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Fermionic systems differ from their bosonic counterparts, the main difference with regard to symmetry
considerations being that T 2 = −1 for fermionic systems. In PT -symmetric quantum mechanics an operator has
both PT and CPT adjoints. Fermionic operators η, which are quadratically nilpotent (η2 = 0), and algebras
with PT and CPT adjoints can be constructed. These algebras obey different anticommutation relations:
ηηPT + ηPT η = −1, where ηPT is the PT adjoint of η, and ηηCPT + ηCPT η = 1, where ηCPT is the CPT
adjoint of η. This paper presents matrix representations for the operator η and its PT and CPT adjoints in two
and four dimensions. A PT -symmetric second-quantized Hamiltonian modeled on quantum electrodynamics
that describes a system of interacting fermions and bosons is constructed within this framework and is solved
exactly.
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I. INTRODUCTION

A complex Hamiltonian that is PT symmetric (invariant
under space-time reflection) may exhibit two phases separated
by a phase-transition point: an unbroken-PT -symmetric phase
in which the energy spectrum is entirely real and a broken-
PT -symmetric phase in which the spectrum is partly real
and partly complex [1]. Complex Hamiltonians have been
studied extensively in quantum mechanics and in quantum field
theory. Most of this work has been devoted to the study of
bosonic theories, for which T 2 = 1. However, T 2 = −1 for
fermionic theories, a crucial feature that leads to differences
in the formalism. For example, if the Hamiltonian H has
a real eigenvalue, then H has a corresponding degenerate
pair of eigenvectors, φ and PT φ; this is a consequence of
Kramer’s theorem for ordinary quantum mechanics. Non-
Hermitian fermionic systems have been studied within the
wider framework of pseudo-Hermiticity [2].

A previous paper [3] investigated a matrix representation
of a nilpotent fermionic operator η satisfying η2 = 0 together
with an adjoint nilpotent operator, denoted generically by η̄.
These operators satisfied a fermionic anticommutator relation
ηη̄ + η̄η = ε1. The value ε = 0 corresponds to a Grass-
mann algebra and the value ε = 1 corresponds to a standard
fermionic operator anticommutation relation. However, the
value ε = −1 was obtained for this anticommutation relation
in a specific case of a four-dimensional matrix. Subsequently,
Cherbal and Trifonov formalized this result [4], making use
of the non-Hermitian formulation of quantum mechanics in
Ref. [2] and the notation of Ref. [5].

The problem with determining the value of ε for the
anticommutator lies in the definition of the adjoint nilpotent
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element η̄. In Ref. [3] η̄ was chosen to be the PT reflection of
η; that is,

η̄ = PT ηT −1P−1.

This paper revises the definition of η̄ in order to make it
consistent with the concept of a fermionic inner product.
With this revision, the fermionic algebra using ηPT , the PT
adjoint of η, always gives rise to an anticommutation relation
with ε = −1. However, if we use ηCPT , the CPT adjoint,
the fermionic algebra becomes the conventional Hermitian
fermionic algebra ε = 1.

Knowing the structural properties of the fermionic operators
is a technical but important issue as it provides the basis
for constructing theories of many-body systems in second
quantization. It is particularly useful in the context of a given
symmetry, such as PT symmetry, because the Hamilton or
Lagrange functions constructed in this way automatically
have the symmetry properties required. The second-quantized
approach enables one to describe and analyze dynamic sys-
tems. We illustrate this formalism with an exactly solvable
model of a PT -symmetric Hamiltonian for fermions inter-
acting with bosons. This model is based on the structure of
quantum electrodynamics. We solve this Hamiltonian exactly
for the eigenvalues and calculate the renormalized mass of the
fermion.

This paper is organized as follows. In Sec. II we review the
choice of the inner product in order to set our notation and we
define the PT and CPT adjoints using appropriate definitions
of the PT and CPT inner products. In Secs. III and IV, we
investigate two- and four-dimensional operator algebras and
seek a general ansatz for the matrix representation of η and its
respectivePT and CPT adjoints, which we denote as ηPT and
ηCPT . In Sec. V we present our calculation of a simple model
of a PT -symmetric Hamiltonian of fermions interacting with
bosons. Concluding remarks are made in Sec. VI.
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II. PT AND CPT ADJOINTS OF FERMIONIC
OPERATORS

In this section we follow the approach of Ref. [5] and
describe the general (abstract) formulation. As the parity
operator P is linear, its action on the wave function of a
finite-dimensional system can be expressed by a matrix S,
Pψ = Sψ . Since parity applied twice yields the identity
matrix, it follows that S2 = 1 and that the matrix S must have
the eigenvalues ±1. In contrast, the time-reversal operator is
antilinear, so its action on the system can be expressed by a
matrix Z combined with the complex-conjugate operation on
the function it operates on, T ψ = Zψ∗. It is assumed that
[P,T ] = 0. In terms of these symbols, the PT inner product
for fermions is defined as

(φ,ψ)PT ≡ (PT φ)T Zψ. (1)

Thus, the PT adjoint of any operator A is defined by

(APT φ,ψ)PT ≡ (φ,Aψ)PT . (2)

As was done in Ref. [5], we insert the definition (1) into
the left and right sides of Eq. (2), set A = η, and extract the
operator relation

ηPT = Sη†S. (3)

This is the PT adjoint for fermionic systems.
Let us examine the anticommutator of η with ηPT . Accord-

ing to [2], we obtain a fermionic algebra with a minus sign:

ηηPT + ηPT η = −1. (4)

The minus sign is a signal that the PT inner product is not
positive definite.

Following [1], one needs to introduce an additional operator
C in order to change the − sign in Eq. (4) to a + sign. This
operator thus reflects the sign of the norm.1 The operator C
is linear; it is thus represented by a matrix K . Then the CPT
inner product is defined as [5]

(φ,ψ)CPT = (CPT φ)T Zψ = (KSZφ∗)T Zψ,

and, after some algebra, this takes the form

(φ,ψ)CPT = φ†SKψ.

As a consequence, ACPT , the CPT adjoint of an operator A,
is defined by

(ACPT φ,ψ)CPT = (φ,Aψ)CPT ,

and thus ACPT is given by the operator relation

ACPT = KSA†SK.

The CPT adjoint is related to the PT adjoint by

ACPT = KAPT K.

1The mathematical properties of the C operator resemble those of
the charge-conjugation operator of Dirac, but in this context C plays a
completely different role, simply forcing the norm of the state vectors
to be positive.

In accordance with [2], the anticommutator of a fermionic
operator η with its CPT adjoint should satisfy a conventional
fermionic algebra

ηηCPT + ηCPT η = 1. (5)

III. TWO-DIMENSIONAL η, ηPT , ηCPT

A. Real representations of η and ηPT

We seek a two-dimensional matrix representation in which
ηPT is the PT adjoint of η in accordance with Eq. (3). A
general matrix

η =
(

a b

c −a

)
, (6)

whose square vanishes, has a vanishing trace and determinant.
Let us assume that a, b, and c are real numbers. The parameter
a is fixed by the determinant condition

a2 + bc = 0. (7)

In two dimensions parity reflection P can be represented
by σx , a real symmetric matrix whose square is unity:

S =
(

0 1
1 0

)
.

We then find that

ηPT =
(−a b

c a

)
, (8)

which satisfies the nilpotency condition (ηPT )2 = 0. Now,
evaluating the anticommutator of η with ηPT , we find that

ηηPT + ηPT η = diag(−4a2). (9)

For nonvanishing values ofa the anticommutator (9) is negative
and with the choice a2 = 1/4 it can be normalized to ηηPT +
ηPT η = −1.

Because the right side of Eq. (9) is nonpositive the standard
fermionic algebra with ε = +1 does not have a 2 × 2 represen-
tation. But the right side of Eq. (9) can vanish if we take a = 0.
Thus, the Grassmann algebra has a nontrivial representation.
For example, we may take

η =
(

0 b

0 0

)
.

This result differs from the conventional Hermitian fermionic
algebra, where the standard algebra has a representation but
the Grassmann algebra does not [3].

B. CPT adjoint

We have not specified the Hamiltonian, which is required
to calculate the CPT product. Nevertheless, we can still
determine the CPT transformed operator ηCPT that yields
the standard fermionic algebra (5). To do so, we first use the
fact that C and PT commute to obtain a general form for the
matrix K

K =
(

g B

A −g

)
, (10)
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whereg,A, andB are arbitrary real parameters. SinceK2 = 1, we obtain the constraintg2 + AB = 1. Hence, theCPT adjoint ofη
is

ηCPT =
(−ag2 + bgA + cgB + aAB −2agB + cB2 − bg2

−2agA + bA2 − cg2 ag2 − bgA − cgB − aAB

)
.

The anticommutator of η and ηCPT is then

ηηCPT + ηCPT η = diag(2a2AB + c2B2 + b2A2).

By using the determinant relation (7) we eliminate a2 and find
that (bA − cB)2 = 1, which links the parameters A,B to b,c.
The choice bA = cB seems to yield the Grassmann algebra
ηηCPT + ηCPT η = 0. However, we shall see in Sec. III D that
because C and the Hamiltonian commute, the choice bA =
cB is ruled out, and we arrive at the same result as in the
conventional Hermitian fermionic algebra.

C. Ground state, excited state, and number operator

We can normalize the anticommutator ηηPT + ηPT η to −1

by rescaling η and ηPT by 2a. In this case Eqs. (6) and (8)
become

η = 1

2a

(
a b

c −a

)
, ηPT = 1

2a

(−a b

c a

)
.

We then define the ground state |0〉 as that state that is
annihilated by η: η|0〉 = 0. Using Eq. (6), we represent this
state as

|0〉 =
(−b

a

)
.

To create the PT -symmetric state |1〉 we operate on |0〉 with
ηPT and get

|1〉 =
(

b

a

)
.

We define the PT number operator as

NPT = ηPT η

and establish by direct calculation that

NPT |0〉 = 0, NPT |1〉 = −|1〉.
Evidently, NPT gives the negative of the state occupation
number. We use this fact in Sec. V in constructing a second-
quantized form of a PT -symmetric fermionic Hamiltonian.

D. General two-dimensional PT -symmetric Hamiltonian

A consistent fermionic PT quantum mechanics must sat-
isfy three conditions: (i) The Hamiltonian must be self-adjoint
with respect to the PT inner product for fermions; that is, the
definition (1) must hold; (ii) H must commute with PT ; and
(iii) the PT symmetry must be unbroken. The first two criteria
give the following general form for a real Hamiltonian:

H =
(

α β

γ α

)
(α, β, γ real). (11)

The matrix representations of the parity and time-reversal
operators, that is, S and Z in Eq. (1), are given by σx .

In Sec. III B we obtained the matrix representation (10)
associated with the C operator. A property of C not considered
in Sec. III B is that C commutes with H . The commutation of K

and H forces g to vanish, so the earlier constraint g2 + AB = 1
reduces to AB = 1.

Sec. III B concludes that if bA = cB, one obtains a repre-
sentation for a Grassmann algebra. However, the determinant
condition a2 + bc = 0 implies that bc is a nonpositive quantity.
Therefore, to have bA = cB, AB must also be nonpositive,
which contradicts the constraint AB = 1. Thus, as in the
conventional Hermitian case, the Grassmann algebra does not
have a nontrivial representation.

The eigenvalues of Eq. (11) are

λ± = α ±
√

βγ , (12)

and the corresponding eigenvectors are

|λ+〉 = 1√
2

⎛
⎝ 4

√
β

γ

4

√
γ

β

⎞
⎠, |λ−〉 = 1√

2

⎛
⎝ 4

√
β

γ

− 4

√
γ

β

⎞
⎠.

The formula (12) indicates that if β and γ are positive, the
symmetry is unbroken; that is, the eigenvalues are real.

It is easy to establish that

〈λ+|λ+〉PT = 1, 〈λ−|λ−〉PT = −1,

〈λ+|λ−〉PT = 〈λ−|λ+〉PT = 0.

We introduce C as a measure of the sign of the norm:

C|λ+〉 = |λ+〉, C|λ−〉 = −|λ−〉.
The matrix representation of C is then

K =
(

0
√

β/γ√
γ /β 0

)
.

For the Hamiltonian (11), the annihilation operator now reads

η = 1

2

(
1

√
β/γ

−√
γ /β −1

)
.

As expected, η is nilpotent and

η|λ−〉 = 0, η|λ+〉 = |λ−〉.
We now obtain the PT adjoint of η as

ηPT = 1

2

( −1
√

β/γ

−√
γ /β 1

)
.

Defining the PT number operator to be NPT = ηPT η, we can
show that

{N,η}+ = −η, {N,ηPT }+ = −ηPT .

The minus sign implies that the PT number operator NPT

gives the negative of the state occupation number, as discussed
in Sec. III C.
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In addition, we remark that the Hamiltonian of our PT -
symmetric interacting fermions can be recast as a free bosonic
Hamiltonian:

H = �λ(−NPT ) + λ−1,

where �λ = λ+ − λ−.

The anticommutator ηηPT + ηPT η = −1, but if instead we
use the CPT adjoint of η,

ηCPT = 1

2

(
1 −√

β/γ√
γ /β −1

)
,

we obtain the conventional anticommutator ηηCPT +
ηCPT η = 1.

IV. FOUR-DIMENSIONAL η, ηPT , ηCPT

A general set of 12-parameter complex nilpotent matrices
was proposed in Ref. [3] as

η =

⎛
⎜⎝

−ch − bg − af f g h

−a(ch + bg + af ) af ag ah

−b(ch + bg + af ) bf bg bh

−c(ch + bg + af ) cf cg ch

⎞
⎟⎠, (13)

where a, b, c, f , g, and h are arbitrary complex numbers. This
form was constructed assuming that the trace of η as well as its
determinant must vanish in order to guarantee nilpotency. We
use the convention of Ref. [5] for the matrix representations of
S and Z; that is,

S =
(

I 0
0 −I

)
, Z =

(
e2 0
0 e2

)
, (14)

where I is the 2 × 2 identity matrix, and e2 is e2 = ( 0 1
−1 0).

The PT adjoint of η reads

ηPT =

⎛
⎜⎝

−F ∗ −a∗F ∗ b∗F ∗ c∗F ∗
f ∗ a∗f ∗ −b∗f ∗ −c∗f ∗
−g∗ −a∗g∗ b∗g∗ c∗g∗
−h∗ −a∗h∗ b∗h∗ c∗h∗

⎞
⎟⎠,

where F = ch + bg + af . As required, ηPT is also nilpotent.
One can evaluate the anticommutator of η and ηPT . This is
found to be

ηηPT + ηPT η =

⎛
⎜⎜⎝

J + |F |2K a∗J − F ∗f K −b∗J − F ∗gK −c∗J − F ∗hK

aJ − f ∗FK |a|2J + |f |2K −ab∗J + f ∗gK −ac∗J + f ∗hK

bJ + g∗FK ba∗J − g∗f K −|b|2J − |g|2K −bc∗J − g∗hK

cJ + h∗FK ca∗J − h∗f K −cb∗J − h∗gK −|c|2J − |h|2K

⎞
⎟⎟⎠,

where J = |F |2 + |f |2 − |g|2 − |h|2 and K = 1 + |a|2 −
|b|2 − |c|2.

To obtain the fermionic algebras, it is necessary that the
off-diagonal terms vanish. This gives the relations

a∗F = −f, b∗F = g, c∗F = h. (15)

However, these relations force the diagonal terms to vanish.
The particular choice of η in Eq. (13) proposed in Ref. [3]
is only suitable for constructing a PT -symmetric Grassmann
algebra, where the anticommutator {η,ηPT } vanishes. An
example of an η that satisfies the relations (15) and leads to
a Grassmann algebra is

η =

⎛
⎜⎝

1 1 i −i

1 1 i −i

i i −1 1
−i −i 1 −1

⎞
⎟⎠.

Let us examine another set of matrices that cannot be
obtained from Eq. (13):

η =

⎛
⎜⎝

f 0 αc αb

0 f αb∗ −αc∗
βc∗ βb −f 0
βb∗ −βc 0 −f

⎞
⎟⎠, (16)

where b and c are complex and f , α, and β are real arbitrary
parameters. This ansatz is a block-form construct with 2 × 2
matrices that ensures that the matrix is traceless in the simplest
possible fashion. In addition, the off-diagonal elements have
been chosen to be scaled Hermitian conjugates of one another,

introducing a minimum number of parameters. Nilpotency of
η must now be enforced and leads to the requirement that

f 2 + αβ(|b|2 + |c|2) = 0. (17)

Using the matrix representations of S and Z in Eq. (14), we
obtain the PT adjoint of η:

ηPT =

⎛
⎜⎝

f 0 −βc −βb

0 f −βb∗ βc∗
−αc∗ −αb −f 0
−αb∗ αc 0 −f

⎞
⎟⎠.

Equation (17) implies that ηPT is also nilpotent.
The anticommutator of η and ηPT is

ηηPT + ηPT η = diag{2f 2 − (α2 + β2)(|b|2 + |c|2)},
and because of Eq. (17) this reduces to

ηηPT + ηPT η = −diag{(α + β)2(|b|2 + |c|2)}.
Thus, the anticommutator is nonpositive. The choice α = −β

gives rise to a nontrivial representation for the Grassmann
algebra. However, when α �= −β, the above anticommutator
with suitable normalization can be written as

ηηPT + ηPT η = −1.

To obtain the standard fermionic algebra we again consider
the CPT adjoint of η instead of ηPT . We construct the C
operator as follows. We note that the commutation of C and
PT gives

KSZ = SZK∗, (18)
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where K , S, and Z are the matrix representations of C, P ,
and T . Another characteristic of the C operator is that it
commutes with the Hamiltonian. The procedure to construct a
general PT -symmetric Hamiltonian for fermionic systems is
described in Ref. [5]. A matrix K that satisfies the two criteria
in Eq. (18) and [C,H ] = 0 is parametrized as

K =

⎛
⎜⎝

g 0 −γ c −γ b

0 g −γ b∗ γ c∗
γ c∗ γ b −g 0
γ b∗ −γ c 0 −g

⎞
⎟⎠,

where g and γ are real numbers.
The requirement K2 = 1 leads to the additional constraint

g2 − γ 2(|b|2 + |c|2) = 1. (19)

Having found K , we can easily obtain the CPT adjoint of η:

ηCPT =

⎛
⎜⎝

D 0 −cA −bA

0 D −b∗A c∗A
c∗B bB −D 0
b∗B −cB 0 −D

⎞
⎟⎠,

where

D = fg2 + (|b|2 + |c|2)γ (γf + αg − βg),

A = 2γfg − βg2 + αγ 2(|b|2 + |c|2),

B = 2γfg + αg2 − βγ 2(|b|2 + |c|2).

Finally, the anticommutation of η and ηCPT reads

ηηCPT + ηCPT η

= diag{(|b|2 + |c|2)[2γf + (α − β)g]2},
where Eqs. (17) and (19) have been used. Note that the
anticommutator is positive and with a suitable normalization
can be written as

ηηCPT + ηCPT η = 1.

For completeness, we remark that the ground state can be
defined, as in Sec. III C, as being the state that is annihilated
by η: η|0〉 = 0. Using Eq. (16), we represent this state as

|0〉 =

⎛
⎜⎝

f

0
βc∗
βb∗

⎞
⎟⎠.

To create the PT -symmetric state |1〉 we operate on |0〉 with
ηPT and obtain

|1〉 =

⎛
⎜⎝

β(|b|2 + |c|2)
0

f c∗
f b∗

⎞
⎟⎠.

Following the procedure in Sec. III C, after normalizing |0〉
and |1〉 above, we ascertain by direct calculation thatNPT |0〉 =
0 and NPT |1〉 = −|1〉, where we have used NPT = ηPT η and
Eq. (17), thus illustrating again that NPT yields the negative
of the state occupation number.

FIG. 1. The fermion (solid line) can emit or absorb bosons (wavy
gray lines). These are the only possible interactions, so the fermion
number is conserved.

V. SIMPLE MODEL HAMILTONIAN

In this section we construct a PT -symmetric model of
interacting fermions and bosons. The idea is based on the Lee
model in which the lack of crossing symmetry makes the model
exactly solvable [6]. We consider a single fermion that may
emit and absorb bosons, as shown in Fig. 1, but the bosons
may not produce a fermion-antifermion pair.

A Hamiltonian that describes this system is

H = ma†a − MηPT η − ga†ηPT η − gaηPT η,

where the operator a† creates (normal) bosons, but the
fermionic operator ηPT creates a PT -symmetric fermion.
Here, m and M are the bare boson and fermion masses and g

is the coupling amplitude. This Hamiltonian is not Hermitian
but it is PT symmetric.

A state containing a single bare fermion and any number
n of bare bosons can be written as |E〉 = ∑∞

n=0 cn|1,n〉. We
assume that this state is normalized; that is,

〈E|E〉 =
∞∑

n=0

c2
n < ∞. (20)

The annihilation and creation operators for bosons obey a|n〉 =√
n|n − 1〉 and a†|n〉 = √

n + 1|n + 1〉. In addition, a†a is the
boson number operator; that is, a†a|n〉 = n|n〉. For the case
of fermions we have the peculiar anticommutation relation
ηηPT + ηPT η = −1. However, as in Sec. III, we interpret η

as a lowering operator and ηPT as a raising operator. Thus, the
fermion number operator is −ηPT η.

The time-independent Schrödinger equation H |E〉 = E|E〉
takes the form

∞∑
n=0

mncn|1,n〉 +
∞∑

n=0

Mcn|1,n〉

+
∞∑

n=0

g
√

n + 1cn|1,n + 1〉

+
∞∑

n=0

g
√

ncn|1,n − 1〉 =
∞∑

n=0

Ecn|1,n〉.

We shift indices and pick off the coefficients of |1,n〉 to obtain
a recursion relation cn:

(mn + M)cn + g
√

ncn−1 + g
√

n + 1cn+1 = Ecn.

The substitution cn = dn

√
n! gives the simpler recursion rela-

tion

(mn + M)dn + gdn−1 + g(n + 1)dn+1 = Edn. (21)
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For large n we can neglect the Mdn and Edn terms and
obtain an approximate equation for dn that is valid for large n:

mndn + gdn−1 + g(n + 1)dn+1 	 0.

There are two consistent asymptotic dominant balances for
n 
 1: If the first and second terms balance for large n, then

dn 	 (−g/m)n/n!; (22)

if the first and third terms balance, then

dn 	 (−m/g)n. (23)

(A dominant balance between the second and third terms
is inconsistent.) The norm in Eq. (20) becomes

∑∞
n=0 d2

nn!.
Therefore, Eq. (22) is acceptable but Eq. (23) is not.

Next, we define a generating function f (x) ≡ ∑∞
n=0 dnx

n;
if Eq. (22) holds, then f (x) is an entire function of x, but
if Eq. (23) holds, we see that f (x) has a finite radius of
convergence with a singularity in the complex-x plane at
x = −g/m.

If we multiply Eq. (21) by xn and sum from 0 to ∞, we
obtain the first-order differential equation

(mx + g)f ′(x) = (E − M − xg)f (x),

whose solution is

f (x) = Ke−gx/m(mx + g)E/m−M/m+g2/m2
.

As predicted, there is a singularity at x = −g/m unless the
exponent in the second term on the right side is a non-negative
integer N = 0, 1, 2, . . . . This yields the exact spectrum of

physical fermion states:

EN = Nm + M − g2/m (N = 0, 1, 2, . . .).

Note that as a consequence of the interaction, the mass M −
g2/m of the physical fermion is lower than the mass M of the
bare fermion.

VI. BRIEF CONCLUDING REMARKS

In this paper we have used the alternative formalism for
the fermionic scalar product in Ref. [5] to reexamine the
operator algebra for fermions in the context of PT symmetry.
We have investigated general matrix representations of the
PT and CPT fermionic creation and destruction operators
without making direct reference to a Hamiltonian. Knowing
the behavior of such operators, especiallyPT operators, can be
important for many-body theory, which often uses the operator
definitions to construct the Hamiltonian (in second-quantized
form). It can also be important in understanding the nature of
species oscillation in neutrinos [7].

We have examined the operator algebras in detail for 2 × 2
matrices and for the 4 × 4 case. Using the algebra that we have
developed, we apply the peculiar anticommutation relations
pertinent to the PT algebra to construct a second-quantized
PT -symmetric quantum field theory, namely, a solvable low-
dimensional model of electrodynamics (a modified Lee model)
for which the renormalized energy spectrum is calculated in a
closed form and is found to be real.
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