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Comparison of the perturbative convergence with multireference
Möller–Plesset, Epstein–Nesbet, forced degenerate and optimized zeroth
order partitionings: The excited BeH 2 surface

Rajat K. Chaudhuri, James P. Finley, and Karl F. Freed
The James Franck Institute and the Department of Chemistry, The University of Chicago, Chicago,
Illinois 60637

~Received 14 October 1996; accepted 19 November 1996!

High order perturbation energies are computed for excited1A1 states of BeH2 at geometries near the
Be→H2 symmetric insertion transition state. The equations of multireference perturbation theory
are solved through 30th order to study the difficulties in selecting the appropriate zeroth order
Hamiltonian, orbitals, orbital energies, and reference functions for the computations of smooth
molecular potential energy surfaces. The origin of the perturbative divergence produced by Mo¨ller–
Plesset and Epstein–Nesbet partitionings is analyzed using a conceptually simple two-state model
constructed using one state each from the reference and orthogonal spaces. The optimized zeroth
order partitioning scheme~OPT! for double reference space computations with configurations
1a1

22a1
23a1

2 and 1a1
22a1

21b2
2 produces a truly convergent perturbation expansion through 30th order.

The OPT energies are accurate in low orders as compared to the exact~197 dimensional! solution
within the basis. The forced valence orbital degeneracy partitioning method~FD! also generates a
truly convergent expansion for the same double reference space calculation, with slightly poorer low
order energies than the OPT scheme. The BeH2 system facilitates the consideration of larger
reference spaces~constructed using three through six orbitals! where the FD method produces
highly accurate energies in low orders despite the asymptotic nature of the FD perturbation
expansion. The ‘‘delayed’’ perturbative divergence behavior with the FD partitioning scheme~for
large reference spaces! is shown to occur due to the incorrect ordering between the zeroth order
energies of some reference and complementary space levels. ©1997 American Institute of
Physics.@S0021-9606~97!01808-4#

I. INTRODUCTION

Accurate theories for the calculation of atomic and mo-
lecular electronic structure can be classified broadly into
variational and nonvariational varieties. The nonvariational
approaches include the single reference configuration~SR!
many-body perturbation theory~MBPT!,1–4 which is a
widely used and convenient procedure for a significant range
of problems. The nonvariational method can be classified
further into ~a! perturbative and~b! nonperturbative catego-
ries that invoke different philosophies and possess different
advantages. The perturbative approach relies on an order-by-
order expansion which retains all excitation processes re-
quired at each order, whereas the nonvariational, nonpertur-
bative approach~e.g., the coupled cluster method5–7! treats
particular types of excitations to all orders. Both of these
categories of nonvariational methods have the important vir-
tue of maintaining size extensivity.

Despite its great success in treating electron correlation
for many types of systems, the SR-MBPT method is often
inefficient~poorly convergent or even divergent! for quaside-
generate situations or for highly open shell systems where
more than one reference configuration is important. Thus
problems frequently arise in calculating excited state ener-
gies and potential energy surfaces near transition states or
bond breaking regions. The use of an unrestricted Hartree–
Fock reference function overcomes a portion of the conver-
gence problem, especially near the bond breaking regions.

However, the perturbed wave function is spin contaminated,
and the overall accuracy becomes degraded,8–10 especially
when the single reference function is an excited state.

Several different multireference configuration MBPT
~MR-MBPT! approaches~maintaining the correct spin
symmetry!11–19 have been proposed as a natural remedy to
the deficiencies of the SR-MBPT method. The fundamental
idea is to construct an effective Hamiltonian whose eigenval-
ues coincide with a subset of the eigenvalues of the exact
Hamiltonian. The first size-extensive MR-MBPT formula-
tion of Brandow11 employs a complete reference space~often
called a complete active space!. The choice of a complete
active space facilitates the proof of the linked cluster theo-
rem which guarantees that the effective HamiltonianHeff has
a connected diagrammatic expansion and consequently that
the eigenvalues ofHeff , the energies, are size extensive.

While the MR-MBPT formalism resolves several short-
comings of the SR-MBPT method, it introduces another
problem that has been called the ‘‘intruder state problem.’’
Schucan and Weidenmu¨ller hypothesize that multireference
perturbation expansions must diverge whenever an exact
state, which is predominantly composed of configurations
outside the reference space, appears within the energy spec-
trum of the exact states that are predominantly represented
by reference space states.20,21 This conjecture emerges from
using a zeroth order Hamiltonian in which the zeroth order
energies of the reference and orthogonal space states are not
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permitted to overlap. We have demonstrated that this pessi-
mistic conclusion isnot valid if the restriction is lifted to
allow an energy overlap between the zeroth order reference
and orthogonal spaces. For example, the optimized partition-
ing method~OPT! computations for the beryllium atom22

place the reference spaceu1s22s2& configuration state func-
tion ~CSF! above the orthogonal spaceu1s22s3s& ~Rydberg!
CSF. Besides converging to the ground state energy, the per-
turbative computation with two reference states converges to
the secondexcited state and not the first.

An alternative solution for avoiding this problem is to
use MR-MBPT with an incomplete model space, as first de-
veloped and applied by Hose and Kaldor.23 Unlike the com-
plete active space theories, there have been lengthy
disputes24,25 regarding the size extensivity of the incomplete
model space theories. Mukherjee26,27provides a formal reso-
lution of the size-extensivity problem for the incomplete
model space theories by describing a ‘‘proper size- extensive
normalization.’’

For all practical purposes, actual perturbative computa-
tions require the truncation of the perturbative expansion,
and this truncation is only meaningful if the perturbation
series either converges rapidly or, at least, converges rapidly
in an asymptotic sense. The MR-MBPT method frequently
suffers from a poor convergence problem unless an appro-
priate reference space is selected. This proper choice of ref-
erence space becomes important in computing smooth accu-
rate potential energy surfaces as evidenced by the general
belief that the use of a single common active space is essen-
tial for calculating the potential energy surface over an inter-
esting range of geometries. It is likewise widely believed that
the MR-MBPT method is incapable of providing a rapidly
convergent perturbation series for the entire range of geom-
etries. The latter belief follows from the expectation that
some reference space states may escape intruder state prob-
lems for certain ranges of geometries but become plagued by
these problems for other geometries. Similar questions have
been raised for the intermediate Hamiltonian method, a vari-
ant of MR-MBPT.28

It is well known that perturbative convergence depends
strongly on the choice of the zeroth order HamiltonianH0,
i.e., on the partitioning of the exact Hamiltonian between
H0 and the perturbationV.29–31 The two general categories
of partitioning are called generalized Mo¨ller–Plesset~MP!
and generalized Epstein–Nesbet~EN! partitionings. The gen-
eralized MP partitioning utilizes a ‘‘sum over orbitals’’ treat-
ment, whereas the generalized EN partitioning pursues a
‘‘sum over states’’ formulation in constructing the zeroth
order HamiltonianH0 and the perturbation series. Different
potentials may be invoked to constructH0, and a wide range
of potentials have been chosen32,33 with varying degrees of
success.

Besides the use of MR-MBPT in an incomplete model
space, several other methods have been also proposed to
overcome the convergence difficulties induced by the pres-
ence of intruder states. For example, the Murray–Davidson34

approach defines the orbitals by diagonalizing the Fock op-
eratorF separately in the doubly occupied, singly occupied,

and virtual spaces. TheH0 is then defined by using the re-
sulting eigenvalues as orbital energies. Murray and Davidson
also prescribe a second scheme in which the orbital energies
are modified by adding a population dependent correction.
The convergence behavior of the Murray–Davidson methods
is similar to that for ROHF/UMP2~restricted open shell
Hartree–Fock/second order unrestricted Mo¨ller–Plesset
theory!. Roos and co-workers35,36 use an alternative ap-
proach. The main disadvantage of the methods by Pulay37

and Roos is that a very large set of linear equations must be
solved. Hoffmann38 obtains encouraging second order ener-
gies with scaled valence orbital energies forH0, but the
higher order convergence behavior is still unknown. Consid-
erable theoretical and computational progress has appeared
for the intermediate Hamiltonian method,28 where the opti-
mal zeroth order energies for the intermediate subspace are
determined either by a judicious shifting39–41or by an itera-
tive scheme.42 This method introduces a shift operator to
alter the eigenvalues of the intermediate space states, and it
therefore appears that this shift operator enters into the third
and higher orders, presumably pushing the divergence to
higher orders. Moreover, a size-consistent intermediate-
Hamiltonian formulation beyond second order is nontrivial.43

Freed and co-workers44–52 have introduced a rather
simple approach to tackle the intruder state problem. Their
formulation is based on a Hermitianized version of Bran-
dow’s degenerate MR-MBPT theory in whichVN21 poten-
tials are used for all valence orbitals and in which valence
orbital degeneracy is imposed to enlarge the otherwise prob-
lematic perturbative energy denominators. The forced degen-
eracy condition, however, introduces an additional perturba-
tion that enters beginning in third order, but the method
significantly improves the perturbative convergence by re-
moving serious intruder state problems. On the other hand, in
the OPT method,22,53 the perturbative convergence is accel-
erated by optimizing only a few zeroth order states. Our
recent works on the HRS~rectangular H4 system! and the Be
atom demonstrate22,53 how the forced valence orbital degen-
eracy approach~FD! and the OPT~optimized zeroth order
energy! partitioning offer a decently convergent series~i.e.,
practical convergence! in situations where the traditional MP
and EN multireference perturbative series are well known to
be poorly divergent due to the presence of ‘‘intruder’’ states.

We have also demonstrated22,53 the utility of two-state
models as a diagnostic for understanding the perturbative
convergence produced by various choices of reference
spaces, partitioning methods, and orbitals, as well as in sug-
gesting remedies for unsuitable choices. However, the analy-
sis in these two studies is based on using a double reference
space, which is the minimum size to qualify as a MR-MBPT
computation. On the other hand, the FD partitioning scheme
is generally applied with much larger reference spaces whose
greater size (<5,000 configuration state functions! might be
thought to be more susceptible to intruder states that affect
the perturbative convergence. The reference space in the FD
partitioning is chosen, in part, based on a trade-off between
generating accurate first order energies~and hence smaller
perturbation corrections! from the enlarged reference space

4068 Chaudhuri, Finley, and Freed: The excited BeH2 surface

J. Chem. Phys., Vol. 106, No. 10, 8 March 1997
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.123.44.23 On: Sun, 21 Dec 2014 18:54:17



at the expense of factors22 that may slow or destroy the per-
turbative convergence, including the introduction of a large
additional perturbation and the possible occurrence of small
energy denominators from forcing the valence orbitals to be
degenerate.52 The present paper addresses the pessimistic
view that the large reference space ultimately must degrade
the convergence properties.

We consider the well-known difficult case of the excited
1A1 state potential energy surface for the perpendicular C2v
insertion of Be (1S) into H2 (X

1 Sg
1). This system has been

investigated by Bartlettet al.,54–56Simonset al.,57 Freed and
co-workers,58 and many other groups. The computations
model the insertion path as a straight liner52.54–0.46R
~a.u.!, wherer is the H–H distance andR is the Be to center
of H2 distance. The treatment of this model reaction path is
quite complicated due to the multiconfigurational nature of
the electronic wave functions in certain regions. Purvis
et al.55 have shown that the perpendicular insertion of Be
into H2 requiresp–orbital participation on Be and, in par-
ticular, the promotion of Be(2s2) to Be(2p2) near the criti-
cal geometry B for R52.75 a.u.~see Fig. 1! due to the
quasidegenerate nature of the 2s and 2p Be orbitals. This
2s→2p promotion changes the principal1A1 configuration
along the BeH2 reaction path from 1a1

22a1
23a1

2 to
1a1

22a1
21b2

2 as illustrated in Fig. 1. Thus at the critical or
‘‘transition’’ geometry B, the ‘‘excited’’ configuration
1a1

22a1
21b2

2 contributes more than the ‘‘ground’’ configura-
tion 1a1

22a1
23a1

2 to the 11A1 state~using SCF orbitals from
the 1a1

22a1
21b2

2 state!. A single reference perturbative model
must treat one of these two important and strongly coupled
configuration state functions~CSF! as lying in the orthogonal
(Q) space~also called the virtual space!, creating severe

convergence problems. When Be is moved to R53.0 a.u.
from the center of H2 ~geometry C!, the 11A1 state is domi-
nated by the configuration 1a1

22a1
23a1

2, while at geometry A
for R52.5 a.u. ~indicated on Fig. 1!, the configuration
1a1

22a1
21b2

2 dominates over 1a1
22a1

23a1
2. A similar multicon-

figurational character also appears in the H4 model, where at
the square planar geometry~i.e., when the separation R be-
tween the twoH2 fragments is 2.0 a.u.! the a1g

2 b1u
2 and

a1g
2 b3u

2 CSFs are equally important for the 11A1g state, but
as the separation between the two H2 fragments decreases
~increases! the a1g

2 b3u
2 (a1g

2 b1u
2 ) CSF contributes signifi-

cantly. The BeH2 case is further complicated because the
1a1

22a1
23a14a1 and 1a1

22a1
21b22b2 CSFs are also very im-

portant. Thus, the complete study of the BeH2 system is
non-trivial even for describing one molecular potential en-
ergy surface.

Purvis et al.55 have successfully described the 11A1

state BeH2 potential energy surface using different single
configuration functions for different ranges of R in coupled
cluster single and doubles~CCSD! calculations, but this ap-
proach may yield bumpy potential energy surfaces. Subse-
quently, Bartlettet al.56 note that the choice of SCF orbitals
from a 1a1

22a1
23a1

11b2
1 (3B2) reference configuration pro-

vides a converged solution for the double reference MBPT
~in which the 1a1

22a1
23a1

2 and 1a1
22a1

21b2
2 CSFs are chosen

as the reference space! at the A, B, and C geometries. How-
ever, they fail to explain why the double reference MBPT
converges at all three geometries only for the3B2 reference
SCF orbital choice, an explanation that may aid in guiding
further choice of molecular orbitals.

The present work analyzes the convergence problems
encountered with MP and EN partitioning for double refer-
ence MBPT computations based on the 1a1

22a1
23a1

2 (1A1)
state SCF orbitals and orbital energies. We demonstrate that
converged solutions may still be obtained for all the three
geometries using the same reference configuration
1a1

22a1
23a1

2 (1A1) SCF orbitals by~1! optimizing the zeroth
order state energies, i.e, by employing our OPT method,22,53,
or ~2! by applying the forced degeneracy~FD! partitioning
scheme. Both methods use a more sensible selection of va-
lence orbitals to enhance the perturbative convergence in low
orders. Interestingly, recent computations for
cis2butadiene~third order MR-MBPT! and for CH2 by
Freed and co-workers59,60 also demonstrate the same trends.

Sections II and III briefly outline the multireference con-
figuration perturbation theory and the choice of the zeroth
order Hamiltonian. Section IV describes the convergence cri-
teria for the perturbation expansion of a simple two-state
model that is used in later sections to explain the behavior of
the perturbation expansion with the full 197 state computa-
tion. Section V presents information concerning the basis set
and the reference spaces used. Section VI describes why cer-
tain partitioning schemes yield convergence problems. The
source of these convergence problems is analyzed using two-
state models constructed from the full problem by selecting
one important state each from the reference and orthogonal
space states~called an interspace pair of states!. Sections VII
and VIII summarize the results of the OPT and FD partition-

FIG. 1. SCF energies of BeH2 for different ground state configurations and
symmetries at various geometries along the reaction path.

4069Chaudhuri, Finley, and Freed: The excited BeH2 surface

J. Chem. Phys., Vol. 106, No. 10, 8 March 1997
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.123.44.23 On: Sun, 21 Dec 2014 18:54:17



ing with larger reference spaces and provide comparisons
with other methods that have been used to compute the
1 1A1→2 1A1 vertical excitation energies of BeH2.

II. BASIC FORMALISM OF MULTIREFERENCE MANY-
BODY PERTURBATION THEORY (MR-MBPT)

The exact Hamiltonian is first partitioned into

H5H01V, ~2.1!

whereH0 is the unperturbed Hamiltonian andV is the per-
turbation. We assume that the Schro¨dinger equation for the
unperturbed Hamiltonian,

H0uF i&5Ei
0uF i&, ~2.2!

provides a complete set of eigenfunctionsuF i& with corre-
sponding eigenvaluesEi

0 The eigenfunctions ofH0 are then
divided into two subspaces defined by the two complemen-
tary projectorsP andQ, where

P5(
i

d

uF i&^F i u5(
i
Pi , ~2.3!

and

Q512P5 (
j5d11

uF j&^F j u5(
j
Qj . ~2.4!

The P subspace of dimensiond is variously called the
model, the reference, or the valence space, while its orthogo-
nal complementQ is formed by the remaining eigenvectors
of H0. The model space functionsuC i

0& are defined as the
projections of the exact eigenfunctionsuC i& onto the refer-
ence or model space,

uC i
0&5PuC i&. ~2.5!

Alternatively, the exact eigenfunctionsuC i& can be repro-
duced from the model space functionuC i

0& with the aid of
the wave operatorV,

uCk&5VuCk
0&. ~2.6!

Using these definition ofP, Q, andV, the exact and the
perturbed Schro¨dinger equations may be cast into effective
eigenvalue equations of the form

HeffuC i
0&5Ei uC i

0&, ~2.7!

whereHeff is given by

Heff5PHVP. ~2.8!

An order-by-order perturbation expansion ofV is ob-
tained by solving the generalized Bloch equation13,14

@V,H0#P5@VV2VVV#P. ~2.9!

Now define the perturbative expansion of the wave operator
V as

V511V~1!1V~2!•••. ~2.10!

Substituting the expansion forV into Eq.~2.9! generates the
nth order expression forV as

@V~n!,H0#P5FVV~n21!2 (
m51

n21

V~m!VV~n2m21!GP,
~2.11!

and the corresponding matrix elements of thenth order con-
tribution toHeff are given by

^F i
0uHeff

~n!uF j
0&5^F i

0uPVV~n21!PuF j
0&. ~2.12!

The expressions for the effective Hamiltonian matrix ele-
ments through third order is then obtained as

^auHeff
~1→3!ub&5Ea

0dab1^auVub&

1 (
mPQ

^auVum&^muVub&

Eb
~0!2Em

~0!

1 (
m,nPQ

^auVum&^muVun&^nuVub&

~Eb
~0!2Em

~0!!~Eb
~0!2En

~0!!

2 (
mPQ,gPP

^auVum&^muVug&^guVub&

~Eb
~0!2Em

~0!!~Eg
~0!2Em

~0!!
.

~2.13!

The above effective HamiltonianHeff in Eq. ~2.13! is
non-Hermitian as is evident from the antisymmetry of its
energy denominators. Introducing a Hermitized form ofV
enables generating a HermitianHeff

11,13, which through third
order is equivalent to using12(Heff1Heff

† ). Provided the di-
mension of theQ space is not very large, the order by order
computation ofHeff from Eq. ~2.11! is relatively straightfor-
ward and is performed in this present work.

Although not explicitly indicated in the above equations,
the wave operatorV introduced here actually depends upon
the model function on which it operates, i.e., is a state or ket
dependent wave operator. Further, the above derivation of
Heff assumes thatV satisfies intermediate normalization~i.e.,
PVP5P!, which, in fact, is not mandatory.26

III. CHOICES OF ZEROTH ORDER HAMILTONIAN H0

The choice of the zeroth order Hamiltonian is,in prin-
ciple, at our disposal. However, the choice,in practice,
strongly determines the convergence properties of the pertur-
bative expansion. Several types of zeroth order Hamiltonians
H0 are considered here.

A. Mö ller–Plesset (MP) partitioning

The MP partitioning uses a ‘‘sum over orbitals’’ form of
H0. The most general diagonal form of such aH0 is given by

H05(
c

Nc

e iac
†ac1(

v

Nv

evav
†av1(

e

Nc

eeae
†ae , ~3.1!

whereNc , Nv , andNe are the numbers of core, valence, and
excited orbitals,ec , ev , andee are the corresponding orbital
energies, andai

† andai are the usual creation and annihila-
tion operators, respectively. The orbitals are usually defined
as eigenfunctions of Fock operators. The most natural choice
for the orbital energiese i are the eigenvalues of the Fock
operator defining the orbitals. However, any choice of orbit-
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als and orbital energies may, in principle, be chosen, and the
objective is to find choices that assure the most rapid pertur-
bative convergence. Traditional MP partitioning, on the other
hand, defines all orbitals and orbital energies as the eigen-
functions and eigenvalues of asingleFock operator, a choice
that has proven to be quite useful for SR-MBPT computa-
tions but that is not designed towards optimal perturbative
convergence of the multireference extensions.61

B. Forced valence orbital degenerate (FD) partitioning

This method is a variant of the general MP partitioning
method as embodied in Eq.~3.1!. However, in order to im-
prove the perturbative convergence and to remove the seri-
ous intruder state problems, Freed and co-workers use mul-
tiple Fock operators to obtain the spatial orbitals.47,49,52The
valence orbitals and orbital energies are obtained using
V(N21) potentials,47,49,52and the valence orbital energies are
then forced to be degenerate. The form of the diagonalH0 in
the FD partitioning is given by

H05(
c

Nc

ecac
†ac1 ēv(

v

Nv

av
†av1(

e

Ne

eeae
†ae , ~3.2!

where the average valence orbital energyēv is obtained from
the original set of valence orbital energies by the democratic
averaging

ēv5
( i
Nvev

Nv
. ~3.3!

The above degeneracy condition introduces a diagonal per-
turbationdV5ev2 ēv that contributes beginning in third or-
der. The magnitude ofdV directly depends upon of the
spread of the original valence orbital energies$ev% before
averaging. In fact, some third order computations with small,
quasidegenerate reference spaces do not require valence or-
bital energy averaging.

C. Epstein–Nesbet (EN) partitioning

The most general diagonal form ofH0 can be written as

H05(
i

u i &Ei
0^ i u, ~3.4!

where the sum overi runs over all states andEi
0 is the i th

state zeroth order energy, which is formally at our disposal.
Usually, Epstein–Nesbet partitioning chooses the zeroth or-
der state energy as

Ei
05^ i uHu i &, ~3.5!

which makes the diagonal elements ofV vanish with either a
determinantal or CSF basis. Since theH0 differs for the latter
two cases, the determinantal–based Epstein–Nesbet and
CSF-based Epstein–Nesbet partitioning methods generate
different perturbation expansions.~Note that a unitary trans-
formation of theH0 from a determinantal-based Epstein–
Nesbet basis to a CSF basis leads to a nondiagonalH0.! The
computation below, denoted by EN, employs a hybrid of the
determinantal and CSF-based Epstein–Nesbet partitionings.

This variant of Epstein–Nesbet partitioning defines the
zeroth-order energies of each CSF by the barycentric
expression,62

Ei
05(

d
@Cd

i #2^duHud&, ~3.6!

where the CSF functionu i & is given by a linear combination
of determinantal statesud&,

u i &5(
d

Cd
i ud&. ~3.7!

Our previous investigation of the HRS and the Be atom22,53

also employs this partitioning method. Except for single de-
terminantal statesu i &, the diagonal matrix elements of the
perturbationV no longer vanish for the ENH0 of Eqs.~3.6!
and ~3.7!.

D. Optimized zeroth order (OPT) partitioning

The optimized zeroth order partitioning~OPT! approach
applied here is similar to the EN partitioning method in using
a H0 of the form in Eq.~3.5!, but the OPT method differs
significantly because a small subset of the zeroth order state
energiesEi

0 are determined in an optimal manner.22,53 The
‘‘optimal performance’’ of the perturbation expansion is de-
fined as follows: The state energies of the lowest 20 BeH2

zeroth order states are selected to optimize the low order
convergence of the perturbative expansion. The process
minimizes the sum of the absolute deviations of the pertur-
bative energies through third and fourth orders from the in-
finite order ~converged! FCI ~full configuration interaction!
ground state energyEgs as calculatedwithin the subspace of
the same twenty lowest zeroth order states. More precisely,
the OPT partitioning involves minimizing the sum of the
third and fourth order absolute deviations,

uEgs2E3u1uEgs2E4u, ~3.8!

whereE3 andE4 are the third and fourth order perturbation
computations ofEgs as obtained using the same 20 zeroth
order states. Since Eq.~3.4! is invariant to a constant shift of
all twenty zeroth order state energies, for convenience, we
select the ground state zeroth order energy to be fixed at its
barycentric EN value. The state energies for all the remain-
ingQ-space CSFs are also fixed at their barycentric EN state
energies. Thus, the form of H0 in this partitioning scheme is
written as

H05(
i

u i &Ēi
0^ i u,

whereĒi
0 is the optimal zeroth order energy of stateu i & for

the lowest 20 states, while the remainder are EN barycenter
values.

IV. TWO STATE SYSTEMS AS AN IMPORTANT
DIAGNOSTIC

The convergence properties for the BeH2 computations
are explained transparently in subsequent sections by the use
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of simple two-dimensional models that are constructed from
a pair of interspace states, defined as one state each from the
P andQ spaces, taken from the full problem with 197 CSFs.
The convergence behavior is investigated by considering the
parameterized HamiltonianH(z),

H~z!5H01zV, ~4.1!

where z is the complex perturbation parameter. Thez51
limit recovers the exact two stateH, while z50 produces the
unperturbed systems. Denoteup& and uq& as theP andQ
space states of the two-dimensional model, whileep andeq
are their zeroth order energies, respectively. The exact eigen-
values of the two-dimensional HamiltonianH(z) can be ex-
pressed as

E6~z!

5 1
2 Tr H6 1

2 $@De2~De2DH !z#214Vpq
2 z2%1/2, ~4.2!

where

Vpq5^puH~z51!uq&,

De5eq2ep ,

DH5^quH~z51!uq&2^puH~z51!up&,

and thez dependent trace of the Hamiltonian matrixH is
given by

Tr H5^puH~z!up&1^quH~z!uq&.

Both eigenvalues become degenerate in the complex
z-plane at the pair of branch pointszd andzd* where use of
Eq. ~4.2! gives

zd5
De

4Vpq
2 1~De2DH !2

@~De2DH !12Vpqi #. ~4.3!

The radius of convergenceRc for the single reference two
state Rayleigh–Schro¨dinger perturbation expansion is
Rc5uzdu5uzd* u and follows from Eq.~4.3! as

Rc5A ~De!2

~De2DH !214Vpq
2 . ~4.4!

To achieve a convergent perturbation series, it is neces-
sary to haveRc>1, which occurs only if the numerator in
Eq. ~4.4! exceeds the denominator. This condition for con-
vergence implies thatDe ~the zeroth order energy difference!
must satisfy the requirements

De5 >
1

2 FDH1
4Vpq

2

DH G if DH.0,

<
1

2 FDH1
4Vpq

2

DH G if DH,0

. ~4.5!

Thus bothDe andDH must have the same sign; otherwise
the two-state perturbation series diverges. Also, whenDH
Þ 0, Eq. ~4.5! indicates thatDe can always be selected so
that Rc.1. Wilson et al. arrive at the same conclusion by
examining the maximum radius of convergenceRc as a func-
tion of De.63 Note that the features exhibited by Eqs.~4.3!–
~4.5! are also displayed by the general behavior of the full

197 CSF BeH2 computations that follow. This behavior is
modeled in Sec. V by selecting the most influential pairs of
interspace states and by analyzing the character of the full
computation forz'zd . Thus, two state interspace models
provide both convergence criteria and a useful diagnostic
tool for assessing the probable perturbative behavior of vari-
ous MR partitioning methods.

Intruder states are defined as the orthogonal (Q) space
states responsible for destroying the convergence of a pertur-
bation expansion. The presence of intruder states is usually
detected by observing the variation of the eigenvalues as a
function the of perturbation parameterz for real z. An
avoided crossing occurs at a pointzac where the two eigen-
values are closest. The avoided crossing is computed in the
two state model by minimizing@E2(z)2E1(z)# with re-
spect to Rezd ,

zac5
De~De2DH !

4Vpq
2 1~De2DH !2

. ~4.6!

Comparing Eqs.~4.3! and ~4.6! shows thatzac is simply
Rezd . @Note that the eigenvaluesE2(z) andE1(z) cannot
be degenerate for realz.# If the avoided crossing appears for
0,zac,1, the perturbation expansion diverges (Rc,1), and
the convergence is disrupted by what is termed a ‘‘front
door’’ intruder state. Similarly, an avoided crossing for
zac,0 is called a backdoor intruder state64,65 whenRc,1.
Equation~4.5! implies that a backdoor intruder statezac,0
occurs wheneverDH andDe have the same signs and satisfy
uDHu.uDeu. On the other hand, ifDe andDH are of oppo-
site signs ~called incorrect energy ordering! or if
uDHu,uDeu, then the avoided crossing appears forzac.0.

When incorrect energy ordering is present in the two
state system, the expansion is always divergent (Rc,1).
Also, with incorrect ordering present, the limit ofV→0 has
Im z→0, andzd is real and positive with

zd→
De

~De2DH !
. ~4.7!

Equation~4.7! also emerges when the z-dependent diagonal
elements ofH are degenerate. Thus in actual calculations
involving a large number of states, if the incorrectly ordered
pair of interspace states is weakly coupled both among them-
selves and to other states, then bothzd andzac are approxi-
mately equal to the value ofz where the diagonal elements of
H(z) are degenerate. Furthermore, such cases yield a very
pronounced avoided crossing since the degeneracy pointzd
occurs close to the real axis. This situation is found in Sec. V
for the FD partitioning computations with a three-orbital ref-
erence space. By contrast, when a two-state system has the
zeroth order states correctly ordered, the limit ofV→0 then
producesRc→` corresponding to a convergent expansion.
In addition, the special case ofDH5De ~standard Epstein–
Nesbet partitioning for a determinantal or CSF basis! yields
the avoided crossing atzac50 since Eq.~4.3! implies that
this case produceszd as purely imaginary.

It should be emphasized that, in general, for large scale
MBPT computations, we often neither know nor care
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whether the perturbation series converges, since this infor-
mation has little practical value for computations truncated at
low orders except to guide the development of improved low
order methods. However, this convergence behavior has
bearing on infinite order methods such as coupled-cluster
~CC! approaches. Mathematical convergence depends upon
the behavior of the indefinitely high order terms, whereas
low order truncations are often very accurately provided by
formally divergent asymptotic series. For example, many
formally divergent series are asymptotically convergent and
are quite useful when truncated at low orders@e.g., Stirling’s
formulas for the expansion of lnn! and sin(2e)#. Thus, when
divergent series are obtained from the full scale calculations,
these series are analyzed below to assess their useful asymp-
totic character and their behavior when resumed by Pade´
approximants.

V. BASIS SET AND REFERENCE SPACE

We employ a contracted@12s3p/3s1p# set of Gaussian
functions for Be and@4s/2s# contracted Gaussian functions
~with scaling factor of 1.2! for the H atoms. This basis is the
same as applied by Purvis and Bartlett in their ground state
computation for BeH2.

55 Ground state SCF calculations pro-
duce the minimum energy state as a 1a1

22a1
23a1

11b2
1 3B2

state for all the geometries considered here. The next two
low lying states have the configurations~symmetries! of
1a1

22a1
23a1

2 (1A1) and 1a1
22a1

21b2
2 (1A1) and cross near ge-

ometry B ~see Fig. 1!. Our first model space for all the ge-
ometries contains the two zeroth order 1a1

22a1
23a1

2 and
1a1

22a1
21b2

2 states. This double reference space is used to
study the convergence behavior for the two lowest1A1 ex-
cited states with all four different partitioning schemes, the
MP, EN, FD, and OPT partitionings. The double reference
space calculation for the states of1A1 symmetry yields a
Q-space with 195 states since the 1a1 orbital is kept doubly
occupied in all the CSFs~frozen core!. We compute through
30th order the order-by-order state energies and vertical ex-
citation energy for the 11A1→2 1A1 transition using the
configuration based MR-MBPT algorithm.55 Excitation ener-
gies for all reference spaces are taken relative to the 11A1

state, although the3B2 state is the lowest lying SCF state.
We also compute the order by order state energies using FD
partitioning with larger reference spaces~described below! in
order to analyze how the convergence behavior is affected by
enlarging the reference space. Since increasing the size of the
reference space enhances some diagonal perturbation matrix
elements~due to the reduced quasidegeneracy among the va-
lence orbitals! and may introduce energy denominators that
are too small,52 it might be expected that the perturbation
series diverges more quickly with the larger than the smaller
reference spaces. On the other hand, the larger reference
space provides improved first order energies@from the first
two terms on the right hand side of Eq.~2.13!# and smaller
overall perturbation corrections@from theQ space contribu-
tions in Eq.~2.13!#. The question we address with the larger
reference spaces is which of these competing factors domi-

nates when larger reference space computations are truncated
at low ~e.g., third! orders.~Other factors influencing conver-
gence are discussed in Ref. 22!.

While the FD and traditional MP partitioning approaches
both begin from the same form of the zeroth order Hamil-
tonian @Eq. ~3.2!#, both the orbitals and orbital energies are
chosen quite differently with the FD partitioning scheme
than with conventional MP methods. We illustrate these dif-
ferences using the double reference space FD-MBPT com-
putation with the 1a1

22a1
23a1

2 and 1a1
22a1

21b2
2 CSFs as the

reference space. The 1a1, 2a1, and 3a1 orbitals and orbital
energies are first obtained from a closed shell SCF computa-
tion for the 1a1

22a1
23a1

2 state. The 1b2 unoccupied valence
orbital and orbital energy are then computed as the improved
virtual orbital ~IVO! from a 1a1

22a1
23a1

11b2
1 state SCF in

which only the 1b2 is permitted to vary.47,49,52This proce-
dure yields a 1b2 orbital that is more suited to describe ex-
cited states than the virtual 1b2 orbital from the
1a1

22a1
23a1

2 state SCF, and the 1b2 orbital energy is lower
than that of the virtual 1b2 orbital, making the FD reference
space more quasidegenerate than the conventional MP
choice. The FD partitioning excited orbitals and orbital en-
ergies are then obtained by diagonalizing the 1a1

22a1
23a1

2

state Fock operator with the core and valence orbitals frozen.
The 3a1 and 1b2 orbital energies are then replaced by their
arithmetic average to impose degeneracy on the reference
space and thereby to eliminate the worst intruder state prob-
lems. All OPT computations use the same orbitals as for the
double reference FD treatments but optimize the zeroth order
energies.

The FD computations with the larger reference spaces
begin with the three SCFa1 symmetry orbitals that are oc-
cupied in the Hartree–Fock~HF! 1 1A1 state. The 1a1 orbital
is placed in the core, while the 2a1 and 3a1 orbitals are
valence orbitals.~The five valence orbital reference space
leaves the 2a1 orbital in the core!. Additional valence orbit-
als ~of symmetriesa1, b2 andb1) that are unoccupied in the
HF 11A1 state are taken to be improved virtual orbitals
~IVOs! created by a single SCF optimization for an excited
triplet configuration in which an electron is promoted from
the highest occupied molecular orbital~the HOMO in the
1 1A1 HF state! into the orbital to be optimized. The proce-
dure for obtaining the molecular orbitals involves a sequence
of SCF calculations~which can also be obtained by a unitary
transformation52!. For example, the four orbital reference
space is produced by the sequence,

~1! 1a1
22a1

23a1
2, 1A1,

~2! @1a1
22a1

23a1
1#1b2

1, 3B2,

~3! @1a1
22a1

23a1
11b2

0#1b1
1, 3B1,

~4! @1a1
22a1

23a1
11b2

01b1
0#4a1

1, 3A1.

The first step is a 11A1 state SCF calculation, and steps 2–4
are independent single orbital optimization, where the orbit-
als shown in the square brackets are frozen as determined in
the previous steps. The excited orbitals are then obtained by
diagonalizing the 11A1 state Fock operator in the orbital
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space complementary to the union of the core and reference
spaces. This four orbital reference space is denoted
symbolically as (core)2@2a13a11b11b2#

4 to indicate
the valence orbitals in square brackets and the total
number of electrons in the reference space as the
superscript. The corresponding six and seven orbital
reference spaces are (core)2@2a13a11b11b22b2#

4, and
(core)2@2a13a14a11b11b22b2#

4, respectively.

VI. CONVERGENCE PROBLEM FOR BeH 2 WITH
DIFFERENT PARTITIONING SCHEMES

A. Convergence difficulties with Mo ¨ ller–Plesset (MP)
and Epstein–Nesbet (EN) partitioning schemes
using a double reference space

The computations in this section employ a reference
space with theu1a1

22a1
23a1

2& and u1a1
22a1

21b2
2& CSFs as the

model or reference space states. Using this double reference
space, the computed MR-MBPT energies for the lowest two
1A1 states are displayed in Tables I, II, and III for geometries
A, B, and C, respectively, and for the EN, MP, FD, and OPT
partitioning schemes. The tables demonstrate the previously
known fact56 that the traditional MP and EN partitioning
multireference perturbation expansions suffer from conver-
gence problems for both1A1 states of BeH2 and for all the
geometries~except geometry A for MP!. The analysis below
demonstrates that the severe divergence encountered with the
traditional MP and EN partitionings arises from the presence
of intruder states that render these series divergent. Detailed
analysis is presented for the ‘‘transition state’’ geometry B

TABLE I. Energy errorsuEFCI2E(N)u for the first (11A1) and second
(2 1A1) BeH2

1A1 states at geometry A for different partitioning schemes
and a double reference space.

Perturbation
order ~N! MP EN FD OPT

1 1A1

2 0.009 797 0.157 627 0.031 318 0.018 660
3 0.016 333 0.039 239 0.003 538 0.003 447
4 0.004 052 0.095 676 0.007 560 0.002 372
5 0.008 312 0.392 442 0.002 525 0.003 765
6 0.006 090 0.579 366 0.001 381 0.001 823
7 0.002 344 0.107 665 0.001 914 0.000 082
8 0.004 946 0.145 447 0.000 670 0.000 637
9 0.000 629 Diverges 0.000 410 0.000 419
10 0.003 207 0.000 597 0.000 083
20 0.001 192 0.000 015 0.000 005
30 0.000 602 0.000 000 0.000 000

2 1A1

2 0.038 894 0.016 427 0.033 002 0.000 516
3 0.018 555 0.000 012 0.014 819 0.002 580
4 0.009 554 0.192 088 0.008 113 0.000 849
5 0.005 216 0.000 126 0.004 879 0.000 370
6 0.002 602 0.007 227 0.002 959 0.000 320
7 0.001 096 Diverges 0.001 750 0.000 053
8 0.000 464 0.001 009 0.000 017
9 0.000 290 0.000 568 0.000 023
10 0.000 190 0.000 309 0.000 014
20 0.000 030 0.000 008 0.000 006
30 0.000 014 0.000 000 0.000 000

TABLE II. Energy errorsuEFCI2E(N)u for the first (11A1) and second
(2 1A1) BeH2

1A1 states at geometry B for different partitioning schemes
and a double reference space.

Perturbation
order ~N! MP EN FD OPT

1 1A1

2 0.006 905 0.229 169 0.031 095 0.022 453
3 0.020 273 0.033 213 0.001 843 0.003 807
4 0.003 027 0.029 801 0.005 811 0.001 704
5 0.014 420 1.54 592 0.000 988 0.001 939
6 0.005 827 Diverges 0.002 114 0.001 327
7 0.012 646 0.001 994 0.000 581
8 0.010 047 0.000 498 0.000 155
9 0.006 871 0.000 558 0.000 058
10 0.010 741 0.000 601 0.000 054
20 0.000 183 0.000 004 0.000 004
30 0.100 391 0.000 003 0.000 000

Diverges
2 1A1

2 0.025 440 0.026 385 0.032 683 0.008 274
3 0.006 805 0.082 865 0.009 783 0.004 344
4 0.006 542 0.698 845 0.003 550 0.005 356
5 0.013 767 0.017 071 0.002 335 0.002 886
6 0.003 736 0.025 721 0.002 347 0.000 471
7 0.004 565 Diverges 0.001 767 0.000 252
8 0.003 360 0.000 757 0.000 208
9 0.005 668 0.000 031 0.000 136
10 0.008 212 0.000 181 0.000 092
20 0.000 210 0.000 003 0.000 001
30 0.012 616 0.000 001 0.000 000

Diverges

TABLE III. Energy errorsuEFCI2E(N)u for the first~1 1A1) and second~2
1A1) BeH2

1A1 states at geometry C for different partitioning schemes and
a double reference space.

Perturbation MP EN FD OPT

1 1A1

2 0.017 247 0.283 610 0.024 418 0.015 736
3 0.00 0707 0.012 123 0.005 582 0.005 203
4 0.010 640 0.010 601 0.002 057 0.000 446
5 0.012 240 Diverges 0.001 973 0.000 492
6 0.033 151 0.001 511 0.001 089
7 0.003 558 0.000 703 0.001 061
8 0.042 671 0.000 044 0.000 473
9 1.01 971 0.000 196 0.000 118
10 0.018 561 0.000 108 0.000 297
20 Diverges 0.000 011 0.000 002
30 0.000 000 0.000 010

2 1A1

2 0.016 127 0.082 610 0.038 595 0.014 856
3 0.025 115 0.282 279 0.00 0071 0.002 385
4 0.048 321 1.715 727 0.005 922 0.003 227
5 0.001 993 Diverges 0.000 563 0.000 864
6 0.038 506 0.003 697 0.000 908
7 0.224 649 0.003 296 0.000 174
8 0.132 104 0.000 696 0.000 292
9 0.086 502 0.001 031 0.000 048
10 2.838 345 0.000 971 0.000 284
20 Diverges 0.000 033 0.000 112
30 0.000 014 0.000 005
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only for convenience. The convergence difficulties at the
other two geometries~as well as several others not discussed
here! may be shown to occur for similar reasons.

We now examine thez-dependent FCI eigenvalues and
eigenfunctions of the complexH(z) of Eq. ~4.1! from the
MP and EN partitionings as a function of the perturbation
parameterz. This analysis yields the radius of convergence
Rc5uzdu, where zd is the closest degeneracy point to the
origin involving two states that become an interspace pair of
states asz→0. One of the two degenerate states atz5zd
evolves into aP space state asz→0 ~a P–corresponding
state! and the other to aQ space state~a Q–corresponding
state!. The MP and EN partitionings with double reference
spaces have no zeroth order energy overlap between theP
and Q spaces. Thus the degeneracy pointzd defining Rc

involves the 21A1 (P–corresponding! and 31A1

(Q–corresponding! states. The 21A1 state for the MP and
EN partitionings evolves into theu1a1

22a1
21b2

2& (P space!
CSF whenz→0, while the 31A1 state evolves into the
u1a1

22a1
23a1

14a1
1& (u1a1

22a1
21b2

12b2
1&) Q–space CSF for MP

~EN! partitioning. The intruder state is defined as thezeroth
order statefrom theQ space state that contributes most to
the P–corresponding state in the vicinity ofzd . Other
slightly different definitions of an intruder state have also
been used. Schucan and Weidenmu¨ller20,21 identify the in-
truder states as problematic ‘‘collective states,’’ composed
predominantly ofQ space states, that nearz51 describe low
lying exact states.

The MP partitioningz-dependent eigenvalue differences
are depicted in Fig. 2 for the second and third states of1A1

symmetry for complexz, i.e., E21A1
(z) –E31A1

(z). Figure 2
establishes the presence of a degeneracy between these two
interspace1A1 states. Since the real and imaginary parts of
the eigenvalues for the second (P–corresponding! and third

(Q–corresponding! states of1A1 symmetry are degenerate
for zd'0.1760.82i , the radius of convergence isRc50.84
for the perturbation expansion. In the vicinity ofzd , the first
excited state (21A1) eigenfunction with MP partitioning is
dominated by 48% ofu1a1

22a1
21b2

2& (P space! and 41% of
u1a1

22a1
21b22b2& (Q space! CSFs, and the second excited

state ~3 1A1) eigenfunction is described by the CSFs
u1a1

22a1
21b2

2& ~43%! and u1a1
22a1

21b22b2& ~48%!. @For
z50, the second excited state (31A1) is, however, described
by the CSFu1a1

22a1
23a14a1&#.

A two state model with the u1a1
22a1

21b2
2& and

u1a1
22a1

21b22b2& interspace pair of CSFs yields
zd50.3260.80i , with Rc50.86 as the radius of conver-
gence. Thus, we find semi-quantitative agreement between
the estimate for the radius of convergence from the full com-
putation and that from the two state model. The intruder state
is identified in the full computation to be the
u1a1

22a1
21b22b2& state, and divergence occurs because the

u1a1
22a1

21b2
2& and u1a1

22a1
21b22b2& interspace pair have too

small a zeroth order energy difference@see Eq.~4.5!#. How-
ever, the zeroth order energy difference between this inter-
space pair is far from quasidegenerate.~Reference 53 pro-
vides a similar explanation for the divergent behavior of the
MP partitioning series with four hydrogen atoms arranged in
a rectangular.! Since the degeneracy occurs for 1.Rezd
.0, the u1a1

22a1
21b22b2& CSF may be characterized as a

front-door intruder state. On the other hand, there is no
avoided crossing visible on the real axis becausezd is far
from the real axis. Hence, we prefer to characterize this in-
truder state as a ‘‘hidden’’ intruder state.

An avoided crossing is present between the second and
third states of1A1 symmetry for barycentric–EN partition-
ing, but the states are so far apart that a plot ofEm(z) vs
Rez gives little hint of this crossing. However, allowingz to
be complex, we find that the second and third1A1 states
become degenerate~see Fig. 3! with zd'20.0660.28i
(Rc50.29). Nearzd , the eigenfunction of the second1A1

state is dominated by 57% ofu1a1
22a1

21b2
2& (P space! and

31% of u1a1
22a1

21b22b2& (Q space! CSFs, whereas the
eigenfunction of the third1A1 state is described by the CSFs
u1a1

22a1
21b2

2& ~36%! and u1a1
22a1

21b22b2& ~48%!. A two
state model with this interspace pair of CSFs yields the esti-
mated radius of convergence as 0.35 fromzd'20.06
60.34i , which compares quite favorably with theRc from
full 197 CSF calculation. Hence, as in MP partitioning, the
u1a1

22a1
21b22b2& state is clearly the intruder state and diver-

gence occurs because the u1a1
22a1

21b2
2& and

u1a1
22a1

21b22b2& interspace pair have too small a zeroth or-
der energy difference@see Eq.~4.5!#. A similar explanation
was also given for the divergent behavior of barycentric–EN
partitioning with four hydrogen atoms arranged in a
rectangle.53

Both the MP and EN partitionings obtain their SCF or-
bitals from the u1a1

22a1
23a1

2& state. This arbitrary choice
leaves theu1a1

22a1
21b2

2& and u1a1
22a1

21b22b2& interspace
pair strongly coupled, which, in part, produces divergent ex-
pansions for both partitionings. If instead, the orbitals are
obtained from theu1a1

22a1
21b2

2& state, then, Brillouin’s theo-

FIG. 2. z–dependent excitation energyE(21A1)2E(31A1) of BeH2 for
geometry B from MP partitioning scheme.
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rem implies a vanishing coupling between the
u1a1

22a1
21b2

2& and u1a1
22a1

21b22b2& interspace pair. Hence,
the u1a1

22a1
21b22b2& state can then no longer act as an in-

truder state, andRc may be enlarged. However, single exci-
tations from theu1a1

22a1
23a1

2& state may become important,
possibly introducing an additional intruder state.

The divergent behavior of the single reference MBPT
can also be explained from the complexz-dependent eigen-
value spectra obtained with barycentric–EN and MP parti-
tioning ~not shown here!. For MP partitioning, the avoided
crossing between the first and second states of1A1 symmetry
occurs for positive Rez (zd'0.9560.14), whereas for
barycentric-EN partitioning it appears at negative Rez
(zd'20.5160.01). Both yield a radius of convergence
Rc5uzdu,1 ~0.96 for MP and 0.51 for EN! and imply a
divergent SR perturbation series.

B. Asymptotic convergence with forced valence
orbital degeneracy (FD) partitioning when using large
reference space

Tables I through III demonstrate that FD partitioning for
the double reference space state (11A1 and 21A1 states! is
convergent~through 30th order! over the entire potential sur-
face, while the larger reference space computations~Sec.
VII ! yield usefully asymptotic series when truncated at low
orders. The convergence of the perturbative series~not
shown here! deteriorates rapidly with increasing size of the
reference space. For example, at geometry B, the perturba-
tive expansion for the 11A1 and 21A1 states begins to ex-
hibit divergent behavior from the 23rd, 9th, 7th, and 5th
order onwards for the three, four, five and six orbital refer-
ence spaces~described in the footnotes of Tables VII–IX!,
respectively. Although the deviation from the exact~FCI!
value for the four, five and six-valence orbital reference

spaces is extremely large beyond the orders mentioned
above, a well behaved series is obtained from these FD series
through a Pade´ resummation procedure. Table IV clearly il-
lustrates, how the Pade´ resummation procedure transforms
the ‘‘divergent’’ FD series into~probably! an ‘‘asymptotic’’
series. Note that we truncate~i.e., stop computing! the per-
turbation expansion whenever the error in the 11A1 state
energy~i.e., the deviation from the FCI value! exceeds 104

a.u. For instance, at geometry B, the deviation in the 11A1

state energy exceeds 104 a.u. at the 23rd, 20th, and 18th
orders for the four, five, and six orbital reference spaces.
Hence, we compute the Pade´ approximants only through or-
der @11,10#, @9,8#, and@8,7# for the four, five and six orbital
reference spaces, respectively.~The computation of@N,N-1#
and @N,N#th order Pade´ approximants uses the perturbation
expansion only through 2N11 and 2N12 th orders, respec-
tively.! Tables V through VII display the low order Pade´
approximants for these FD series. Although, these tables
quote the Pade´ appproximants through order@4,4#, the higher
order terms are well behaved up until the perturbation series
becomes too unwieldy.

Except for small reference spaces, the FD partitioning
yields some pairs of interspace states that have their zeroth
order energies incorrectly ordered, producing divergent per-
turbation expansions. We illustrate this behavior only for the
three valence orbital reference space of BeH2, but similar
patterns must occur with the larger~complete active! refer-
ence spaces. Furthermore, as discussed elsewhere,52 the
larger reference spaces may also have zeroth order energies
between interspace states that are too close. Nevertheless,
enlarging the reference space is shown to produce improved
low order energies.

Figure 4 depicts the variation of@Em(z)2Ē(z)# with
Rez (Im z50) for the first four eigenvalues of1A1 symmetry
using the FD partitioning method and the three orbital refer-
ence space, whereEm(z) is the z-dependent eigenvalue of

FIG. 3. z–dependent excitation energyE(2 1A1)2E(3 1A1) of BeH2 for
geometry B from barycentric–EN partitioning scheme.

TABLE IV. Energy errorsuEFCI2E(N)u for the ground state~1 1A1) of
BeH2 at geometry B as obtained from FD-series~for five valence orbital
reference space! through@N,M# Padéresummation.

Order FD-series @N,M#th order Pade´

2 0.003 251 59
3 0.008 871 37 @1,0# 20.003 405 97
4 20.007 048 93 @1,1# 0.000 684 01
5 0.000 707 79 @2,1# 0.000 058 05
6 20.010 484 78 @2,2# 0.000 011 97
7 0.003 333 65 @3,2# 20.000 041 00
8 20.022 805 16 @3,3# 20.000 005 09
9 20.149 567 97 @4,3# 20.000 005 09
10 21.415 019 25 @4,4# 20.000 005 10
11 22.591 356 20 @5,4# 20.000 004 60
12 28.714 815 07 @5,5# 20.000 004 74
13 214.429 572 62 @6,5# 20.000 004 48
14 250.140 665 97 @6,6# 20.000 007 76
15 275.253 383 30 @7,6# 20.000 003 28
16 2350.416 767 71 @7,7# 20.000 002 33
17 2422.029 870 661 @8,7# 20.000 002 85
18 22869.728 624 743 @8,8# 20.000 002 70
19 22719.134 836 716 @9,8# 20.000 002 78
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themth 1A1 state andĒ(z) is the average of the first eight
low-lying state energies. The presence of an avoided cross-
ing is clearly visible in Fig. 4 between the 31A1

(P–corresponding! and the 41A1 (Q–corresponding! states
near Rez50.80. Detailed analysis confirms that the 31A1

and 41A1 are indeed degenerate~see Fig. 5! for
zd'0.87560.04i , yielding Rc 5 0.876. In the vicinity of
zd , these two degenerate states are dominated by the zeroth

order u1a1
22a1

21b1
2& (P space! and u1a1

22a13a11b2
2& (Q

space! states for FD partitioning.
In order to explain and model the FD divergence we

examine the two state model composed of the
u1a1

22a1
21b1

2& and u1a1
22a13a11b2

2& interspace pair, since
these states dominate in the description of the 31A1

(P–corresponding! and the 41A1 (Q–corresponding! states
near zd for the full computation involving all states. The

FIG. 4. First four1A1 statez–dependent eigenvalues of BeH2 for geometry
B from FD partitioning method~with three valence orbital reference space!.

TABLE V. Energy errorsuEFCI2E(N)u for the first~1 1A1) and second~2
1A1) BeH2

1A1 states at geometry A using@N,M# Padéapproximants and
various reference spaces.

Padé
order @N,M#

FD partitioning method OPT

Two orbital
valence space

Four orbital
valence space

Six orbital
valence space

Two orbital
valence space

11A1

@1,0# 0.030 420 0.023 146 0.005 875 0.017 557
@1,1# 0.018 243 0.003 053 0.001 355 0.00 1434
@2,1# 0.00 8123 0.007 413 0.000 605 0.006 204
@2,2# 0.014 718 0.003 179 0.000 169 0.004 289
@3,2# 0.002 101 0.002 010 0.000 093 0.008 330
@3,3# 0.000 290 0.005 537 0.000 094 0.001 056
@4,3# 0.000 318 0.000 261 0.000 093 0.000 279
@4,4# 0.000 293 0.000 798 0.000 009 0.000 196
21A1

@1,0# 0.032 760 0.008 192 0.003 181 0.001 098
@1,1# 0.007 094 0.007 384 0.002 852 0.002 482
@2,1# 0.004 193 0.008 329 0.000 288 0.001 411
@2,2# 0.001 410 0.001 132 0.000 602 0.000 024
@3,2# 0.001 319 0.000 210 0.000 367 0.000 324
@3,3# 0.001 417 0.000 017 0.001 049 0.000 152
@4,3# 0.000 049 0.00 0128 0.000 553 0.000 187
@4,4# 0.000 068 0.001 576 0.000 340 0.000 088

TABLE VI. Energy errorsuEFCI2E(N)u for the first~1 1A1) and second~2
1A1) BeH2

1A1 states at geometry B using@N,M# Padéapproximants and
various reference spaces.

Padé
order @N,M#

FD partitioning method OPT

Two orbital
valence space

Four orbital
valence space

Six orbital
valence space

Two orbital
valence space

1 1A1

@1,0# 0.030 685 0.012 568 0.003 529 0.021 948
@1,1# 0.025 155 0.007 751 0.001 852 0.001 198
@2,1# 0.006 402 0.017 404 0.000 118 0.004 024
@2,2# 0.004 429 0.002 479 0.000 375 0.002 610
@3,2# 0.001 921 0.002 427 0.000 081 0.000 949
@3,3# 0.000 227 0.002 481 0.000 997 0.001 586
@4,3# 0.001 928 0.000 436 0.000 990 0.000 282
@4,4# 0.000 645 0.000 082 0.000 643 0.000 731
21A1

@1,0# 0.031 958 0.023 142 0.003 227 0.007 172
@1,1# 0.003 426 0.007 062 0.002 252 0.004 221
@2,1# 0.001 216 0.011 864 0.000 117 0.005 076
@2,2# 0.001 863 0.000 389 0.000 543 0.004 591
@3,2# 0.002 756 0.001 506 0.000 292 0.005 822
@3,3# 0.002 024 0.001 232 0.000 076 0.000 645
@4,3# 0.001 616 0.001 160 0.000 358
@4,4# 0.001 268 0.000 083 0.000 176

TABLE VII. Energy errorsuEFCI2E(N)u for the first~1 1A1) and second~2
1A1) BeH2

1A1 states at geometry C using@N,M# Padéapproximants and
various reference spaces.

Padé
order @N,M#

FD partitioning method OPT

Two orbital
valence space

Four orbital
valence space

Six orbital
valence space

Two orbital
valence space

1 1A1

@1,0# 0.024 171 0.002 162 0.002 977 0.015 414
@1,1# 0.002 665 0.007 609 0.001 993 0.003 353
@2,1# 0.001 241 0.004 534 0.000 135 0.003 571
@2,2# 0.002 366 0.001 087 0.000 498 0.000 055
@3,2# 0.001 679 0.001 391 0.000 256
@3,3# 0.000 476 0.000 034 0.000 221 0.000 980
@4,3# 0.000 852 0.000 072 0.000 152
@4,4# 0.000 067 0.000 037 0.000 000 0.000 024
21A1

@1,0# 0.037 538 0.035 019 0.002 230 0.013 364
@1,1# 0.017 007 0.002 408 0.001 323 0.001 259
@2,1# 0.007 000 0.007 640 0.000 081 0.003 141
@2,2# 0.056 461 0.004 402 0.000 320 0.002 190
@3,2# 0.003 998 0.004 144 0.000 160
@3,3# 0.000 282 0.004 427 0.000 004 0.000 264
@4,3# 0.000 370 0.000 418 0.000 382 0.000 086
@4,4# 0.000 302 0.000 584 0.000 037 0.000 051
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zeroth order energies of these two interspace states are incor-
rectly ordered with respect to their expectation values ofH
in a CSF basis.~See Sec. IV for a discussion on incorrect
energy ordering.! Since there is no coupling between these
states, the radius of convergence is infinite for a perturbative
computation exclusively involving these two states. How-
ever, if a third state is added and if this state is coupled to
both states even by an infinitesimal matrix element, then
Rc is given by Eq.~4.7!. This model yieldsRc (zd) as 0.95
(0.9560.0i ), which is quite close to that for the full 197
CSFs computation. Hence, the divergence for the full prob-
lem is caused by incorrect energy ordering with the
u1a1

22a13a11b2
2& (u1a1

22a1
21b1

2&) state acting as the intruder
~escaping! state. Thus, we again find~with few exceptions!
that a simple two or few state interspace model provides
reasonable information regarding the high order convergence
behavior of the MR-MBPT procedure and also the coupled
states that are responsible for the poor convergence. Hence,
the interspace two state models should provide a useful di-
agnostic for choosing reference spaces in applications of
MR-MBPT, just as second order perturbation theory is used
for choosing reference configurations for MRCI methods.

VII. 1A 1 STATE VERTICAL EXCITATION ENERGIES
FROM THE LARGER REFERENCE SPACES

Table VIII displays the computed third order
1 1A1→2 1A1 vertical excitation energy from the forced de-
generacy MR-MBPT for various choices of reference spaces,
ranging from two to six orbital valence spaces, as well as
from the OPT scheme for the two orbital valence space. We
also present the multiconfigurational coupled cluster
~MCCC! results of Bannerjee and Simons,57 the quasidegen-
erate MR-MBPT~QD-MBPT! computation of Lee and

Bartlett,54 and the FCI value to evaluate the relative perfor-
mance of the different approaches.~Since the absolute state
energy is not a bound in perturbative methods, Table VIII
compares excitation energies.! Tables IX and X present the
third order 11A1→3 1A1 and 11A1→4 1A1 vertical excita-

FIG. 5. z–dependent excitation energyE(3 1A1)2E(4 1A1) of BeH2 for
geometry B from FD partitioning scheme~with three valence orbital refer-
ence space!.

TABLE VIII. Vertical (1 1A1→2 1A1) excitation energies~in eV! for dif-
ferent MR computational methods.@Values in parentheses are the absolute
deviations~in eV! from the FCI, and the third order values are quoted for the
FD and OPT methods.#

Methods

Geometry

DaA B C

FCI 2.6615 1.3217 2.4337
MCCCb 2.6518 1.3293 2.4558

~0.010! ~0.008! ~0.022! 0.013
QD-MBPTc 3.2110 1.6109 2.2259

~0.456! ~0.291! ~0.202! 0.349
FDd 3.1610 1.6381 2.2798

~0.500! ~0.316! ~0.154! 0.323
FDe 3.0576 1.5798 2.2646

~0.396! ~0.258! ~0.169! 0.274
FDf 2.6545 1.3851 2.5577

~0.007! ~0.063! ~0.124! 0.065
FDg 2.7565 1.3566 2.4224

~0.095! ~0.035! ~0.011! 0.047
FDh 2.6864 1.3330 2.3986

~0.025! ~0.011! ~0.035! 0.024
FDi 2.6589 1.3154 2.4226

~0.003! ~0.006! ~0.011! 0.007
OPT 2.6378 1.3362 2.3569

~0.024! ~0.015! ~0.077! 0.039

aAverage absolute deviation~in eV! from FCI.
bReference 58.
cReference 55.
dTwo orbital valence space: (core)22a1

2@3a11b2#
2.

eThree orbital valence space: (core)22a1
2@3a11b11b2#

2.
fFour orbital valence space: (core)2@2a13a11b11b2#

4.
gFive orbital valence space: (core)22a1@3a14a11b11b22b2#

2.
hSix orbital valence space: (core)2@2a13a14a11b11b22b2#

4.
iSeven orbital valence space: (core)2@2a13a14a15a11b11b22b2#

4.

TABLE IX. Third order vertical (11A1→3 1A1) excitation energies~in eV!
for FD schemes.@Values in parentheses are the absolute deviations~in eV!
from the FCI.#

Methods

Geometry

DaA B C

FCI 6.4432 6.3895 7.2327
FDb 6.5963 6.6579 7.9361

~0.153! ~0.268! ~0.703! 0.375
FDc 6.4646 6.4835 7.2911

~0.021! ~0.094! ~0.058! 0.058
FDd 6.4111 6.3957 7.2468

~0.032! ~0.006! ~0.013! 0.017
FDe 6.4214 6.3697 7.2276

~0.022! ~0.020! ~0.005! 0.016

aAverage absolute deviation~in eV! from FCI estimate.
bFour orbital valence space: (core)2@2a13a11b11b2#

4.
cFive orbital valence space: (core)22a1@3a14a11b11b22b2#

2.
dSix orbital valence space: (core)2@2a13a14a11b11b22b2#

4.
eSeven orbital valence space: (core)2@2a13a14a15a11b11b22b2#

4.
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tion energies, respectively, as obtained using four, five and
six orbital valence spaces. Almost all the FD partitioning
computations display the general trend that the accuracy of
the third order excitation energies, i.e., the deviation from the
FCI excitation energies, improves with an increase in the
size of the reference space. For example, the average abso-
lute deviation~for geometries A, B, and C! in the third order
excitation energy for the 11A1→2 1A1 transition is only
0.024 eV with the six orbital reference space as compared to
0.047 with the five orbital reference space. The improvement
is also substantial for higher excited states, even though the
larger reference space computations are only asymptotic and
begin diverging earlier than in the calculations with smaller
reference spaces. These divergent series, however, are trans-
formed to a useful asymptotic form by Pade´ resummation
techniques. Similar patterns are also found for several other
geometries along the reaction path of BeH2. The trends de-
scribed above often appear since an increase in the size of
the the reference space improves the first order description
@given by the first two terms on the right hand side of Eq.
~2.13!# and reduces the remaining ‘‘correlation contribution’’
@from the sums in Eq.~2.13!# to be obtained perturbativly.
Thus a seven valence orbital reference space produces almost
FCI accuracy at third order~but only two excited orbitals
remain! and offers a decent asymptotic perturbation series.
Although the perturbative series diverge more rapidly~see
Sec. VI B! with the larger than the smaller reference spaces
~especially for the higher excited states!, the high order di-
vergence does not degrade the accuracy of the lower lying
states in low orders.

VIII. 1A 1 STATE VERTICAL EXCITATION ENERGIES
FOR OPT PARTITIONING

The OPT method converges much faster than with the
FD partitioning approach for the two orbital valence space or
the QD-MBPT calculations of Bartlettet al.54 The accuracy
of the two orbital valence space OPT treatment lies some-

what in between that of the five and six valence orbital ref-
erence space calculations within the FD scheme. Because of
this high accuracy, we have not considered OPT treatments
with larger reference spaces.

IX. DISCUSSION

The third order, two valence orbital space FD calculation
closely resembles that from the OPT partitioning method and
from the QD-MBPT approach of Lee and Bartlett. These
three schemes differ only in the choice of zeroth order ener-
gies and the orbitals. All three employ the same number of
valence orbitals in the reference space and, hence, the same
configuration state functions in the reference space. All three
methods generate a convergent perturbative series through
30th order. However, the low order~e.g., third order! results
differ significantly. For example, the FD partitioning method
offers an improved result, i.e., a smaller deviation of the
excitation energy from the FCI than from the QD-MBPT
method, but an even more significant improvement in the
excitation energy is obtained by OPT method. The excitation
energy computed with the OPT scheme is comparable to the
highly correlated MCCC and FD partitioning methods with a
six valence orbital reference space whose dimension is al-
most half of the FCI space. Also, the OPT scheme provides
a more rapidly convergent perturbative series than the double
reference QD-MBPT and FD-MBPT methods. This demon-
strates that the accuracy and convergence of the MR-MBPT
method depends on the choice of the zeroth order energies.
~Note that theH0 formed with unaveraged IVO orbital ener-
gies also yields a convergent double reference perturbative
series and is to some extent better than the FD-series, a find-
ing in accord with small valence spaceHv computations
demonstrating improved results in truly quasidegenerate situ-
ations when valence orbital energy averaging may be
avoided.!

Table VIII indicates that as the size of the reference
space grows, the accuracy of the FD method increases. The
trend in Table VIII is not surprising, since the larger refer-
ence space computation offers a better first order description
and requires a smaller correlation correction. On the other
hand, as the size of the reference space increases, the
quasidegeneracy of the valence orbital energies diminishes.
Therefore, a large diagonal perturbation matrix element ap-
pears, with additional energy denominators that may be too
small,52 due to the forced valence orbital degeneracy restric-
tion. ~See Ref. 22 for details.! Hence, it is not surprising the
the larger reference spaces exhibit divergent behavior in ear-
lier orders for the FD partitioning perturbative series~al-
though Pade´ resummations improve matters considerably!.
Enlarging the valence space involves a trade-off, and the
success of FD method depends on the relative importance of
the opposing factors. When the diagonal perturbation is too
large or when small energy denominators appear, the conver-
gence and accuracy of FD partitioning may degrade. In fact,
the success of the FD scheme lies mostly on the appropriate
selection of the reference space, a process which requires
some trial and error searching anda priori knowledge of the

TABLE X. Third order vertical (11A1→4 1A1) excitation energies~in eV!
for FD schemes.@Values in parentheses are the absolute deviations~in eV!
from the FCI.#

Methods

Geometry

DaA B C

FCI 8.6799 7.6016 7.7815
FDb 9.2559 8.2619 8.5733

~0.576! ~0.660! ~0.792! 0.676
FDc 8.9589 7.6759 7.9886

~0.279! ~0.074! ~0.207! 0.187
FDd 8.7698 7.6635 7.7835

~0.090! ~0.062! ~0.002! 0.051
FDe 8.6737 7.6001 7.7704

~0.006! ~0.001! ~0.011! 0.006

aAverage absolute deviation~in eV! from FCI estimate.
bFour orbital valence space: (core)2@2a13a11b11b2#

4.
cFive orbital valence space: (core)22a1@3a14a11b11b22b2#

2.
dSix orbital valence space: (core)2@2a13a14a11b11b22b2#

4.
eSeven orbital valence space: (core)2@2a13a14a15a11b11b22b2#

4.
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most important configurations. Recent computations for two-
dimensional methyl mercaptan51 and three-dimensional hy-
drogen sulfide61 potential energy surfaces establish that once
the appropriate reference is obtained, the FD method not
only provides accurate excitation energies~for both Rydberg
and valence states!, ionization energies, and dissociation en-
ergies but also generates accurate potential energy surfaces
even with a limited number of valence space orbitals.

X. CONCLUSIONS

The present high order multireference perturbative com-
putations further emphasize the utility of two state models
for providing convergence criteria and for assessing the qual-
ity of possible choices for partitioning methods, orbitals, etc.
An analysis of all interspace two state models composed of
higher lyingP-space states and lower lyingQ-space states,
provides an indication of probable impediments to the per-
turbative convergence and of possible remedies for these
problems. This type of analysis bear some relation to the
perturbative criterion for selecting reference space configu-
rations for multireference CI methods in its simplicity and
general utility. However, it is important to mention that situ-
ations may arise where the two state model is inadequate to
describe the perturbative divergence problems and where
higher dimensional models are required. These situations
may occur when more than oneQ-space state is important
because they are strongly coupled among themselves and to
the higher lyingP space. The optimized partitioning method
~OPT! discussed here may not resolve all the problems with
the MR-MBPT method but may provide a useful alternative
tool to tackle the perturbative convergence problem by ad-
justing the state energies for the high lyingP-space and low
lying Q-space states. Further attempts should be made to
optimize the orbital energies instead of the state energies.
Optimization of the orbital energies affects more states and,
in addition, generates a method that preserves size extensiv-
ity. The forced degeneracy~FD! method is again shown to
alleviate the most serious intruder state problems plaguing
general multireference methods.

Since our computations have covered a wide range of
geometries~not presented! and reference spaces, we have
made a preliminary investigation of the possibility for piec-
ing together the potential energy surfaces using different ref-
erence spaces in different regions. The approach has been
quite successful when applied with the four and five orbital
reference spaces, and we surmise that smooth surfaces can
only be obtained when there exists a common overlapping
region of geometries for which both reference spaces provide
comparable accuracy. However, more extensive tests are re-
quired to establish more general criteria for the use of mul-
tiple reference spaces to produce smooth global potential en-
ergy surfaces.
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