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Comparison of the perturbative convergence with multireference
Moller—Plesset, Epstein—Nesbet, forced degenerate and optimized zeroth
order partitionings: The excited BeH , surface

Rajat K. Chaudhuri, James P. Finley, and Karl F. Freed
The James Franck Institute and the Department of Chemistry, The University of Chicago, Chicago,
lllinois 60637

(Received 14 October 1996; accepted 19 November)1996

High order perturbation energies are computed for excdifgdstates of Bellat geometries near the
Be—H, symmetric insertion transition state. The equations of multireference perturbation theory
are solved through 30th order to study the difficulties in selecting the appropriate zeroth order
Hamiltonian, orbitals, orbital energies, and reference functions for the computations of smooth
molecular potential energy surfaces. The origin of the perturbative divergence produceddry-Mo
Plesset and Epstein—Nesbet partitionings is analyzed using a conceptually simple two-state model
constructed using one state each from the reference and orthogonal spaces. The optimized zeroth
order partitioning schemé&OPT) for double reference space computations with configurations
1a%2a23a3 and 1a?2a31b3 produces a truly convergent perturbation expansion through 30th order.
The OPT energies are accurate in low orders as compared to the(#8@aimensionalsolution

within the basis. The forced valence orbital degeneracy partitioning méE@dalso generates a

truly convergent expansion for the same double reference space calculation, with slightly poorer low
order energies than the OPT scheme. The Bekbtem facilitates the consideration of larger
reference space&onstructed using three through six orbijaishere the FD method produces
highly accurate energies in low orders despite the asymptotic nature of the FD perturbation
expansion. The “delayed” perturbative divergence behavior with the FD partitioning sctfeme

large reference spacdeis shown to occur due to the incorrect ordering between the zeroth order
energies of some reference and complementary space leveld99® American Institute of
Physics[S0021-960807)01808-4

I. INTRODUCTION However, the perturbed wave function is spin contaminated,

. . . and the overall accuracy becomes degratié¥especiall
Accurate theories for the calculation of atomic and mo- . y L 9 . £sp y
when the single reference function is an excited state.

lecular electronic structure can be classified broadly into . . X .
o - L o Several different multireference configuration MBPT
variational and nonvariational varieties. The nonvariational

approaches include the single reference configurat&® (MR-MI?P;Fl)_lgﬁproaghes(malntalncling the ;:orrlect S%m ¢
many-body perturbation theoryMBPT),}=* which is a symmetry ave been proposed as a natural remedy 1o

widely used and convenient procedure for a significant rang€ deficiencies of the SR-MBPT method. The fundamental
of problems. The nonvariational method can be classifiedd€@ iS {0 construct an effective Hamiltonian whose eigenval-
further into (a) perturbative andb) nonperturbative catego- U€S coincide with a subset of the eigenvalues of the exact
ries that invoke different philosophies and possess differerffiamiltonian. Thle first size-extensive MR-MBPT formula-
advantages. The perturbative approach relies on an order-b§on Of Brandow employs a complete reference spaaften
order expansion which retains all excitation processes recalled a complete active spacdhe choice of a complete

quired at each order, whereas the nonvariational, nonpertu?i-Ctive space facilitates the proof of the linked cluster theo-
bative approaciie.g., the coupled cluster metifod treats rem which guarantees that the effective Hamiltortig has
particular types of excitations to all orders. Both of these@ connected diagrammatic expansion and consequently that
categories of nonvariational methods have the important virthe eigenvalues dfi ¢, the energies, are size extensive.
tue of maintaining size extensivity. While the MR-MBPT formalism resolves several short-
Despite its great success in treating electron correlatiogomings of the SR-MBPT method, it introduces another
for many types of systems, the SR-MBPT method is ofterproblem that has been called the “intruder state problem.”
inefficient(poorly convergent or even divergefor quaside- ~ Schucan and Weideniter hypothesize that multireference
generate situations or for highly open shell systems whergerturbation expansions must diverge whenever an exact
more than one reference configuration is important. Thustate, which is predominantly composed of configurations
problems frequently arise in calculating excited state enereutside the reference space, appears within the energy spec-
gies and potential energy surfaces near transition states tnum of the exact states that are predominantly represented
bond breaking regions. The use of an unrestricted Hartreeby reference space statés’ This conjecture emerges from
Fock reference function overcomes a portion of the converusing a zeroth order Hamiltonian in which the zeroth order
gence problem, especially near the bond breaking regiongnergies of the reference and orthogonal space states are not
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4068 Chaudhuri, Finley, and Freed: The excited BeH, surface

permitted to overlap. We have demonstrated that this pessand virtual spaces. The is then defined by using the re-
mistic conclusion isnot valid if the restriction is lifted to sulting eigenvalues as orbital energies. Murray and Davidson
allow an energy overlap between the zeroth order referencalso prescribe a second scheme in which the orbital energies
and orthogonal spaces. For example, the optimized partitiorare modified by adding a population dependent correction.
ing method (OPT) computations for the beryllium atdfh  The convergence behavior of the Murray—Davidson methods
place the reference spafs®2s?) configuration state func- is similar to that for ROHF/UMP2Xrestricted open shell
tion (CSP above the orthogonal spafks?2s3s) (Rydberg ~ Hartree—Fock/second order unrestricted " libte-Plesset
CSF. Besides converging to the ground state energy, the petheory). Roos and co-worket$® use an alternative ap-
turbative computation with two reference states converges tproach. The main disadvantage of the methods by Bllay
the secondexcited state and not the first. and Roos is that a very large set of linear equations must be
An alternative solution for avoiding this problem is to solved. Hoffmanff obtains encouraging second order ener-
use MR-MBPT with an incomplete model space, as first degies with scaled valence orbital energies tdp, but the
veloped and applied by Hose and Kalddtnlike the com-  higher order convergence behavior is still unknown. Consid-
plete active space theories, there have been lengthgrable theoretical and computational progress has appeared
dispute$*® regarding the size extensivity of the incomplete for the intermediate Hamiltonian methé8where the opti-
model space theories. Mukherf&&’ provides a formal reso- mal zeroth order energies for the intermediate subspace are
lution of the size-extensivity problem for the incomplete determined either by a judicious shiftitig*: or by an itera-
model space theories by describing a “proper size- extensivéive schemé? This method introduces a shift operator to
normalization.” alter the eigenvalues of the intermediate space states, and it
For all practical purposes, actual perturbative computatherefore appears that this shift operator enters into the third
tions require the truncation of the perturbative expansionand higher orders, presumably pushing the divergence to
and this truncation is only meaningful if the perturbation higher orders. Moreover, a size-consistent intermediate-
series either converges rapidly or, at least, converges rapidiiamiltonian formulation beyond second order is nontriffal.
in an asymptotic sense. The MR-MBPT method frequently ~Freed and co-worke?$>? have introduced a rather
suffers from a poor convergence problem unless an apprsimple approach to tackle the intruder state problem. Their
priate reference space is selected. This proper choice of refermulation is based on a Hermitianized version of Bran-
erence space becomes important in computing smooth accdew’s degenerate MR-MBPT theory in whidH' ™! poten-
rate potential energy surfaces as evidenced by the generdls are used for all valence orbitals and in which valence
belief that the use of a single common active space is essenrbital degeneracy is imposed to enlarge the otherwise prob-
tial for calculating the potential energy surface over an interiematic perturbative energy denominators. The forced degen-
esting range of geometries. It is likewise widely believed thateracy condition, however, introduces an additional perturba-
the MR-MBPT method is incapable of providing a rapidly tion that enters beginning in third order, but the method
convergent perturbation series for the entire range of geonsignificantly improves the perturbative convergence by re-
etries. The latter belief follows from the expectation thatmoving serious intruder state problems. On the other hand, in
some reference space states may escape intruder state priie OPT method?>3the perturbative convergence is accel-
lems for certain ranges of geometries but become plagued bgrated by optimizing only a few zeroth order states. Our
these problems for other geometries. Similar questions havwecent works on the HR8ectangular I system and the Be
been raised for the intermediate Hamiltonian method, a variatom demonstraté°3how the forced valence orbital degen-
ant of MR-MBPT?8 eracy approactiFD) and the OPT(optimized zeroth order
It is well known that perturbative convergence dependsnergy partitioning offer a decently convergent serigs.,
strongly on the choice of the zeroth order Hamiltonldg, practical convergengeén situations where the traditional MP
i.e., on the partitioning of the exact Hamiltonian betweenand EN multireference perturbative series are well known to
H, and the perturbatioW.?°=3! The two general categories be poorly divergent due to the presence of “intruder” states.
of partitioning are called generalized Ner—PlessetMP) We have also demonstratéd® the utility of two-state
and generalized Epstein—NesKEN) partitionings. The gen- models as a diagnostic for understanding the perturbative
eralized MP partitioning utilizes a “sum over orbitals” treat- convergence produced by various choices of reference
ment, whereas the generalized EN partitioning pursues spaces, partitioning methods, and orbitals, as well as in sug-
“sum over states” formulation in constructing the zeroth gesting remedies for unsuitable choices. However, the analy-
order HamiltonianH, and the perturbation series. Different sis in these two studies is based on using a double reference
potentials may be invoked to constriitg, and a wide range space, which is the minimum size to qualify as a MR-MBPT
of potentials have been cho$ér® with varying degrees of computation. On the other hand, the FD partitioning scheme
success. is generally applied with much larger reference spaces whose
Besides the use of MR-MBPT in an incomplete modelgreater size £5,000 configuration state functionsiight be
space, several other methods have been also proposed ttmught to be more susceptible to intruder states that affect
overcome the convergence difficulties induced by the presthe perturbative convergence. The reference space in the FD
ence of intruder states. For example, the Murray—Davitfson partitioning is chosen, in part, based on a trade-off between
approach defines the orbitals by diagonalizing the Fock opgenerating accurate first order energiaad hence smaller
eratorF separately in the doubly occupied, singly occupied,perturbation correctionsrom the enlarged reference space
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153 r r r r r T ' convergence problems. When Be is moved te 30 a.u.
from the center of K (geometry G, the 1'A, state is domi-
nated by the configurationa2a23aZ, while at geometry A
e RN " for R=2.5 a.u. (indicated on Fig. )}, the configuration
1a22a71b3 dominates over 452a%3a3. A similar multicon-
. figurational character also appears in theribdel, where at
N the square planar geomettiye., when the separation R be-
tween the twoH, fragments is 2.0 a.the afbf, and
-15.45 | - afgbgu CSFs are equally important for thelAlg state, but
as the separation between the twg tlagments decreases
(increasep the a3 b3, (aijbi,) CSF contributes signifi-
] ,}*{\ s ot cantly. The BeH case is further complicated because the
tepatiy(ldy) o7 LaeidallA) 1a?2af3a,4a, and 1a52a%1b,2b, CSFs are also very im-
1555 b i portant. Thus, the complete study of the Bebystem is
. non-trivial even for describing one molecular potential en-
1a}2a$3a;1b2(1% By) \\\ ergy surface.
= Purvis et al®>® have successfully described the'A;
state BeH potential energy surface using different single
configuration functions for different ranges of R in coupled
32 34 cluster single and doublé€CSD) calculations, but this ap-

Energy (a.u)

A B

T T

-15.65 4 4 . .
2 22 24 26 28

R (Be-Hy) proach may yield bumpy potential energy surfaces. Subse-

whka

quently, Bartlettet al®® note that the choice of SCF orbitals

FIG. 1. SCF energies of BQHor_ different ground state configurations and fom a4 1a§2a§3a}lb§ (352) reference configuration pro-
symmetries at various geometries along the reaction path. vides a converged solution for the double reference MBPT
(in which the ]af2a33a? and 1aj2a31b5 CSFs are chosen
as the reference spacat the A, B, and C geometries. How-
at the expense of factdfsthat may slow or destroy the per- ever, they fail to explain why the double reference MBPT
turbative convergence, including the introduction of a largeconverges at all three geometries only for 88 reference
additional perturbation and the possible occurrence of smalbCF orbital choice, an explanation that may aid in guiding
energy denominators from forcing the valence orbitals to bdurther choice of molecular orbitals.
degeneraté? The present paper addresses the pessimistic The present work analyzes the convergence problems
view that the large reference space ultimately must degradencountered with MP and EN partitioning for double refer-
the convergence properties. ence MBPT computations based on tha?2a33a; (*A;)

We consider the well-known difficult case of the excited state SCF orbitals and orbital energies. We demonstrate that
A, state potential energy surface for the perpendiculgr C converged solutions may still be obtained for all the three
insertion of Be £S) into H, (X! Eg). This system has been geometries using the same reference configuration
investigated by Bartlet al,>**°Simonset al,>’ Freed and  1a32a33a? (*A;) SCF orbitals by(1) optimizing the zeroth
co-workers;® and many other groups. The computationsorder state energies, i.e, by employing our OPT mefdd,
model the insertion path as a straight line2.54—0.4®  or (2) by applying the forced degenera¢lyD) partitioning
(a.u), wherer is the H—H distance an® is the Be to center scheme. Both methods use a more sensible selection of va-
of H, distance. The treatment of this model reaction path idence orbitals to enhance the perturbative convergence in low
quite complicated due to the multiconfigurational nature oforders. Interestingly, recent  computations for
the electronic wave functions in certain regions. Purviscis—butadiene(third order MR-MBPT and for CH by
et al> have shown that the perpendicular insertion of BeFreed and co-worket$® also demonstrate the same trends.
into H, requiresp—orbital participation on Be and, in par- Sections Il and Il briefly outline the multireference con-
ticular, the promotion of Be(&) to Be(2p?) near the criti- figuration perturbation theory and the choice of the zeroth
cal geometry B for R2.75 a.u.(see Fig. 1 due to the order Hamiltonian. Section IV describes the convergence cri-
quasidegenerate nature of the 2s and 2p Be orbitals. Thigeria for the perturbation expansion of a simple two-state
2s—2p promotion changes the principsh; configuration model that is used in later sections to explain the behavior of
along the BeH reaction path from a22a?3aj to the perturbation expansion with the full 197 state computa-
1a%2a%1b3 as illustrated in Fig. 1. Thus at the critical or tion. Section V presents information concerning the basis set
“transition” geometry B, the “excited” configuration and the reference spaces used. Section VI describes why cer-
1a§2a§1b§ contributes more than the “ground” configura- tain partitioning schemes yield convergence problems. The
tion 1a§2a"{3a§ to the 1!A; state(using SCF orbitals from source of these convergence problems is analyzed using two-
the 1a32a21b3 state. A single reference perturbative model state models constructed from the full problem by selecting
must treat one of these two important and strongly couple@ne important state each from the reference and orthogonal
configuration state functiof €SP as lying in the orthogonal space state&alled an interspace pair of stateSections VI
(Q) space(also called the virtual spagecreating severe and VIIl summarize the results of the OPT and FD partition-
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4070 Chaudhuri, Finley, and Freed: The excited BeH, surface

ing with larger reference spaces and provide comparisons n-1
with other methods that have been used to compute the [QM Ho]P=|vQM V- > Qmyor-m-Dip

1A, —2 1A, vertical excitation energies of BgH m=1 (2.1
and the corresponding matrix elements of il order con-
Il. BASIC FORMALISM OF MULTIREFERENCE MANY-  tibution toHey are given by
BODY PERTURBATION THEORY (MR-MBPT) (DOHW D) =(D PV DP|D?). (2.12
The exact Hamiltonian is first partitioned into The expressions for the effective Hamiltonian matrix ele-
H=Hg+V 2.1) ments through third order is then obtained as
. o ) (1-3)| py — 0
whereH, is the unperturbed Hamiltonian andis the per- (a|Hei ~|B)=Eo8a5+(alV|B)
turbation. We assume that the Safirger equation for the (a|V|m)(m|V|8)
unperturbed Hamiltonian, + > o
E; —E
o meQ B m
olt) = E/l2). 22 (alVIm)(miVInyn]vig)
providgs a.complete %et of eigenfunctidmi) with corre- +m%Q (EVU_ED)(E0_ED)
sponding eigenvaluds; The eigenfunctions ofl are then ' B m B n
divided into two subspaces defined by the two complemen- {a|V|m)Y{(m|V|y)}{y|V|B)
t ject h - .
ary prOch orsP andQ, where me&ep (E(Bo)_ Eﬁ,?))(E(YO)— Eg?))
2.1
P=2 |&)(®|=2 Py, (2.3 _ o _ ( 39
: : The above effective Hamiltoniahl . in Eq. (2.13 is
and non-Hermitian as is evident from the antisymmetry of its
energy denominators. Introducing a Hermitized form{(bf
Q=1-P= B)(D|= Q). (2.4  enables generating a Hermitiah,*"*, which through third
]

j=d+1 order is equivalent to usiné(Hefﬁ—Hlﬁ). Provided the di-

The P subspace of dimensiod is variously called the Mension of theQ space is not very large, the order by order
model, the reference, or the valence space, while its orthog&omMputation o from Eq. (2.1 is relatively straightfor-
nal complemen® is formed by the remaining eigenvectors Ward and is performed in this present work. _

of Ho. The model space functiof@?) are defined as the Although not expllcnly indicated in the above equations,
projections of the exact eigenfunctiop;) onto the refer- the wave operatof) introduced here actually depends upon

ence or model space, the model function on which it operates, i.e., is a stqte or ket
o dependent wave operator. Further, the above derivation of
| W7y =P|¥)). (2.5 Hgyassumes thdd satisfies intermediate normalizatire.,

Alternatively, the exact eigenfunctio®,) can be repro- P{P=P), which, in fact, is not mandatory.

duced from the model space functigir) with the aid of
the wave operatof}, [ll. CHOICES OF ZEROTH ORDER HAMILTONIAN H,

W) =Q|¥P). (2.6 The choice of the zeroth order Hamiltonian iis, prin-
ciple, at our disposal. However, the choicien practice
strongly determines the convergence properties of the pertur-
bative expansion. Several types of zeroth order Hamiltonians
Hg are considered here.

Using these definition oP, Q, and(}, the exact and the
perturbed Schidinger equations may be cast into effective
eigenvalue equations of the form

Hel W1)=E;[ WD), (2.7)

whereHy is given by

A. Moller—Plesset (MP) partitioning

The MP partitioning uses a “sum over orbitals” form of

Her=PHQP. (2.9 Ho. The most general diagonal form of suchigis given by
An order-by-order perturbation expansion Qf is ob- Ne ) Ny ) Ne :
tained by solving the generalized Bloch equatithf HOZEC: fiacac+§U: fvavaﬁ}; €cBede, 3.1

[Q2.Ho]P=[VQ—-QVQ]P. (2.9 whereN., N, , andN, are the numbers of core, valence, and
Now define the perturbative expansion of the wave operatoexcited orbitalse,, €,, ande, are the corresponding orbital
Q as energies, an(;hiT anda; are the usual creation and annihila-
B 1 9 tion operators, respectively. The orbitals are usually defined
0=1+00+Q®--, 210 45 eigenfunctions of Fock operators. The most natural choice
Substituting the expansion fé} into Eq.(2.9) generates the for the orbital energies; are the eigenvalues of the Fock
nth order expression fd as operator defining the orbitals. However, any choice of orbit-
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als and orbital energies may, in principle, be chosen, and th€his variant of Epstein—Nesbet partitioning defines the
objective is to find choices that assure the most rapid perturzeroth-order energies of each CSF by the barycentric
bative convergence. Traditional MP partitioning, on the otherexpressioft?

hand, defines all orbitals and orbital energies as the eigen-

functions and eigenvalues ofsingleFock operator, a choice E?= E [Cid]2<d| Hld), (3.6)

that has proven to be quite useful for SR-MBPT computa- d

tions but that is not designed towards optimal perturbativgyhere the CSF functiofi) is given by a linear combination
convergence of the multireference extensithns. of determinantal statels!),

B. Forced valence orbital degenerate (FD) partitioning liy= 2 Cid|d>. (3.7
d

This method is a variant of the general MP partitioning
method as embodied in EB.1). However, in order to im- QU previous investigation of the HRS and the Be &foth
prove the perturbative convergence and to remove the ser@lso employs this partitioning method. Except for single de-
ous intruder state problems, Freed and co-workers use muierminantal statesi), the diagonal matrix elements of the
tiple Fock operators to obtain the spatial orbitdt4>5?The  perturbatiorlVV no longer vanish for the EM, of Egs.(3.6)
valence orbitals and orbital energies are obtained usingnd 3.7).
VN~ potentialst’#%52and the valence orbital energies are
then forced to be degenerate. The form of the diagbhah D. Optimized zeroth order (OPT) partitioning
the FD partitioning is given by

N N . The optimized zeroth order partitionif@PT) approach

¢ Y ¢ applied here is similar to the EN partitioning method in using
H0=§ ecaiac+eu§ aIau+§ €ala;, B2 g4 H, of the form in Eq.(3.5), but the OPT method differs
o significantly because a small subset of the zeroth order state
where the average valence orbital eneegys obtained from  energiese? are determined in an optimal manrfér: The
the Original set of valence orbital energies by the democratieoptima| performance” of the perturbation expansion is de-

averaging fined as follows: The state energies of the lowest 20 BeH
Ny zeroth order states are selected to optimize the low order
€, =— . (3.3  convergence of the perturbative expansion. The process

N, minimizes the sum of the absolute deviations of the pertur-

The above degeneracy condition introduces a diagonal pebative energies through third and fourth orders from the in-
turbation 8V= €, — ¢, that contributes beginning in third or- finite order(converged FCI (full configuration interaction

der. The magnitude oBV directly depends upon of the ground state energli s as calculatedvithin the subspace of
spread of the original valence orbital energles} before the same twenty lowest zeroth order states. More precisely,
averaging. In fact, some third order computations with smallthe OPT partitioning involves minimizing the sum of the
quasidegenerate reference spaces do not require valence #tird and fourth order absolute deviations,

bital energy averaging. |Egs_ =N +|Egs— E., (3.9

whereE; andE, are the third and fourth order perturbation
computations ofEys as obtained using the same 20 zeroth
The most general diagonal form bif, can be written as  order states. Since E¢B.4) is invariant to a constant shift of
all twenty zeroth order state energies, for convenience, we
Hozz |i>Ei°(i|, (3.9 select the ground state zeroth order energy to be fixed at its
! barycentric EN value. The state energies for all the remain-
where the sum overr runs over all states ariEJi0 is theith ing Q-space CSFs are also fixed at their barycentric EN state
state zeroth order energy, which is formally at our disposalenergies. Thus, the form ofgHn this partitioning scheme is
Usually, Epstein—Nesbet partitioning chooses the zeroth omritten as
der state energy as

EX=(i[H[i), (3.5 HOIZ |'>E_?<'|

C. Epstein—Nesbet (EN) partitioning

which makes the diagonal elements\bf/anish with either a WhereE_iO is the optimal zeroth order energy of staig for

determinantal or CSF basis. Since thgdiffers for the latter  the |owest 20 states, while the remainder are EN barycenter
two cases, the determinantal-based Epstein—Nesbet agd|yes.

CSF-based Epstein—Nesbet partitioning methods generate
different perturbation expansion@lote that a unitary trans-
formation of theH, from a determinantal-based Epstein—
Nesbet basis to a CSF basis leads to a nondiagdpalThe
computation below, denoted by EN, employs a hybrid of the ~ The convergence properties for the Beébmputations
determinantal and CSF-based Epstein—Nesbet partitioningare explained transparently in subsequent sections by the use

IV. TWO STATE SYSTEMS AS AN IMPORTANT
DIAGNOSTIC

J. Chem. Phys., Vol. 106, No. 10, 8 March 1997



4072 Chaudhuri, Finley, and Freed: The excited BeH, surface

of simple two-dimensional models that are constructed from97 CSF Bel computations that follow. This behavior is
a pair of interspace states, defined as one state each from thibdeled in Sec. V by selecting the most influential pairs of
P andQ spaces, taken from the full problem with 197 CSFs.interspace states and by analyzing the character of the full
The convergence behavior is investigated by considering thgomputation forz=z4. Thus, two state interspace models

parameterized Hamiltonial (z), provide both convergence criteria and a useful diagnostic
H(z)=Hg+2V, (4.1) tool for asse;_sing the probable perturbative behavior of vari-
_ _ ous MR partitioning methods.
where z is the complex perturbation parameter. Thel Intruder states are defined as the orthogoGz) épace

limit recovers the exact two staké, while z=0 produces the  states responsible for destroying the convergence of a pertur-
unperturbed systems. Denofe) and[q) as theP andQ  pation expansion. The presence of intruder states is usually
space states of the two-dimensional model, whjjeande;  detected by observing the variation of the eigenvalues as a
are their zeroth order energies, respectively. The exact eigefgnction the of perturbation parameter for real z. An
values of the two-dimensional Hamiltoni&t(z) can be ex-  ayoided crossing occurs at a point where the two eigen-

pressed as values are closest. The avoided crossing is computed in the
E.(2) two state model by minimizingE_(z)—E_ (2)] with re-
- spect to Rey,
1 1 2 2 S2\12
=2 TrH=3{[Ae—(Ae—AH)z]*+4V 2z}, (4.2 | Ae(Ae-AH) e
where Za°_4V§q+(Ae—AH)2' (4.6)
Vpq=(p[H(z=1)|q), Comparing Eqs(4.3) and (4.6) shows thatz,. is simply
Ae=e4—€p, Rez,. [Note that the eigenvaluds_(z) andE, (z) cannot
be degenerate for real] If the avoided crossing appears for
AH=(q[H(z=1)|a)~(pIH(z=1)|p), 0<z,<1, the perturbation expansion divergég€ 1), and
and thez dependent trace of the Hamiltonian matkikis  the convergence is disrupted by what is termed a “front
given by door” intruder state. Similarly, an avoided crossing for
3 7,<0 is called a backdoor intruder st&é°whenR <1.
Tr H=(p[H(@)|p)+(alH(2)|a). Equation(4.5 implies that a backdoor intruder statg<0

Both eigenvalues become degenerate in the complegccurs whenevehH andA e have the same signs and satisfy
z-plane at the pair of branch pointg andz where use of |AH|>|Ae|. On the other hand, iAe andAH are of oppo-

Eq. (4.2) gives site signs (called incorrect energy orderingor if
Ae |AH|<|A€|, then the avoided crossing appears Zge>0.
Z4= > S[(Ae—AH)+2V il (4.3 When incorrect energy ordering is present in the two
4Vt (Ae—AH) P state system, the expansion is always divergdRi<(1).

The radius of convergendg, for the single reference two AISO, With incorrect ordering present, the limit 0 has
state Rayleigh—Schdinger perturbation expansion is M Z—0, andz, is real and positive with

R.=|z4|=|z5| and follows from Eq(4.3) as Ae
. \/ (Ae)? wa 247 (Ae—AH)” @7
c ™ 2 2 - :
(Ae—AH)"+4Vp, Equation(4.7) also emerges when the z-dependent diagonal

To achieve a convergent perturbation series, it is neceglements ofH are degenerate. Thus in actual calculations
sary to haveR.=1, which occurs only if the numerator in involving a large number of states, if the incorrectly ordered
Eq. (4.4) exceeds the denominator. This condition for con-pair of interspace states is weakly coupled both among them-
vergence implies thak e (the zeroth order energy difference selves and to other states, then bagrand z,. are approxi-

must satisfy the requirements mately equal to the value afwhere the diagonal elements of
5 H(z) are degenerate. Furthermore, such cases yield a very
>£[AH+ %} if AH>0, pronounced avoided crossing since the degeneracy pgint
2 AH occurs close to the real axis. This situation is found in Sec. V
Ae 1 4v2 _ : (45 for the FD partitioning computations with a three-orbital ref-
< > AH+ AHpq if AH<O erence space. By contrast, when a two-state system has the

zeroth order states correctly ordered, the limitvef: 0 then
Thus bothAe and AH must have the same sign; otherwise producesR.—c corresponding to a convergent expansion.
the two-state perturbation series diverges. Also, wA¢h  In addition, the special case afH = A e (standard Epstein—

# 0, Eqg. (4.5 indicates thatA e can always be selected so Nesbet partitioning for a determinantal or CSF bpagislds
that R;.>1. Wilson et al. arrive at the same conclusion by the avoided crossing a,.=0 since Eq.(4.3) implies that
examining the maximum radius of convergemteas a func- this case produceg; as purely imaginary.

tion of A €.5% Note that the features exhibited by E¢4.3— It should be emphasized that, in general, for large scale
(4.5 are also displayed by the general behavior of the fullMBPT computations, we often neither know nor care
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whether the perturbation series converges, since this infomates when larger reference space computations are truncated
mation has little practical value for computations truncated att low (e.g., thirg orders.(Other factors influencing conver-
low orders except to guide the development of improved lowgence are discussed in Ref.)22
order methods. However, this convergence behavior has While the FD and traditional MP partitioning approaches
bearing on infinite order methods such as coupled-clustesoth begin from the same form of the zeroth order Hamil-
(CO) approaches. Mathematical convergence depends upaonian[Eq. (3.2)], both the orbitals and orbital energies are
the behavior of the indefinitely high order terms, whereaschosen quite differently with the FD partitioning scheme
low order truncations are often very accurately provided bythan with conventional MP methods. We illustrate these dif-
formally divergent asymptotic series. For example, manyferences using the double reference space FD-MBPT com-
formally divergent series are asymptotically convergent angutation with the h32a?3a2 and 1a22a%1b3 CSFs as the
are quite useful when truncated at low ordegg., Stirling’s  reference space. Theal, 2a;, and 31, orbitals and orbital
formulas for the expansion of Int and sin(2)]. Thus, when  energies are first obtained from a closed shell SCF computa-
divergent series are obtained from the full scale calculationsjon for the 1a22a23a? state. The b, unoccupied valence
these series are analyzed below to assess their useful asymppital and orbital energy are then computed as the improved
totic character and their behavior when resumed by Padgit,al orbital (IVO) from a 1a22a23allb} state SCF in
approximants. which only the b, is permitted to vary/***>2This proce-
dure yields a b, orbital that is more suited to describe ex-
cited states than the virtual b} orbital from the
V. BASIS SET AND REFERENCE SPACE 1a%2a?3a? state SCF, and theh} orbital energy is lower
than that of the virtual fh, orbital, making the FD reference
We employ a contractefll2s3p/3slpset of Gaussian space more quasidegenerate than the conventional MP
functions for Be and4s/29 contracted Gaussian functions chojce. The FD partitioning excited orbitals and orbital en-
(with scaling factor of 1.Pfor the H atoms. This basis is the grgies are then obtained by diagonalizing the? 2a23a2
same as applied by Purvis and Bartlett in their ground statgtate Fock operator with the core and valence orbitals frozen.
computation for Bekl>® Ground state SCF calculations pro- The 3a; and 1b, orbital energies are then replaced by their
duce the minimum energy state as aj2a3arlb; °B,  arithmetic average to impose degeneracy on the reference
state for all the geometries considered here. The next twepace and thereby to eliminate the worst intruder state prob-
|0V‘£ Iy|2ng zst?tes have ghe zcogﬁ%uratlorﬁsymmetnei; of  |ems. All OPT computations use the same orbitals as for the
laj2aj3a; ("A1) and laj2ajlb; (“A;) and cross near ge- gouble reference FD treatments but optimize the zeroth order
ometry B(see Fig. 1 Our first model space for all the ge- energies.
ometries contains the two zeroth ordemj2a;3a; and The FD computations with the larger reference spaces
laj2ajlb; states. This doubl_e reference space is used tegin with the three SCE, symmetry orbitals that are oc-
study the convergence behavior for the two lowd{ ex-  cypied in the Hartree—FodkiF) 1 A, state. The &, orbital
cited states with all four different partitioning schemes, thejs placed in the core, while thea2 and 3, orbitals are
MP, EN, FD, and OPT partitionings. The double reference,ajence orbitals(The five valence orbital reference space
space calculation for the states bk, symmetry yields a |eayes the 8, orbital in the cora Additional valence orbit-
Q-space with 195 states since tha,lorbital is kept doubly 515 (of symmetriesa;, b, andb;) that are unoccupied in the
occupied in all the CSFdrozen corg. We compute through (e 114 state are taken to be improved virtual orbitals
30th order the order-by-order state energies and vertical &{vVOs) created by a single SCF optimization for an excited

- . l -y .
C|tat|_on energy for the 1A;—21A; _tranSItlo_n using the triplet configuration in which an electron is promoted from
configuration based MR-MBPT algorithtA Excitation ener- the highest occupied molecular orbitdhe HOMO in the

gies for all reference spaces are taken relative to th&;1 1A, HF staté into the orbital to be optimized. The proce-

state, although théB, state is the lowest lying SCF state. ¢ for obtaining the molecular orbitals involves a sequence

We also compute the order by order state energies using Fi¥ scr calculationgwhich can also be obtained by a unitary
partitioning with larger reference spadeescribed belowin  y.4hsformatiofd). For example, the four orbital reference
order to analyze how the convergence behavior is affected by

: ) ) , - gace is produced by the sequence,
enlarging the reference space. Since increasing the size of th

reference space enhances some diagonal perturbation matfik 1afzaf3as, A,
elementgdue to the reduced quasidegeneracy among the v % 1a22a23al11pl 3

. . . af2aj3a;]lb;, B,
lence orbitals and may introduce energy denominators tha’? ) [1a32a53a,]1b; 2
are too smalP? it might be expected that the perturbation (3) [1a32a23a71b3]1b], B,

series diverges more quickly with the larger than the smallegdéy [1a52a§3a}1bglbg]4ai, 3A,.

reference spaces. On the other hand, the larger referen
space provides improved first order enerditem the first ~ The first step is a 1A, state SCF calculation, and steps 2—4
two terms on the right hand side of E@.13] and smaller are independent single orbital optimization, where the orbit-
overall perturbation correctiorjfrom the Q space contribu- als shown in the square brackets are frozen as determined in
tions in Eq.(2.13]. The question we address with the largerthe previous steps. The excited orbitals are then obtained by
reference spaces is which of these competing factors doméiagonalizing the fA, state Fock operator in the orbital
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TABLE I. Energy errors|Erc— E(N)| for the first (1'A;) and second TABLE Il. Energy errors|Exc,— E(N)]| for the first (1*A;) and second
(2'A;) BeH, A, states at geometry A for different partitioning schemes (2*A;) BeH, A, states at geometry B for different partitioning schemes

and a double reference space. and a double reference space.
Perturbation Perturbation
order(N) MP EN FD OPT order(N) MP EN FD OPT
1A, 1A,
2 0.009 797 0.157 627 0.031 318 0.018 660 2 0.006 905 0.229 169 0.031 095 0.022 453

3 0.016 333 0.039 239 0.003 538 0.003 447 3 0.020 273 0.033 213 0.001 843 0.003 807
4 0.004 052 0.095 676 0.007 560 0.002 372 4 0.003 027 0.029 801 0.005 811 0.001 704
5 0.008 312 0.392 442 0.002 525 0.003 765 5 0.014 420 1.54 592 0.000 988 0.001 939
6 0.006 090 0.579 366 0.001 381 0.001 823 6 0.005 827 Diverges 0.002 114 0.001 327
7 0.002 344 0.107 665 0.001914 0.000 082 7 0.012 646 0.001 994 0.000 581
8 0.004 946 0.145 447 0.000 670 0.000 637 8 0.010 047 0.000 498 0.000 155
9 0.000 629 Diverges 0.000 410 0.000 419 9 0.006 871 0.000 558 0.000 058
10 0.003 207 0.000 597 0.000 083 10 0.010 741 0.000 601 0.000 054
20 0.001 192 0.000 015 0.000 005 20 0.000 183 0.000 004 0.000 004
30 0.000 602 0.000 000 0.000 000 30 0.100 391 0.000 003 0.000 000
21A, Diverges
2 0.038 894 0.016 427 0.033 002 0.000 516 21,
3 0.018 555 0.000 012 0.014 819 0.002 580 2 0.025 440 0.026 385 0.032 683 0.008 274
4 0.009 554 0.192 088 0.008 113 0.000 849 3 0.006 805 0.082 865 0.009 783 0.004 344
5 0.005 216 0.000 126 0.004 879 0.000 370 4 0.006 542 0.698 845 0.003 550 0.005 356
6 0.002 602 0.007 227 0.002 959 0.000 320 5 0.013 767 0.017 071 0.002 335 0.002 886
7 0.001 096 Diverges 0.001 750 0.000 053 6 0.003 736 0.025721 0.002 347 0.000471
8 0.000 464 0.001 009 0.000 017 7 0.004 565 Diverges 0.001 767 0.000 252
9 0.000 290 0.000 568 0.000 023 8 0.003 360 0.000 757 0.000 208
10 0.000 190 0.000 309 0.000 014 9 0.005 668 0.000 031 0.000 136
20 0.000 030 0.000 008 0.000 006 10 0.008 212 0.000 181 0.000 092
30 0.000 014 0.000 000 0.000 000 20 0.000 210 0.000 003 0.000 001
30 0.012 616 0.000 001 0.000 000
Diverges

space complementary to the union of the core and reference

spaces. This four orbital reference space is denoted

symbolically as (coré]2a,3a;1b;1b,]* to indicate

the valence orbitals in square brackets and the total

number of electrons in the reference space as th?ABLEIII. Energy errors|Exc;— E(N)| for the first(1 A,) and second?

superscript. The corresponding six and seven OrbitaiAl) BeH, A, states at geometry C for different partitioning schemes and
reference spaces are (cdi@a;3a;1b;1b,2b,]%, and  a double reference space.

(coref[2a;3a,4a,1b,1b,2b,]*, respectively.

Perturbation MP EN FD OPT
1
VI. CONVERGENCE PROBLEM FOR BeH, WITH 1 ';‘1 0017247 0283610 0024418  0.015736
DIFFERENT PARTITIONING SCHEMES 3 0.000707  0.012123  0.005582  0.005 203
A. Convergence difficulties with Mo “ller—Plesset (MP) 4 0010640  0.010601  0.002057  0.000446
and Epstein—Nesbet (EN) partitioning schemes 5 0012240  Diverges ~ 0.001973  0.000 492
using a double reference space 6 0033151 0.001511  0.001 089
7 0.003 558 0.000703  0.001 061
The computations in this section employ a reference 8 0.042671 0.000044  0.000 473
space with thd1aj2a33a?) and|1a2af1b3) CSFs as the 1?) 3-8189221 %-%%%11%58 %-%%%;g
model or reference space states. Usmg this double reference 20 Diverges 0000011 0000002
space, the computed MR-MBPT energies for the lowest two 39 0.000000  0.000 010
1A, states are displayed in Tables I, II, and Il for geometries  21a,
A, B, and C, respectively, and for the EN, MP, FD, and OPT 2 0.016127  0.082610  0.038595  0.014 856
partitioning schemes. The tables demonstrate the previously i g-gig ;;i 2?2; %3 8-885082 8-83; gg?
6 s T . . . .
knovyn fact® that the trgdltlonal MI_D and EN partitioning 5 0001993  Diverges  0.000563  0.000 864
multireference perturbation expansions suffer from conver- 6 0.038 506 0.003697  0.000 908
gence problems for bothA; states of Bel and for all the 7 0.224 649 0.003296  0.000 174
geometriegexcept geometry A for MR The analysis below 8 0.132104 0.000696  0.000 292
demonstrates that the severe divergence encountered with the 13 (2’-222 222 g-ggé g% gggg ggi
traditional MP and EN partitionings arises from the presence 20 Diverges 0000033  0.000 112

of intruder states that render these series divergent. Detailed 3g 0.000014  0.000 005
analysis is presented for the “transition state” geometry B
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FIG. 2. z—dependent excitation enerdy(2'A;)—E(3%A;) of BeH, for
geometry B from MP partitioning scheme.
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(Q—correspondingstates of'A; symmetry are degenerate
for zy=0.17+£0.82, the radius of convergence .=0.84
for the perturbation expansion. In the vicinity f, the first
excited state (2A;) eigenfunction with MP partitioning is
dominated by 48% ofla?2a?1b3) (P spacg and 41% of
|1a%2a21b,2b,) (Q space CSFs, and the second excited
state (3'A;) eigenfunction is described by the CSFs
|1a32a?1b3) (43% and |1a?2a?1b,2b,) (48%). [For
z=0, the second excited state {8,) is, however, described
by the CSH1a%2a?3a,4a,)].

A two state model with the|la32a?1b3) and
|1af2a21b,2b,) interspace pair of CSFs yields
z4=0.32+0.80, with R.=0.86 as the radius of conver-
gence. Thus, we find semi-quantitative agreement between
the estimate for the radius of convergence from the full com-
putation and that from the two state model. The intruder state
is identified in the full computation to be the
|1a32a%1b,2b,) state, and divergence occurs because the
|1a2a71b3) and|1aZ2a31b,2b,) interspace pair have too
small a zeroth order energy differencee Eq(4.5]. How-
ever, the zeroth order energy difference between this inter-
space pair is far from quasidegenerdiReference 53 pro-
vides a similar explanation for the divergent behavior of the
MP partitioning series with four hydrogen atoms arranged in

only for convenience. The convergence difficulties at thea rectangulaj. Since the degeneracy occurs for-Rez,
other two geometriegas well as several others not discussed>0, the |1a22a%1b,2b,) CSF may be characterized as a

here may be shown to occur for similar reasons.

front-door intruder state. On the other hand, there is no

We now examine the-dependent FCI eigenvalues and avoided crossing visible on the real axis becangés far

eigenfunctions of the compleik(z) of Eq. (4.1) from the

from the real axis. Hence, we prefer to characterize this in-

MP and EN partitionings as a function of the perturbationtruder state as a “hidden” intruder state.

parameterz. This analysis yields the radius of convergence

An avoided crossing is present between the second and

R.=|z4|, wherez, is the closest degeneracy point to thethird states of'A; symmetry for barycentric—EN partition-
origin involving two states that become an interspace pair ofng, but the states are so far apart that a ploEg{z) vs

states az—0. One of the two degenerate stateszatz,
evolves into aP space state ag—0 (a P—corresponding
statg and the other to & space statéa Q—corresponding

Rez gives little hint of this crossing. However, allowirto
be complex, we find that the second and thtd, states
become degeneratésee Fig. 3 with zy~—0.06+0.28

statg. The MP and EN partitionings with double reference (R.=0.29). Nearzy, the eigenfunction of the secorid,
spaces have no zeroth order energy overlap betweef the state is dominated by 57% ¢1a22a’1b2) (P space and

and Q spaces. Thus the degeneracy paiptdefining R
involves the 2A; (P—corresponding and 3'A;
(Q—correspondingstates. The 3A; state for the MP and
EN partitionings evolves into théla?2a?1b3) (P spacé
CSF whenz—0, while the 3'A; state evolves into the
|1a22a?3al4a}) (|1a2a71bi2b3)) Q-space CSF for MP
(EN) partitioning. The intruder state is defined as #egoth

31% of |1a?2a?1b,2b,) (Q spacg CSFs, whereas the
eigenfunction of the thirdA, state is described by the CSFs
|1a22a71b3) (36%) and |1a32a21b,2b,) (48%). A two
state model with this interspace pair of CSFs yields the esti-
mated radius of convergence as 0.35 frar~—0.06
+0.34, which compares quite favorably with tH&. from

full 197 CSF calculation. Hence, as in MP partitioning, the

order statefrom the Q space state that contributes most to|1a§2351b22b2> state is clearly the intruder state and diver-

the P—corresponding state in the vicinity ofy. Other

gence occurs because the|lai2a?1b3)  and

slightly different definitions of an intruder state have also|1a22a%1b,2b,) interspace pair have too small a zeroth or-

been used. Schucan and Weidétlerd®?! identify the in-
truder states as problematic “collective states,”
predominantly ofQ space states, that nes+ 1 describe low
lying exact states.

The MP partitioningz-dependent eigenvalue differences

are depicted in Fig. 2 for the second and third state$Agf
symmetry for complex, i.e., E21A1(z)—E31A1(z). Figure 2

der energy differencésee Eq.(4.5]. A similar explanation

composedyas also given for the divergent behavior of barycentric—EN

partitioning with four hydrogen atoms arranged in a
rectangle’®

Both the MP and EN patrtitionings obtain their SCF or-
bitals from the|1a32a?3a2) state. This arbitrary choice
leaves the|la?2a’1b3) and |1aj2a31b,2b,) interspace

establishes the presence of a degeneracy between these tpair strongly coupled, which, in part, produces divergent ex-
interspace*A; states. Since the real and imaginary parts ofpansions for both partitionings. If instead, the orbitals are

the eigenvalues for the seconB-{correspondingand third

obtained from thé1a22a?1b3) state, then, Brillouin's theo-
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0.10 r . . . TABLE IV. Energy errors|Exci— E(N)| for the ground statél1'A;) of
BeH, at geometry B as obtained from FD-serigsr five valence orbital
0.08 b e, m [E(2'4,) — E(314))] 4 reference spagehrough[N,M] Paderesummation.
] - Order FD-series [N,M]th order Pade
004 f | 2 0.003 251 59
3 0.008 871 37 [1,0] —0.003 405 97
= 002F N b 4 —0.007 048 93 1,1 0.000 684 01
% '\‘ 5 0.000 707 79 [2,1] 0.000 058 05
000 . 6 —0.010 484 78 [2,2] 0.000 011 97
= -0.02 7 0.003 333 65 [3,2] —0.000 041 00
;’; 8 —0.022 805 16 [3,3] —0.000 005 09
5004 9 —0.149 567 97 [4,3] —0.000 005 09
~~~~ 10 —1.415019 25 [4,4] —0.000 005 10
-0.06 11 —2.591 356 20 [5,4] —0.000 004 60
12 —8.714 815 07 [5,5] —0.000 004 74
-0.08 13 —14.429 572 62 [6,5] —0.000 004 48
0.10 Re (B(21AL) — B(31A4 14 —50.140 665 97 [6.6] —0.000 007 76
: e [E(2'41) - E(3'A))] 15 —75.253 383 30 [7.6] —0.000 003 28
0.12 1 1 1 1 16 —350.416 767 71 [7,7] —0.000 002 33
0.25 -0.20 -0.15 -0.10 -0.05 0.00 17 —422.029 870 661 [8,7] —0.000 002 85
Re z (Im = = 0.2818) 18 —2869.728 624 743 [8,8] —0.000 002 70
19 —2719.134 836 716 [9,8] —0.000 002 78

FIG. 3. z—dependent excitation enerd(2*A;)—E(3!A;) of BeH, for
geometry B from barycentric—EN partitioning scheme.

spaces is extremely large beyond the orders mentioned
above, a well behaved series is obtained from these FD series
through a Padeesummation procedure. Table IV clearly il-
lustrates, how the Padesummation procedure transforms
the “divergent” FD series intdprobably an “asymptotic”
series. Note that we truncatee., stop computingthe per-
turbation expansion whenever the error in théA] state

. . . energy(i.e., the deviation from the FCI valu@xceeds 1b
The divergent behavior of the single reference MBPTa.u. For instance, at geometry B, the deviation in tHé\]

can also be explained from the compiexiependent eigen-
value spectra obtained with barycentric—EN and MP parti-s’tate energy exceeds 1@.u. at the 23rd, 20th, and 18th

tioning (not shown here For MP partitioning, the avoided orders for the four, five, and six orbital reference spaces.

crossing between the first and second staté®\psymmetry E:rn[clel‘ que Eg gpztr? dt[réeﬂP faodrpt?]':)]fc')m?r?seogg dtzroiﬁg. t?arl-
occurs for positive Re (z4~0.95+0.14), whereas for T Ll ' ur, v X Orb

barycentric-EN partitioning it appears at negative ZRe reference spaces, re§pect|ve(ﬂ_]he computation O[N’N'l].
(z4~—0.51=-0.01). Both yield a radius of convergence and[N,N]th order Padeapproximants uses the perturbation
R.=|zg<1 (0.96 for MP and 0.51 for ENand imply a expansion only through 2N1 anq 2Nt+2 th orders, respec-
divergent SR perturbation series. t|vely.)_TabIes V through VII dls_:play the low order Pade
approximants for these FD series. Although, these tables
quote the Padappproximants through ordg#,4], the higher
B. Asymptotic convergence with forced valence order terms are well behaved up until the perturbation series
orbital degeneracy (FD) partitioning when using large becomes too unwieldy.
reference space Except for small reference spaces, the FD partitioning
Tables | through Il demonstrate that FD partitioning for yields some pairs of interspace states that have their zeroth
the double reference space state'f] and 2'A, stateyis  order energies incorrectly ordered, producing divergent per-
convergentthrough 30th ordgrover the entire potential sur- turbation expansions. We illustrate this behavior only for the
face, while the larger reference space computati@@ec. three valence orbital reference space of Bebut similar
VI1) yield usefully asymptotic series when truncated at lowpatterns must occur with the largezomplete activerefer-
orders. The convergence of the perturbative sefimst ence spaces. Furthermore, as discussed elsewhehe,
shown herg deteriorates rapidly with increasing size of the larger reference spaces may also have zeroth order energies
reference space. For example, at geometry B, the perturb&etween interspace states that are too close. Nevertheless,
tive expansion for the 1A; and 2'A; states begins to ex- enlarging the reference space is shown to produce improved
hibit divergent behavior from the 23rd, 9th, 7th, and 5thlow order energies. o
order onwards for the three, four, five and six orbital refer-  Figure 4 depicts the variation dfE,(z) —E(z)] with
ence spacefdescribed in the footnotes of Tables VIIJIX Rez(Im z=0) for the first four eigenvalues éf\; symmetry
respectively. Although the deviation from the exdECI) using the FD partitioning method and the three orbital refer-
value for the four, five and six-valence orbital referenceence space, wherg,(z) is the z-dependent eigenvalue of

rem implies a vanishing coupling between the
|1a22a%1b3) and |1a32a31b,2b,) interspace pair. Hence,

the |1a32a71b,2b,) state can then no longer act as an in-
truder state, an®. may be enlarged. However, single exci-
tations from thel1a?2a23a?) state may become important,

possibly introducing an additional intruder state.
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TABLE V. Energy errordEgq;— E(N)| for the first(1 *A,;) and second2
IA,) BeH, 'A; states at geometry A usirdN,M] Padeapproximants and
various reference spaces.
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TABLE VII. Energy errors Egc;— E(N)| for the first(1 *A;) and second?
IA;) BeH, A, states at geometry C usirity,M] Padeapproximants and
various reference spaces.

FD partitioning method OPT
Pade Two orbital ~ Four orbital ~ Six orbital ~ Two orbital
order[N,M] valence spacevalence spacevalence spacevalence space
1'A;
[1,0] 0.030 420 0.023 146 0.005 875 0.017 557
[1,1 0.018 243 0.003 053 0.001 355 0.00 1434
[2,1] 0.008123 0.007 413 0.000 605 0.006 204
[2,2] 0.014 718 0.003 179 0.000 169 0.004 289
[3.,2] 0.002 101 0.002 010 0.000 093 0.008 330
[3,3] 0.000 290 0.005 537 0.000 094 0.001 056
[4,3] 0.000 318 0.000 261 0.000 093 0.000 279
[4,4] 0.000 293 0.000 798 0.000 009 0.000 196
2'A,
[1,0] 0.032 760 0.008 192 0.003 181 0.001 098
[1,1 0.007 094 0.007 384 0.002 852 0.002 482
[2,1] 0.004 193 0.008 329 0.000 288 0.001 411
[2,2] 0.001 410 0.001 132 0.000 602 0.000 024
[3,2] 0.001 319 0.000 210 0.000 367 0.000 324
[3,3 0.001 417 0.000 017 0.001 049 0.000 152
[4,3] 0.000 049 0.00 0128 0.000 553 0.000 187
[4.4] 0.000 068 0.001 576 0.000 340 0.000 088

FD partitioning method OPT

Pade Two orbital  Four orbital ~ Six orbital  Two orbital
order[N,M] valence spacevalence spacevalence spacevalence space

1A,

[1,0] 0.024 171 0.002 162 0.002 977 0.015 414

[1,1] 0.002 665 0.007 609 0.001 993 0.003 353

[2,1] 0.001 241 0.004 534 0.000 135 0.003571

[2,2] 0.002 366 0.001 087 0.000 498 0.000 055

[3,2] 0.001 679 0.001 391 0.000 256

[3,3] 0.000 476 0.000 034 0.000 221 0.000 980

[4,3] 0.000 852 0.000 072 0.000 152

[4,4] 0.000 067 0.000 037 0.000 000 0.000 024

2'A,

[1,0] 0.037 538 0.035019 0.002 230 0.013 364

[1,1] 0.017 007 0.002 408 0.001 323 0.001 259

[2,1] 0.007 000 0.007 640 0.000 081 0.003 141

[2,2] 0.056 461 0.004 402 0.000 320 0.002 190

[3,2] 0.003 998 0.004 144 0.000 160

[3,3] 0.000 282 0.004 427 0.000 004 0.000 264

[4,3] 0.000 370 0.000 418 0.000 382 0.000 086

[4,4] 0.000 302 0.000 584 0.000 037 0.000 051

the mth 1A, state andE(2) is the average of the first eight order |1aZ2aZ1b?) (P space and |1af2a;3a;1b3) (Q
low-lying state energies. The presence of an avoided crosspace states for FD partitioning.

ing is clearly visible in Fig. 4 between the '3, In order to explain and model the FD divergence we
(P—correspondingand the 4'A; (Q—correspondingstates examine the two state model composed of the
near Rez=0.80. Detailed analysis confirms that the/8 |1a?2a21b?) and |1a32a,3a,1b3) interspace pair, since
and 4'A; are indeed degeneratésee Fig. 5 for these states dominate in the description of théA3
z4~0.875-0.04, yielding R, = 0.876. In the vicinity of (P—correspondingand the 4'A, (Q-correspondingstates
z4, these two degenerate states are dominated by the zerotkar zy for the full computation involving all states. The

TABLE VI. Energy errorg Exc;— E(N)| for the first(1 *A;) and second2 -1.6 T T T T
'A;) BeH, A, states at geometry B usiriN,M] Padeapproximants and

various reference spaces. 18§ ~
FD partitioning method OPT 20k

Pade Two orbital ~ Four orbital ~ Six orbital ~ Two orbital -

order[N,M] valence spacevalence spacevalence spacevalence space 22p -
11 A, 2k _,
[1,0] 0.030 685 0.012 568 0.003 529 0.021 948 iy
[1,1] 0.025 155 0.007 751 0.001 852 0.001 198 1 g .._..-"Tla‘f2a¥3a‘f> 1a22a2113) i
[2,1 0.006 402 0.017 404 0.000 118 0.004 024 =7 d . b ;1 b; .
[2.2] 0.004 429 0.002 479 0.000 375 0.002 610 = , |1ai2aiti)
[3.2] 0.001 921 0.002 427 0.000 081 0.000 949 28 i
[3,3] 0.000 227 0.002 481 0.000 997 0.001 586
[4,3] 0.001 928 0.000 436 0.000 990 0.000 282 -3.0 7
[4,4] 0.000 645 0.000 082 0.000 643 0.000 731 -
2'A, -3.2 .
[1,0] 0.031 958 0.023 142 0.003 227 0.007 172
[1,1] 0.003 426 0.007 062 0.002 252 0.004 221 3.4 E
[2,1] 0.001 216 0.011 864 0.000 117 0.005 076
[2,2] 0.001 863 0.000 389 0.000 543 0.004 591 36 1 1 1 1 1 2 L L 1
[3,2] 0.002 756 0.001 506 0.000 292 0.005 822 -0 -08 -06 -04 02 00 02 04 06 08 L
[3,3 0.002 024 0.001 232 0.000 076 0.000 645 Re -
[4,3] 0.001 616 0.001 160 0.000 358
[4,4] 0.001 268 0.000 083 0.000 176 FIG. 4. First four'A; statez—dependent eigenvalues of Befbr geometry

B from FD partitioning methodwith three valence orbital reference space
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0.005 . . . . . . . TABLE VIII. Vertical (1 *A;—2'A;) excitation energiegin eV) for dif-
ferent MR computational methodg/alues in parentheses are the absolute
0.004 Fs._ Im [E(3'41) - E(4!4,)] - deviationg(in eV) from the FCI, and the third order values are quoted for the
~~~~~~ . FD and OPT methodk.
0.003 | -
Geometry
R | T Methods A B c A
I ooo . FCl 2.6615 1.3217 2.4337
= : mcce? 2.6518 1.3293 2.4558
00 : (0.010 (0.008 (0.022 0.013
- QD-MBPT® 3.2110 1.6109 2.2259
= -boon (0.456 (0.292 (0.202 0.349
FD! 3.1610 1.6381 2.2798
-0.002 (0.500 (0.316 (0.154 0.323
FD® 3.0576 1.5798 2.2646
-0.003 (0.399 (0.258 (0.169 0.274
FDf 2.6545 1.3851 2.5577
-0.004 Re [B(3'A1) - B4 A, (0.007 0063 (0124 0.065
0005 , , , \ . . . FDY 2.7565 1.3566 2.4224
TU0.874 0.875 0.876 0.877 0.878 (0.099 (0.035 (0.011 0.047
Re = (Im z = 0.0438) FD" 2.6864 1.3330 2.3986
(0.025 (0.011) (0.035 0.024
_— N N FD' 2.6589 1.3154 2.4226
FIG. 5. z—dependent excitation enerdy(3 “A;) —E(4 “A,) of BeH, for
geometry B from FD partitioning schentwith three valence orbital refer- (0.003 (0.008 (0.013 0.007
ence spade OPT 2.6378 1.3362 2.3569
(0.029 (0.019 (0.079 0.039

#Average absolute deviatiofin eV) from FCI.
zeroth order energies of these two interspace states are incdReference 58.
rectly ordered with respect to their expectation valuesiof —reference 55. . ) ,
. . . . . Two orbital valence space: (cof@ai[3a,1b,]2.
in a CSF bagls(Se_e Sec. IV _for a dlSCU_SSIOﬂ on iNCOrrect epy, oo orbital valence space: (cotp[3a,1b;1b,]2.
energy ordering.Since there is no coupling between thesefroyr orbital valence space: (coteda,3a;1b,1b,]%.
states, the radius of convergence is infinite for a perturbativérive orbital valence space: (cof@p,[3a;4a,1b;1b,2b,]2.
computation exclusively involving these two states. How-'Six orbital valence space: (cof¢pa;3a;4a,1b11b,2b,]".
ever, if a third state is added and if this state is coupled tg>even orbital valence space: (cd{@a;3a;4a;5a,1b;1b,2b,]"
both states even by an infinitesimal matrix element, then
R. is given by Eq.(4.7). This model yieldsR; (z4) as 0.95
(0.95+0.01), which is quite close to that for the full 197
CSFs computation. Hence, the divergence for the full prob
lem is caused by incorrect energy ordering with the
|1a22a,3a,1b3) (|]1aj2ai1b?)) state acting as the intruder
(escaping state. Thus, we again fin@vith few exceptions
that a simple two or few state interspace model provides
reasonable information regarding the high order convergencgg, £ x. Third order vertical (1:A,—3!A,) excitation energieén eV)
behavior of the MR-MBPT procedure and also the coupledor FD schemesValues in parentheses are the absolute deviationeV)
states that are responsible for the poor convergence. Hendesm the FCI]
the interspace two state models should provide a useful di
agnostic for choosing reference spaces in applications of
MR-MBPT, just as second order perturbation theory is used Methods A B c A2
for choosing reference configurations for MRCI methods.

Bartlett>® and the FCI value to evaluate the relative perfor-
mance of the different approachéSince the absolute state
energy is not a bound in perturbative methods, Table VIII
compares excitation energigJ.ables 1X and X present the
third order 1*!A;—3 A, and 1'A,—4 A, vertical excita-

Geometry

FCI 6.4432 6.3895 7.2327
FDP 6.5963 6.6579 7.9361
VIl. LA, STATE VERTICAL EXCITATION ENERGIES o (2}11226 (Oézfgass (0-77 ggll 0375
FROM THE LARGER REFERENCE SPACES (0.021 (0.094 (0.058 0.058
. . d
Table VIl displays the computed third order FD (g'géél (066?69;7 (070?368 0017
11A;—21A; vertical excitation energy from the forced de- FD° 6.4214 6.3697 7276 '
generacy MR-MBPT for various choices of reference spaces, (0.022 (0.020 (0.005 0.016

ranging from two to six orbital valence spaces, as well as
- > — .
from the OPT scheme for the two orbital valence space. Wgﬁ"eragzi‘ﬁso'fte de"'at'o("“(ev%)égo’*; ':Cl'beig’?j‘te-
. - . our orbital valence space: (coff2a;3a;1b;1b,]".
also present the multl_conflgurayonal coupleq clusterc,:ive orbital valence space: (Cof&,[ 32,42, 1b, 1b,2b,]7.
(MCCC) results of Bannerjee and Simotisthe quasidegen- dSix orbital valence space: (cofgpa,3a;4a,1b;1b,2b,]*.

erate  MR-MBPTQD-MBPT) computation of Lee and ¢Seven orbital valence space: (cdfé@a,3a,4a,5a,1b;1b,2b,]%.
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TABLE X. Third order vertical (1'A;—4 *A,) excitation energieéin eV)  what in between that of the five and six valence orbital ref-
for FD schemes.Values in parentheses are the absolute deviafioneV) erence space calculations within the FD scheme. Because of
from the FCI] . . .

this high accuracy, we have not considered OPT treatments

Geometry with larger reference spaces.
Methods A B C A?
FCl 8.6799 7.6016 7.7815 IX. DISCUSSION
FD? (3'2329 (08&6019 (0%2233 0.676 The third order, two valence orbital space FD calculation
FD° 8.0589 7 6759 7 0886 ' closely resembles that from the OPT partitioning method and
0.279 (0.074 (0.207 0.187 from the QD-MBPT approach of Lee and Bartlett. These
FD 8.7698 7.6635 7.7835 three schemes differ only in the choice of zeroth order ener-
o (2-2327 (07-0;0301 (033304 0.051 gies and the orbitals. All three employ the same number of
(0:006 (0.601) (0.0'1]) 0.006 valence o_rbltals in the r_efere_nce space and, hence, the same
configuration state functions in the reference space. All three
3Average absolute deviatiofin eV) from FCI estimate. methods generate a convergent perturbative series through
:Eic\)/l;r c?rrl?iitgl \:/;f:cc: Ssp:geg:((chg?gga[lgglj:lllgzig 2o, 3ch or.der.. However, the low ordée.g., third .o_rdg)rresults
ISix orbital valence spFa)lce: .(co?@?ai3alilaliblllb2§bj4.. differ S|gnn_‘|cantly. For exam.ple, the FD partltlor.un.g method
eSeven orbital valence space: (cdi@a,3a,4a,5a,1b;1b,2b,]". offers an improved result, i.e., a smaller deviation of the

excitation energy from the FCI than from the QD-MBPT

method, but an even more significant improvement in the
tion energies, respectively, as obtained using four, five an@Xcitation energy is obtained by OPT method. The excitation
six orbital valence spaces. Almost all the FD partitioning€nergy computed with the OPT scheme is comparable to the
computations display the general trend that the accuracy dfighly correlated MCCC and FD partitioning methods with a
the third order excitation energies, i.e., the deviation from thésix valence orbital reference space whose dimension is al-
FCI excitation energies, improves with an increase in thenost half of the FCI space. Also, the OPT scheme provides
size of the reference space. For example, the average absbmore rapidly convergent perturbative series than the double
lute deviation(for geometries A, B, and Jdn the third order ~ reference QD-MBPT and FD-MBPT methods. This demon-
excitation energy for the 3A;—2'A, transition is only Strates that the accuracy and convergence of the MR-MBPT
0.024 eV with the six orbital reference space as compared tgethod depends on the choice of the zeroth order energies.
0.047 with the five orbital reference space. The improvementNote that theH, formed with unaveraged IVO orbital ener-
is also substantial for higher excited states, even though th@ies also yields a convergent double reference perturbative
larger reference space computations are only asymptotic ariries and is to some extent better than the FD-series, a find-
begin diverging earlier than in the calculations with smallering in accord with small valence spa¢¢’ computations
reference spaces. These divergent series, however, are trafémonstrating improved results in truly quasidegenerate situ-
formed to a useful asymptotic form by Padesummation ations when valence orbital energy averaging may be
techniques. Similar patterns are also found for several othegvoided)
geometries a|0ng the reaction path of geﬂ{he trends de- Table VIII indicates that as the size of the reference
scribed above often appear since an increase in the size 8pace grows, the accuracy of the FD method increases. The
the the reference space improves the first order descriptiofiend in Table VIII is not surprising, since the larger refer-
[given by the first two terms on the right hand side of Eq.ence space computation offers a better first order description
(2.13] and reduces the remaining “correlation contribution” and requires a smaller correlation correction. On the other
[from the sums in Eq(2.13] to be obtained perturbativly. hand, as the size of the reference space increases, the
Thus a seven valence orbital reference space produces alméstasidegeneracy of the valence orbital energies diminishes.
FCI accuracy at third ordefbut only two excited orbitals Therefore, a large diagonal perturbation matrix element ap-
remain and offers a decent asymptotic perturbation seriespears, with additional energy denominators that may be too
Although the perturbative series diverge more rapigige small® due to the forced valence orbital degeneracy restric-
Sec. VI B with the larger than the smaller reference spacedion. (See Ref. 22 for detailsHence, it is not surprising the
(especially for the higher excited stakethe high order di- the larger reference spaces exhibit divergent behavior in ear-
vergence does not degrade the accuracy of the lower lyinlier orders for the FD partitioning perturbative serigs-
states in low orders. though Padeesummations improve matters considerably
Enlarging the valence space involves a trade-off, and the
success of FD method depends on the relative importance of
the opposing factors. When the diagonal perturbation is too
large or when small energy denominators appear, the conver-

The OPT method converges much faster than with thegence and accuracy of FD partitioning may degrade. In fact,

FD partitioning approach for the two orbital valence space othe success of the FD scheme lies mostly on the appropriate
the QD-MBPT calculations of Bartletit al>* The accuracy selection of the reference space, a process which requires
of the two orbital valence space OPT treatment lies somesome trial and error searching aagriori knowledge of the

VIIl. 1A, STATE VERTICAL EXCITATION ENERGIES
FOR OPT PARTITIONING
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