate region the accuracy
typically remains rather poor. For hydrogen fluoride,
the constrained QA can in practice interpolate through
this intermediate region while staying well within
‘chemical accuracy’ of 1 kcal mol�1, as demonstrated
in Figure 5.

The failure of approximate quantum chemistry
computations in the intermediate region is due to the
strong mixing between the zeroth-order reference
wavefunction of the ground state with an excited
state of the same symmetry [23]. In this case, for the
QA of Figure 5, the mixing with the first excited state is
described by a branch point pair in the QA at 1.969�
0.798i, with the real part in the centre of the region
with no data points. It is interesting that the QA is able

to give an accurate description of the mixing,
accurately locating the branch point pair, even
though it only uses data points in regions not obviously
affected by it.

3.2. An empirical potential energy curve

Let us now consider the use of the constrained QA with
the kind of data available from spectroscopic
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Figure 3. Potential energies for the ground state and the first
excited state of the hydrogen fluoride molecule. The solid
points are FCI energies. The solid and dashed curves show,
respectively, the ‘� ’ and ‘þ ’ branches of the [4/4,4]
approximant with q4¼ 50, constrained by the nine circled
points and by the x! 0 and x!1 limits.
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show the accuracy of the constrained [4/4,4] approximant
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Figure 5. Error in the hydrogen fluoride potential energy
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q4¼ 50, parameterized at the nine data points indicated
by open circles. Dashed lines show the limits for chemical
accuracy, 1 kcal mol�1.
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measurements, using simulated data derived from the

FCI energies,

xe ¼ 0:920250 Å, Ke ¼ 1:88047Eh Å
�2
,

De ¼ 0:201639Eh, Dd ¼ 0:374459Eh:

The QA is parameterized to these values as described
in Section 2.4, with the additional constraint of the

pole at x¼ 0 with residue ��1¼ZAZB¼ 9. This is
sufficient information to parameterize a [2/2,2] approx-

imant with Q(x)¼ 1þ q2x
2, where q2 is arbitrary and

with P and R as in Equations (20) and (22).
Figure 6 shows the locations of the branch points

of the approximant as a function of q2, with the value
of q2 ranging from 10�1 (the circled points) to 104, in

logarithmic increments. For all q2 values, the approx-
imant has a branch point pair in the general vicinity of

the true branch point at 2.05� 0.77i, but the singular-
ity structure for x5 xe is less stable. For very large q2
there is a single spurious branch point on the real axis
between the true branch points 0.6� 0.3i. As q2 drops

to 20 this branch point shifts to midway between the

true branch points at 0.2� 0.3i. Then it develops an
imaginary part for smaller q2.

This behaviour at x5 xe is typical of QAs [27,28].
If the parameterization is insufficient for the QA to

simultaneously model multiple singularities, then it

often happens that a single branch point is placed
midway between the true singularities. This is a

singularity in a region that is nonsingular. As a
result, in the vicinity of this point the QA gives very

poor accuracy.
No single value of q2 for this system yields a

qualitatively reasonable global potential curve. For

approximants with the branch point on the real axis,

the accuracy of the energy drops rapidly as the branch

point is approached and then for smaller x the energy

is a complex number. However, these approximants

are qualitatively reasonable for x4 xe. For q25 20 the

approximant gives a qualititatively accurate energy

curve for small x but is highly inaccurate for x4 xe,

giving a nonphysical second minimum. The best

approach seems to be to use a small value for q2 for

describing the region 05 x� xe and then a large value

of q2 for xe� x. Because the approximants are

constrained to have the same value for ~E, ~E0, and ~E00

at xe, these two functions are guaranteed to smoothly

connect at xe. This is demonstrated in Figure 7.

Reasonable results left of xe are obtained for any q2
less than approximately 5 and right of xe for any q2
greater than approximately 50. The large-q2 approx-

imants also give a reasonable result for the excited

state, for x4 xe, but the small-q2 approximants do not.

The dashed curve in Figure 7 shows the Morse

potential [3],

EMorseðxÞ ¼ De 1� exp Ke=2Deð Þ
1=2
ðxe � xÞ

� �� �2
: ð38Þ

A clearer comparison of this with the QA is given by

Figure 8, which shows the ground state energy in the

vicinity of the equilibrium bond distance. The two

curves have about the same overall level of accuracy

but they work best in different regions. The Morse

potential is significantly less accurate at x5 xe than

the QA, due to the fact that it has a finite x! 0 limit

rather than the actual first-order pole. However, the

Morse potential is more accurate than the QA for a

moderately stretched bond. The accuracy of the QA

for x4 xe can be systematically improved by adding

additional constraint equations to incorporate anhar-

monicity corrections. It is also possible to modify the

functional form of the Morse potential to give it the

correct x! 0 limit [5].
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Figure 6. Locations xs, in the complex plane, of branch
points of the [2/2,2] quadratic approximant constrained
according to Equations (31), (33), (35), and (37), as a
function of the arbitrary parameter q2. The solid points
correspond to increments in log10 q2 by steps of 0.1 starting at
q2¼ 10�1 (the circled points), proceeding through 101

(the squares) and 103 (the triangles), ending at 104. The
true positions of the branch points are marked with �.
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4. Discussion

Quadratic approximants of a molecular potential

energy curve, as formulated by Jordan [12,13], can

accurately model the local analytic structure of the FCI

electronic ground-state energy, with square-root

branch points in the complex plane of the internuclear

separation coordinate, x. It has been demonstrated
here that with only minor modifications these approx-
imants can yield a globally correct energy curve for the
hydrogen fluoride molecule. An appropriate choice of
approximant index ensures that both branches of the
QA will approach finite constants in the limit x!1.
Constraining them to approach known values of the
dissociated fragment energies improves the accuracy at
intermediate x values. The usual formulation of the
QA gives a finite x! 0 limit. This neglects the first-
order pole in the Coulomb potential between the two
nuclei. Either the QA should be applied just to the
electronic energy, with the internuclear potential added
after the fact, or the form of the QA should be
modified to include negative powers and constrained to
have the known residue of the pole.

It is not surprising that explicitly building known
limiting values into the approximants improves their
accuracy. This has previously been shown to be the
case for summation approximants for perturbation
theories. In particular, the inspiration for this present
study was the demonstration by Herschbach and co-
workers [29–31] that the accuracy of low-order 1/D
expansions, where D is the dimensionality of space, can
be significantly improved at no added cost by incor-
porating a second-order pole at D¼ 1, so that the
theory in effect becomes an interpolation between
known limits at D¼ 1 and D!1. Other techniques
from perturbation theory, for example, the use of a
conformal mapping to shift singularity positions to
avoid spurious branch points in the approximant [28],
might also be useful for interpolating potential energy
curves.

A common problem with quadratic approximants
is the occurrence of spurious singularities. For poten-
tial energy curves these come in three varieties:

(1) Pairs of nearly coincident branch points. This is
the approximant’s way of disposing of super-
fluous roots of the discriminant polynomial
when there is not enough information for it to
recognize true singularities. These are most
damaging when they consist of a complex-
conjugate pair with a very small imaginary
part, in which case the ‘excited state’ of the
approximant in effect drops below the ‘ground
state’ with a very sharp avoided crossing. The
accuracy is poor for the ground-state energy in
the neighbourhood of the avoided crossing and
the description of the excited state is qualita-
tively incorrect.

(2) An isolated branch point placed midway
between two true branch points. The approx-
imant senses singular behaviour but lacks the
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Figure 7. [2/2, 2] approximants constrained by the x! 0 and
x!1 limits and by the values of xe, De, Ke, and Dd. The QA
with q2¼ 1 is shown as a solid curve for x� xe and as a
dotted curve for x4xe while the QA with q2¼ 100 is shown
as a solid curve for x� xe and as a dotted curve for x5xe.
The dashed curve shows the Morse potential. The dash-dot
curve shows the ‘þ ’ branch of the QA with q2¼ 100.
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resources to model both singular neighbour-
hoods. It ‘compromises’ with a single singular-
ity in between. This is worse than if the
approximant had not sensed any singularity
structure, because a singularity is now being
placed in a nonsingular region. If two true
branch points are close to each other due to a
small imaginary part, then the spurious branch
point is placed on the real axis. On one side of
this point the QA gives a complex number for
the energy.

(3) Spurious poles at the roots of the denominator
polynomial. These poles are present only in the
excited-state branch and have only a small
adverse effect on the accuracy for the ground
state.

For the hydrogen fluoride molecule, spurious branch
point pairs on the real axis can be eliminated by
imposing the constraint that the two branches
approach their respective dissociation energies for
x!1. This holds the two branches far enough
apart in the important region of a just slightly stretched
bond to prevent the spurious sharp avoided crossing.
For a molecule that dissociates into identical frag-
ments, the dissociation energies of the two branches
can be expected to be the same and then this kind of
spurious singularity might prove to be more of a
concern.

The theory developed here introduces a free
parameter, qM, the coefficient of the denominator
polynomial. The primary motivation for this was to
avoid spurious poles in the excited state. However, this
turned out to have the added benefit of mitigating the
problem of an isolated spurious branch point on the
real axis. It was found that qM could be chosen so as to
eliminate the branch point. It appears that a small
value of qM causes the QA to devote more of its
resources to modelling the energy function at small x
while a large value causes it to focus more on large x.

A drawback of quadratic approximants is the fact
that they have only two branches, while the true FCI
energy has many branches, one for each excited state.
For this reason, the theory as developed here does not
give a quantitatively correct description of the excited
state. It describes avoided crossings involving the
ground state but it does not describe avoided crossings
between excited states. Jordan [13] has suggested
replacing the quadratic equation, Equation (5), with
a polynomial equation in ~E of higher degree. A cubic
equation, for example, would have three branches and
this could include branch points connecting the second
and third branches that would describe the effect of
avoided crossings on the second branch. Algebraic

approximants of arbitrary degree were proposed by

Padé in his dissertation [20]. They have been studied by

mathematicians [32] and have been used successfully to

sum perturbation series for the Schrödinger equation

[33,34], though they require a much larger data set for

adequate parameterization than do quadratic approx-

imants. Constraints could be imposed in a manner

similar to that used here for the quadratic case,
through additional linear equations. Higher-degree

approximants would probably not significantly

improve the description of the ground state but they

might make it possible to use ground-state energy

computations to quantitatively model the first excited

state (of the same symmetry). Although the FCI

method simultaneously yields results for excited
states along with the ground-state energy, this is not

true of most of the practical ab initio techniques, which

typically just give results for the ground state. Direct

methods for computing excited states are not nearly as

well developed as methods for the ground state.
The theory and applications in the present study

were developed for the FCI energy function, ~EðxÞ. It is
interesting to consider whether or not the same

conclusions hold for the true energy function E(x). In

the limit of infinite basis set dimension, the numerical

value of ~EðxÞ will approach that of E(x). Because this

holds true for any path around an isolated branch

point of ~E, there must be a corresponding isolated

branch point in E. However, it is possible for E to have
other kinds of branch points than the square-root

branch points that are the only kind in ~E. Many-body

perturbation theories have critical points, correspond-

ing to phase transitions, which correspond to a much

more complicated kind of branch point that lies on the

real axis [35,36]. ~E models such a singularity with a

grouping of square-root branch points in complex-
conjugate pairs clustered closely about the critical

point [19]. This is the kind of behaviour one can expect

to see in a QA for a potential energy curve in which the

ground state undergoes a sudden qualitative change in

electronic structure as the molecular geometry is

distorted.
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