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Abstract
When a quantum system undergoes unitary evolution in accordance with a
prescribed Hamiltonian, there is a class of states |ψ〉 such that, after the passage
of a certain time, |ψ〉 is transformed into a state orthogonal to itself. The shortest
time for which this can occur, for a given system, is called the passage time.
We provide an elementary derivation of the passage time, and demonstrate that
the known lower bound, due to Fleming, is typically attained, except for special
cases in which the energy spectra have particularly simple structures. It is also
shown, using a geodesic argument, that the passage times for these exceptional
cases are necessarily larger than the Fleming bound. The analysis is extended
to passage times for initially mixed states.

PACS numbers: 03.65.Xp, 03.65.Vf

1. Introduction

The notion of a characteristic time arises in a variety of situations in quantum mechanics. For
example, concerning the decay of an atom, one is interested in the characteristic decay time,
or lifetime. Typically, one would conduct measurements on an ensemble of independently
and identically prepared systems, whereby the lifetime is estimated as an ensemble mean. For
a particle trapped in a potential, one would be interested in the tunnelling time, the time in
which the particle escapes from the trap.

There are many other circumstances in which one is interested in the time required for an
initial state of the system to evolve into another state under the action of a given Hamiltonian,
or more generally, under some given setup. See, for example, [1] (and references cited therein)
for a discussion on various characteristic times in quantum theory. It is curious that, despite
its experimental importance, precise statistical bounds on the estimation accuracy of time in
quantum mechanics have only been obtained fairly recently [2, 3].

One of such characteristic times, namely, the time required for a given initial state |ψ〉
to evolve into another state orthogonal to |ψ〉, has attracted some attention because of its
relevance to quantum computation and computational capacity (see, for example, [4–6]), and
also to fidelity between a pair of quantum states [7, 8]. Of course, given a generic state |ψ〉
and a Hamiltonian, it is more likely that |ψ〉 will never evolve into a state orthogonal to |ψ〉.
0305-4470/03/205587+07$30.00 © 2003 IOP Publishing Ltd Printed in the UK 5587
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Nevertheless, for some special cases this can occur, which is the situation we study here. In
particular, we call the minimum time required for a state to be transformed into an orthogonal
state a passage time. The lower bound for the passage time is known as the Fleming bound [9].
Our main objective here is to give an elementary derivation of the passage time, and illustrate
the result for some simple systems. Let us first state more explicitly the problem at hand.

Consider an n-dimensional Hilbert space H, and a Hamiltonian Ĥ with eigenvalues {El}
(l = 1, 2, . . . , n). For definiteness, we suppose that the energy eigenvalues are all distinct,
although this is not essential in the ensuing argument. The time evolution of the wavefunction
is thus effected by a one-parameter family of unitary operators

Û(t) = exp(−iĤ t/h̄). (1)

Now, the Hilbert space H carries an essentially redundant complex degree of freedom, i.e.
the overall complex phase associated with the wavefunction. Thus, we consider equivalence
classes of wavefunctions, obtained by the identification

|ψ〉 ∼ λ|ψ〉 (2)

where λ ∈ C−{0}. In other words, we consider the space of rays through the origin of H. This
is just the projective Hilbert space P , endowed with the usual Fubini–Study metric defined by
the transition probability [10]. By abuse of notation, we use the symbol |ψ〉 to denote both a
point of P , and its representative elements in H. This should not cause confusion.

Given a Hilbert space and a Hamiltonian Ĥ , we seek to determine the time required for a
state |ψ〉 to be transformed, under unitary evolution, into another state |η〉 orthogonal to |ψ〉.
More precisely, the problem addressed here can be stated as follows:

(a) Does there exist a time τ such that the state defined by

|η〉 = Û(τ )|ψ〉 (3)

is orthogonal to |ψ〉, that is, 〈ψ|η〉 = 0, and,
(b) If so, what is the minimum value of τ?

Such a minimum time τ , if it exists, will be called the passage time, and denoted by τP.
We shall show that, in fact, there exist infinitely many, although rather special, states |ψ〉 such
that 〈ψ|η〉 = 0 for a suitable choice of passage time τP, and that the value of τP for these states
is typically given exactly by the expressions

τP = πh̄

�E
= πh̄

2�H
(4)

where �E and �H are as defined below (note that the passage time in [1] is defined to be
given by πh̄/2�H for an arbitrary state, whereas our definition here is more refined because
we impose orthogonality condition). There are also cases for which passage times exist but
are larger than τP of (4). Explicit examples will be given. We also show, using the Anandan–
Aharonov relation, that (4) actually provides the sharpest obtainable bound for the passage
time.

2. Derivation of passage times

In order to verify (4), we first take note of the Hermitian correspondence between points and
hyperplanes of codimension one in a projective Hilbert space P [11]. Specifically, given a
point |ψ〉 ∈ P , the corresponding projective hyperplane consists of those points |ξ〉 satisfying
the algebraic relation

〈ψ|ξ〉 = 0. (5)
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Figure 1. Hermitian correspondence and projective line. The orthogonal complement of a state
|ψ〉 ∈ P is a hyperplane of codimension one such that for any element |ξ〉 on this plane we have
〈ψ |ξ〉 = 0. If a state |ψ〉 is transformed into an orthogonal state |η〉, then |η〉 must lie on this
plane. The join of |ψ〉 and |η〉 is a projective line, which in real terms is just a two-sphere S2.
If the transformation |ψ〉 → |η〉 along a geodesic curve on the projective line is obtained by the
action of the unitary operators Û (t), then there must be a pair of energy eigenstates |Ei〉 and |Ej 〉
at the poles of the sphere, such that |ψ〉 and |η〉 lie on the equator, and the action of Û (t) is merely
a rigid rotation of the sphere with respect to these poles. Conversely, if the transformations Û (t)

carrying |ψ〉 into |η〉 do not describe a geodesic curve, then there does not exist any pair of energy
eigenstates on the projective line joining |ψ〉 and |η〉.

Thus, if |ψ〉 is transformed by Û(t) into a point |η〉 orthogonal to |ψ〉, then |η〉 must lie on
this hyperplane, i.e. 〈ψ|η〉 = 0. Assuming that such a pair (|ψ〉, |η〉) of points exists, we can
join the two points by a projective line P1; the points on this line represent the totality of
normalized superpositions of the states |ψ〉 and |η〉. Since a complex projective line in real
terms is just a two-sphere S2, we can visualize this configuration as illustrated in figure 1.
Note that the orthogonality of |ψ〉 and |η〉 implies that they are antipodal on S2. Furthermore,
the geodesics of the Fubini–Study metric that join the two points |ψ〉 and |η〉 are just the great
circle arcs of the sphere S2 that contain these points.

Next, we observe that, if there exists a unitary evolution transforming |ψ〉 into |η〉 along
a geodesic curve, then there must be a pair of energy eigenstates, |Ei〉 and |Ej 〉, say, at the
poles of S2, such that |ψ〉 and |η〉 lie on the equator. This is because the dynamics induced
by unitary evolution on any projective line joining a pair of energy eigenstates corresponds
to a rigid rotation of the two-sphere S2 in P , with the said energy eigenstates as fixed points.
Therefore, if we regard, conversely, the states |ψ〉 and |η〉 as forming a pair of poles on S2,
then the two energy eigenstates |Ei〉 and |Ej 〉 will lie on the corresponding equator. In other
words, we have, for some φ ∈ [0, 2π), the relations

1√
2
(|ψ〉 + eiφ|η〉) = |Ei〉 (6)

and
1√
2
(|ψ〉 − eiφ|η〉) = |Ej 〉 (7)

since |Ei〉 and |Ej 〉 are antipodal points of S2. Applying the unitary operator Û(τ ) to both
sides of (6) and (7), we obtain

1√
2
(eiφ|ψ〉 + |η〉) = e−iEiτ/h̄|Ei〉 (8)

and
1√
2
(−eiφ|ψ〉 + |η〉) = e−iEj τ/h̄|Ej 〉. (9)
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This follows from the fact that, by assumption, the unitary operator Û(τ ) for a particular value
of τ interchanges two states |ψ〉 and |η〉. Thus, forming the inner products of the respective
right-hand and left-hand sides of (6) and (8), we find that

1
2 (eiφ + e−iφ) = e−iEiτ/h̄. (10)

Similarly, from (7) and (9) we obtain

− 1
2 (eiφ + e−iφ) = e−iEjτ/h̄. (11)

Then, addition of equations (10) and (11) yields the condition

e−i(Ej−Ei)τ/h̄ = −1 (12)

which is satisfied if we set

τ = πh̄k

Ej − Ei

(k = 1, 3, 5, . . .), (13)

where we assume Ej > Ei . Choosing the smallest value for k and writing �E = Ej − Ei we
thus obtain the minimum value τP of the passage time, given by

τP = πh̄

�E
. (14)

To summarize, when |ψ〉 is transformed into an orthogonal state |η〉 by a one-parameter
family of unitary transformations along a geodesic curve, then the time required is given
exactly by (14). We have not yet considered the possibility that |ψ〉 unitarily evolves into |η〉
along another curve. If an alternative path exists, then the length of the trajectory is necessarily
longer, since any such path will not be a geodesic. If |ψ〉 is expressible as a superposition
of |Ei〉 and |Ej 〉, then the trajectory of Û(t)|ψ〉 never leaves the projective line that joins
these two states, and hence there does not exist any alternative path. The case in which |ψ〉 is
expressed as a superposition of more than two energy eigenstates will be discussed below.

We note, incidentally, that an alternative bound on passage time was proposed by Margolus
and Levitin [4], who argued that a sharper bound for τP exists and is given by the expression

τML � πh̄

2E
(15)

where E = 〈Ĥ 〉 is the expectation value of the Hamiltonian in the state |ψ〉. However, this
inequality is in general not physically viable, and it is in fact never sharper than the right-hand
side of (14). This is because the physical characteristics of quantum systems are invariant
under an overall shift of the energy spectrum, and hence without loss of generality we may
set, for example, E = 0 or E < 0, and (15) becomes meaningless. To avoid this problem,
Margolus and Levitin fix the energy scale so that El � 0 for all l = 1, 2, . . . , n. Only then
does the inequality (15) become technically valid. However, this bound, when 2E � �E, is
never attained except in one special case where Ei = 0, so that �E = Ej and 2E = Ej .

3. Fleming’s bound

We now consider how the passage time τP obtained in (14) is related to the dispersion
�H 2 = 〈(Ĥ − 〈Ĥ 〉)2〉 of the energy. This is of interest, because a previously derived bound
on the passage time is expressed in terms of the energy dispersion [9]. In the present situation,
we can compute �H explicitly, because the state is expressible in the form

|ψ〉 = 1√
2
(|Ei〉 + eiϕ |Ej 〉) (16)
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for some ϕ ∈ [0, 2π). By a direct calculation, the energy dispersion in the state (16) is

�H 2 = 1
4 (Ej − Ei)

2 (17)

from which we obtain Fleming’s bound

τP = πh̄

2�H
(18)

as indicated in [1].
This relation is indeed natural if we recall the Anandan–Aharonov relation [12] which

states that the ‘speed’ of the evolution of a given quantum state is given by 2h̄−1�H . The
Fubini–Study distance between a pair of orthogonal states is given by π , and this distance
divided by the velocity determines the required time. Since the velocity 2h̄−1�H of the
quantum state is a constant under the action of the unitary group, while the minimum
distance of the trajectory joining a pair of orthogonal states is always π , it follows that
the Fleming bound can be derived directly from the Anandan–Aharonov relation. We note
that a similar line of idea has been applied in search of optimal quantum algorithms [5].

We have considered thus so far the case in which the state |ψ〉 is expressible as a
superposition of two energy eigenstates. Next, suppose that |ψ〉 is expressed as a superposition
of more than two energy eigenstates. It is not difficult to see that, in this case, if |ψ〉 can
be transformed into an orthogonal state by a unitary operator Û(t), then the energy spectrum
{El} must fulfil rather stringent constraints. Thus, such a transformation can occur only for
rather special states, in systems such that the energy spectrum {Ej } has a particularly simple
structure. In other words, a generic state in this case will not evolve into an orthogonal state
under the action of Û(t). It is, nevertheless, of some interest to analyse such examples in order
to gain further insight into the phenomena involved.

Let us consider, for simplicity, a state |ψ〉 that is expressed as a superposition of three
energy eigenstates. The most general form of such a state can be expressed as

|ψ〉 = cos α|Ei〉 + sin α cos β eiφ |Ej 〉 + sin α sin β eiϕ|Ek〉 (19)

where α, β are angular coordinates, φ, ϕ are phase variables, and we assume that Ei < Ej <

Ek. If Û(T ) transforms this state into an orthogonal state, then the condition

cos2 α + sin2 α cos2 β e−iωjiT /h̄ + sin2 α sin2 β e−iωkiT /h̄ = 0 (20)

must be satisfied, where ωji = Ej − Ei and so on. To render the analysis more tractible, we
further simplify this constraint by assuming that α = β = π/4. Then, (20) implies that a
necessary condition for the state |ψ〉 to evolve into an orthogonal state is given by the relation

ωki

ωji

= 2m − 1

2n − 1
(21)

where m,n are natural numbers such that m �= n. Because the spectrum of a generic
Hamiltonian Ĥ will not satisfy (21), a state |ψ〉 will never evolve into a state orthogonal to
|ψ〉. The constraint becomes even more severe if |ψ〉 is expressed as a superposition of more
than three eigenstates. The precise form of the constraint in such cases is just a straightforward
generalization of (20).

Notwithstanding these conditions, let us suppose that the constraint (21) is indeed satisfied
for some given Hamiltonian. Then, the state indeed evolves into an orthogonal state. The first
time that |ψ〉 becomes orthogonal to |ψ〉, in particular, is given by

T = πh̄

ωji

= 3πh̄

ωki

. (22)
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However, since in this case Û(t)|ψ〉 does not describe a geodesic path, T will be larger
than Fleming’s passage time τP given in (18). Indeed, without loss of generality, we may
set Ei = 0. Then, it is straightforward to verify that T = √

6τP. This follows from the fact
that, under the constraint ωki = 3ωji that follows from (21), the squared energy dispersion in
the state (19) is given by �H 2 = 3

2ω2
ji .

Another simple example is the cyclic evolution of a spin-1 system,with energy eigenvalues
−1, 0 and +1. Consider a state

|ψ〉 = 1
2 |−〉 + 1√

2
|0〉 + 1

2 |+〉. (23)

The application of Û(πh̄) yields

|η〉 = − 1
2 |−〉 + 1√

2
|0〉 − 1

2 |+〉 (24)

and we have 〈ψ|η〉 = 0. Likewise, the action of Û(πh̄) on |η〉 yields |ψ〉, hence, we have a
cyclic evolution that interchanges a pair of orthogonal states |ψ〉 and |η〉. However, because
the trajectory Û(t)|ψ〉 in P does not correspond to a geodesic curve, the time required to
interchange these states, given by T = πh̄, is longer than the Fleming bound. Indeed, we
have T = √

2τP in this example, because in the state (23) we have 〈H 2〉 = 1
2 and 〈H 〉 = 0

so that �H 2 = 1
2 . In general, if a quantum state expressible in the form other than (16) does

evolve into an orthogonal state, then the passage time is necessarily longer than Fleming’s
bound (18).

4. Mixed initial states

The foregoing analysis can be extended in a natural way to the case in which the initial state of
the system is impure. The situation considered here can be described as follows. Suppose that
we have an initial state, known to be either |ψ1〉, with probability p, or |ψ2〉, with probability
1 − p, where both of these pure states are of the form (16). In other words, the initial state is
a mixed-state density matrix

ρ̂ = p|ψ1〉〈ψ1| + (1 − p)|ψ2〉〈ψ2|. (25)

This density matrix evolves in accordance with the Heisenberg law

ρ̂(t) = Û
†
(t)ρ̂Û (t). (26)

Our objective in the present context is to examine the possibility that, after some lapse of time
τP, the initial pure state |ψi〉 evolves with certainty into a state orthogonal to |ψi〉, irrespective
of whether i = 1 or i = 2.

If the state |ψ1〉 is a superposition of energy eigenstates |Ei〉 and |Ej 〉, and if |ψ2〉 is a
superposition of |Ek〉 and |El〉, then the passage time for |ψ1〉 is just πh̄/ωji , and similarly,
for |ψ2〉, is just πh̄/ωlk . Therefore, if the initial state evolves with certainty into an orthogonal
state, then the required passage time is given by

τP = πh̄ × LCM
(
ω−1

ji , ω−1
lk

)
(27)

where LCM(x, y) denotes the least common multiple of x and y. In other words, since we
are uncertain about the initial state, we must, in general, wait considerably longer before we
can be sure that the state is in another state orthogonal to the initial state, even though in the
meantime the state may evolve into an orthogonal state and then return to itself many times.
It is straightforward to generalize this argument to the case where the initial state is one of
many states of the form (16). In this case, the passage time is simply given by πh̄ times the
least common multiple of the inverses of the energy differences.
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Note that, even though each possible pure state will be transformed into an orthogonal
state after the system has evolved for the time τP given in (27), one cannot clearly argue that
the density matrix ρ̂(τP) has evolved into another mixed state orthogonal to ρ̂(0). Indeed,
the diagonal elements of ρ̂(0) and ρ̂(τP), when expressed in the energy basis, are identical,
and therefore the expectation values of any observable commuting with the Hamiltonian will
also be identical. This observation leads to an interesting open problem, namely, can the
orthogonality of impure density matrices be defined in a meaningful fashion, and if so, does a
passage time exist for mixed-state density matrices with respect to this definition.
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