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Rational and algebraic Padapproximants are applied to Mgller—Plesg8P) perturbation
expansions of energies for a representative sample of atoms and small molecules. These
approximants can converge to the full configuration—interaction result even when partial summation
diverges. At order MP2the first order beyond the Hartree—Fock approximafithe best results are
obtained from the ration&0/1] Padeapproximant of the total energy. At MP3 rational and quadratic
approximants are about equally good, and better than partial summation. At MP4, MP5, and MP6,
quadratic approximants appear to be the most dependable method. The success of the quadratic
approximants is attributed to their ability to model the singularity structure in the complex plane of
the perturbation parameter. Two classes of systems are distinguished according to whether the
dominant singularity is in the positive half plateass A or the negative half planglass B. A

new kind of quadratic approximant, with a constraint on one of its constituent polynomials, gives
better results than conventional approximants for class B systems at MP4, MP5, and MP6 sFor CH
with the C—H distance at twice the equilibrium value the quadratic approximants yield a complex
value for the ground-state electronic energy. This is interpreted as a resonance eigenvalue embedded
in the ionization continuum. @000 American Institute of Physids§0021-9606800)30208-3

I. INTRODUCTION that S, can be a divergent sequence, so tBatwill not

. 1. approach the correct result even in the limit>c. Partial
Meller—Plesset perturbation thedIPPT)" is currently g, mation is divergent if there exists a singularity in the

one O_f the most widely used me_thodsati Initio quantum ¢, ction E(z) (a pole, a branch point, or an essential singu-
chemistry. However, re_cent _studles have _sugggs_ted that ttpgmy) within the CirC|eZZ|thy4 in the complexz plane®?
Mﬁller—PIes_set expansion might often be insufficiently CONEor MPPT, the singularity responsible for the divergence is
vergent to yield dependable resuﬁfQ.The zeroth-order of o, e cted to be a two-sheet branch poftconnecting the
MPPT is the HAartree—Foclf ap;.)roi(mjauonZ gescrlbed by th%hysical eigenvaluéi.e., the eigenvalue that approactis
Fock operatorf. The HamiltonianH is partitioned as in the limit z—0) to a branch of(z) corresponding to the
N R A Ny R eigenvalue of an “intruder state.” The intruder state is an
H=F+z¢, ¢=H-F, @ excited state that becomes stabilized at nonphysical values of
wherez is treated as a perturbation parameter with the physiz, becoming degenerate with the physical state at a value
cal solution corresponding t,,,s= 1. The resulting energy corresponding to a branch-point singularity. In the case of
eigenvalues are functions afwith asymptotic expansions ~MPPT for Ne, Christiansert al® showed that az~ —0.82
o the ground-state energy is equal to the energy of a state de-
E(z)=> Ejzj_ ) scribed by a wave functiqn QOminated by contributions from
i= quintuple and higher excitations.
E(z) can be estimated fronpartial summationof the f The sequence, cz;m hayelpoorr]g()f]nvergencg be?ause tne
asymptotic series, in terms of the summation approximants _ur_10t|onssn(z) are polynomiais, which are nonsinguiar ata
finite z and therefore can describe the singular funcign)
n _ only with limited accuracy. It is reasonable to expect that
Si(2)=2, EZ. ()  better results can be obtained by replacing $hewith ap-
1=0 proximants that have a singularity structure resembling that
S, is the Hartree—Fock approximatio®, is generally called of E(z). A class of multiple-valued approximants with
“second-order Mgller—Plesset theoryMP2). Similarly, S, branch-point singularities was devised by Pamer 100
is referred to as MP3S; as MP4, and so on. Computer years agd? These arealgebraic approximantswhich are
programs are available for direct calculation of gfor j algebraic generalizations of the rational approximants usu-
from 0 to 59 although the computational cost increases sig-ally associated with his name. Algebraic summation approxi-
nificantly with j. For j>5 the E; can be extracted from mants are not widely known, although their mathematical
configuration—interaction calculatiof$* properties have been studied in some d&ti? and they
The recent studiés® have demonstrated that the conver- have been applied in recent years to a variety of problems
gence of the sequen&; can be unsteady. In particular, the including, for example, the calculation of complex eigenval-
studies by Olsen, Christiansen, and co-workerimdicate  ues for the H atom in an electric fiéfland resonance ener-
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gies in molecular vibration—rotation spectfa’®Here qua-  spacing a =2z, Of the energy levels involved in the domi-
dratic approximantgalgebraic approximants of degree¢ 2 nant branch point will be the one that gives the best results.
will be applied to MP6 expansions calculated by He andThe singularity structure that has been identified for MPPT
Creme? for a representative set of atoms and small mol-for Ne® involving the ground state and a highly excited state,
ecules and to large-order expansions of Oleeal* suggests the use of a constrained approximant scheme with
ro=0. Then, according to Eq9), the ground-state energy
will be initially set to the Hartree—Fock valug,, while the
excited state will initially be assigned an energy of zero, so
The familiar rational Padapproximants, that the energy of the excited state will be approached from
_ above. The conventional unconstrained approximants should
Sim(2)=Pu(2)/Qu(2), 4 pe best for cases in which the branch point involves states
are ratios of polynomial$, , Qy,, of degreed, M, that that have nearly the same energyzatzypys.
satisfy the linear equatidfi®*

IIl. METHOD

D L+M+1
QmE—P ~0(z )- (5 Il CONVERGENCE AT LARGE ORDER
The notation “~0O(z™)"” means that the asymptotic expan- To study the large-order behavior of MPPT, Handy
sion of the left-hand side of the equation contains no terms, _, 10 - 11 . o
. . et al™” and Laidig et al.** carried out full configuration—
proportional to powers ok of degree less tham. (This

. . . interaction (FCI) calculations for various small molecules
formulation of S[L”V'g differs slightly from that used by and in the course of the computations took advantage of the
Bartlett and Shavitf? in which the correlation energyE P g

. s ummed aer than e ol eneiy) By con- (Lot L 1001 o st e P eney pnen
vention,Qy(0) is defined to be 1. The remaining coeffi- b y'arg : y

cients ofQy and thel + 1 coefficients ofP, are determined partial sums of the expansions were convergent, although the

. . . . . initial convergence in some cases was slow and uneven for
by the set of linear equations obtained by collecting terms in_. . . ) .

. eigenstates not dominated by a single configuration. Re-
Eq. (5) according to powers .

Suppose we replace E) with the quadratic equation cently, Olsen and co-worké¥s carried out similar calcula-
tions but with augmented basis sets and found that the MP
QuE2—P_E+Ry~0(z™). (6)  expansions even for the single configuration dominated sys-
tems Ne, F, HF, and HO in fact diverged if the basis set
inluded functions capable of describing diffuse excited
1ip. 1 P2_ 40 Ru)12 ,,  states. The case of Ne was studied in detaild the diver-
2 Q_M__M( L= 4QuRN) ™. @) gence was attributed to an avoided crossing between the
ground state and an excited statezat —0.82, with the
wavefunction for the excited state dominated by contribu-
tions from quintuple and higher excitations.
In principle, the MP expansion should converge to the
FCI energy. Figure 1 shows the quantitylog;q(S
L A A N . —Egc)/Egcl|, which is a continuous measure of the number
PL=> pZ, Qu=1+2 qZ, Ry=> rz. (8 of accurate digits, vs the orderof the perturbation expan-
=0 =1 =0 . . .
sion for Ne. Results are shown for four different summation
TheL+M+N+2 coefficientsp;, q;, r; can be determined approximant sequencés the partial sumsS, ; the rational

The approximants foE are then

Siumng(2)=

The functionsS; v nj(2) have two branches connected by
branch-point singularities at the valueszothat are roots of
the discriminant polynomialPE— 40QuRy -
Let
M

from Eq.(6) with m=L+ M+ N+ 2, by collecting terms ac- Padeapproximant sequen@oo;» Sjonys S - - - > the un-
cording to powers of. To calculateS; ;v v the perturba-  constrained quadratic Padgproximant sequenc8o o),
tion expansion, Eq(2), must be known through order=L So01: Spoars Spmags - - -5 and thequadratic approxi-

+M+N+1. This is the approach used in previous studies ofnants withr,= 0, in the same index sequence.
quadratic approximants. For the lowest-order approximant, As stressed by Olseet al,* the behavior of the partial
Stor0,01, the solution igpy=2Eg, ro= E3, which implies that  sums can depend strongly on the nature of the basis set. The
the discriminant is identically zero, ar@lyo 0= Eo for both  two panels of Fig. 1 correspond to results from different
branches. Branch points are presentrier2. basis sets. With the correlation-consistent polarized valence
Alternatively, the value o, or r, can be assigned as an double zeta basi&c-pVDZ2)? the partial sums converge rea-
arbitrary parameter. Them in Eq.(6) isL+M+N+1 and sonably well, but with the more accurate aug-cc-pVDZ
Sium N is determined from orden=L+M+N. If rq is the basis?’ which is augmented with diffuse functions, the par-
parameter, then the zeroth-order solution is tial sums at first seem to converge, with closest approach to
E Erc at MP15, wheres; ,— Exc,=0.000 142 hartree, but then
Si00,0= ; /OE’ ) 9 gradually diverge. The rational approximants, the uncon-
07=0 strained quadratic approximants, and the 0 quadratic ap-
If the ordern is large, the performance of either of these twoproximants converge to the FCI limit for either basis set.
approximant schemes should be about the same. At low or- In the quadratic approximants the root of the discrimi-
ders the performance may differ; presumably, the schemeant polynomial nearest the origin of the compteylane
that at lowest order most accurately describes the qualitativehould converge to the location of the dominant branch
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""""""" ST T TS FIG. 1. Convergence of summation
- approximants for the ground-state en-
ergy of Ne. The curves show
- —1001 (S—Egc)/Egcl|, where S is
the value of the summation approxi-
mant. The summation methods are par-
. tial sums(dotted curvg rational sum-
mation (solid curve, unconstrained
= guadratic summatior{dashed curvg
and constrained rq=0) quadratic
summation (dashed—dotted curye
o The expansion coefficients are from
Ref. 4. The basis set used for the ex-
- pansion in the left panel is the aug-cc-
pVDZ (frozen coré¢ basis, which is
augmented with diffuse functiorfs.
The right panel uses the cc-pVO#o-
zen cor¢ basis without the diffuse
- functions?® The FCI energiesErc,,
are —128.709476 hartree and
—128.679 025, respectively. The
2 Ll 4 1 1 1 8 1 11 dash-dot-dot lines indicate the preci-

0 4 8 12 16 20 sion of Erc.

number of accurate digits
number of accurate digits

point, zs. For the aug-cc-pVDZ Ne expansion, the quadraticstrongly affects the convergence of the partial sums, it has
approximants by order=6 consistently place, in the gen- little effect on the convergence of the three kinds of Pade
eral vicinity of —1. At n=20 the branch point position be- approximants.
gins to stabilize at-0.8. In contrast, with the cc-pVDZ basis Figure 2 shows results for k- with the aug-cc-pvDZ
the root nearest to the origin is at approximateh2=*i. basis. This is an especially difficult system for the partial
Clearly, for this system the diffuse functions are needed tesums, which diverge rapidly fon>3. The quadratic ap-
describe the intruder state responsible for the branch poirgroximants place a branch point at0.61.
within the circle of convergence. While this branch point He and Creméf have designated systems as “class A”
or “class B” according to the sign patterns of tli& and
have offered an interpretation of this classification in terms
ST T T T T T T T T T TTTT of patterns of electron localizatidi.For class A systems the
E; have same sign for all while for class B systems theg,
at some point begin to alternate in sign. If the strictly
alternate in sign in the limit of largg¢ then the dominant
branch point must lie on the negative real axis. If they have
the same sign then the branch point lies on the positive real
axis. If the dominant branch points are a complex-conjugate
pair in the negative half plane, then there will be regions of
alternating signs with the pattern broken periodically by con-
secutiveE; of the same sigi® The period is

number of accurate digits

no= m/arctarn|Zzs/Rzy|). (10

If the dominant branch points are complex conjugates in the

L e positive half plane, then there will be regions of only one
ol vy vy a1 sign alternating with regions of only the opposite sign. It

0 2 4 6 8 10 12 14 186 seems reasonable to define class A systems as those for
n which the dominant singularity is in the positive half plane

FIG. 2. Convergence of summation approximants for the ground-state en@nd class B systems as those for which the dominant singu-

ergy of F~. The curves show-10g;¢/(S— Erc)/Ercl, WhereS is the value Iarity.i.s in_ the negative half plane, ir‘ order to eXtenq the

of the summation approximant. The summation methods are partial sumglassification scheme to systems with complex—conjugate
(dotted _curve rational summatior(solic_i curve, unconstrai_ned quadrgtic dominant branch points. Note that branch points that do not
summation(dashed curvie and constrainedr=0) quadratic summation i o3 the real axis must occur in complex-conjugate pairs in
(dashed—dotted curyeThe expansion coefficients, from Ref. 4, were cal- . .
culated with the aug-cc-pVDZfrozen core basis set. The FCI result is Order to be consistent with the fact that thgare real num-

Erc= — 99.669 369 hartree. bers.
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FIG. 3. Convergence of summation approximants for the ground-state erEIG' 4. Convergence of summation approximants for the ground-state en-

ergy of CH, The curves show-10gyq(S— Erc)/Erc|, whereS is the ergy of CH. The curves show-10g;¢/(S—Egc)/Erc|, WhereS is the

value of the summation approximant. The summation methods are partia‘ﬁaIue (gf ttthii sumr;atlct)'n a;?promma?t. r(ThF' dsumrréanon metthoq s dare partial
sums(dotted curve rational summatior{solid curve, unconstrained qua- sums(dotied curve, rational SUMMAtoNnsolid curve, unconstrained qua-

dratic summationdashed curve and constrainedr(=0) quadratic sum- drat_ic summatior(dashed curvg and constraineerfQ) quadratic sum-
mation (dashed—dotted curyeThe expansion coefficients, from Ref. 4, mation (dashed—dqtted cunieThe expansion coeﬁ|C|er_1ts, from Ref. 4,
were calculated with the aug-cc-pVD@rozen cor¢ basis set. The FCI were galculated with the aug-cc-pvVD@rozen cor¢ basis set. The FCI
result isEgc;= —39.032 446 hartree. result isEr,= —25.218 277 hartree.

these are less likely because many poles can be employed to
model a single branch point.

Figure 3 shows results for GHwhich is a class A sys- Figure 4 shows results for the BH molecule. This is a
tem. The quadratic approximants place a branch point in thelass A system. The dominant branch point of the quadratic
neighborhood of 1.3(At a few orders the approximants see approximants is reasonably stable through 10th order, con-
this as a complex—conjugate pair at approximately 1.2
+0.1i.) Sincez, is outside of the circldz|=1, the partial
sums are convergent, but the convergence is rather slow. All Srrrrr T r T T
three kinds of Padapproximants converge much faster, but
the convergence of the quadratic Paafgoroximants fom
>8 is uneven. The reason for this seems to be the placement
of spurious branch points neay, . For example, for the
unconstrained quadratic results in Fig. 3 the accuracy is less
than or about equal to that of the partial sums onlynat
=13 and 19. Ain= 13 the quadratic approximant has spuri-
ous branch points at 0.913 and 0.917. At 19 there is a
spurious branch point at 0.949.

In general, the number of branch points in Bg/u N
approximant will be either 2 or M+N, whichever is
greater. If there is only one branch point that is significantly
affecting the expansion divergence, then the remaining
branch points will be nonphysical. Ideally, they will be
placed far from the origin or they will occur in almost coin-
cident pairs. However, their positions can vary greatly from
order to order and a nonphysical branch point close,gs
can seriously degrade the accuracy. There seems to be a n
t?n,dency for the -spurlous branCh, pOIﬂtSl to _appgar in the VIziG. s. Convergence of summation approximants for the ground-state en-
cinity of the dominant branch point, which implies that the ergy ofc,. The curves show-log,d(S— Erc)/Ercl, WhereS is the value
large-order convergence of quadratic approximants will inof the summation approximant. The summation methods are partial sums
general be steadier for class B systems than for class A Syédotted curvg rational summatior(solid curve, unconstrained quadratic

; ; ; ummation(dashed curve and constrainedrg=0) quadratic summation
tems. The rational approximants model a branch point bX?dashed—dotted curyeThe expansion coefficients, from Ref. 4, were cal-

tracing a branch cut with a sequence of p&fb§purious culated with the aug-cc-pVDZfrozen coré basis set. The FCI result is
poles affect the accuracy of rational Paafgproximants, but  Eqc,=—75.730 209 hartree.

number of accurate digits
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verging to approximately 1.6. Starting at 11th order the po- For a class A system the intruder state can be expected

sition of the branch point becomes unstable. At 15th ordeto be closer in energy to the physical state than in the case of

the unconstrained approximant, which gives full agreemena class B system, where the crossing occurs at a highly non-

with the FCI energy, places the branch point at1062i. physical negative value of. Therefore, according to the

Since|zg| is relatively large in this case,,sis well within  discussion in Sec. II, the unconstrained quadratic approxi-

the circle of convergence and hence the partial sums comants at low orders should be relatively better for class A

verge rather well, although their accuracy is usually somesystems while the approximants with=0 will be relatively

what lower than that of the other approximants. The pooibetter for class B. In practice, the advantage of the 0

result from the unconstrained quadratic approximant at ordespproximants for class B is not apparent until MP4. At MP2

5 is due to a spurious branch point at 1.006. and MP3, the contributions to tHg; from the singularities
Figure 5 shows results for the,@olecule. The singu- evidently are obscured by nonsingular contributions.

larity structure of the quadratic approximants is quite stable

in this case with the dominant branch points -a0.97

+0.34i and another branch point pair at 148.36i. Be- V. RESONANCE EIGENVALUES

causezy,s s just barely inside the circle of convergence, the

partial sums can be expected to converge at large order bWith

the convergence will be very slow.

For one of the systems studied by He and Crefr@H;
the C—H distance set at twice the equilibrium bond
distance, the quadratic approximants converge to a complex
number.(This case was not included in Tables | and Tihe
IV. CONVERGENCE AT LOW ORDER tptal energy fqr this sys_tem as given by the various summa-
tion methods is shown in Table III.

In practice, the most important question is how best to  Vainberg et al?® have demonstrated that perturbation
sum the MP expansion at low orders. The usual motivatiorexpansions for energy eigenvalues of the H atom in an ex-
for using MPPT is that its computational cost is significantlyternal electric field converge to a complex energy when
less than that of otheab initio methods that include electron summed with quadratic approximants, even though the ex-
correlation. The large-order expansions considered in Sec. Ippansion coefficients are real. The H atom is unstable in an
do not offer this cost advantage, since they require an FC¢lectric field. The real part of this complex energy eigen-
calculation to obtain the MP expansion coefficients. Directvalue is the energy of a resonance in #he+H" scattering
calculations of theE; can currently be carried out through continuum. The imaginary part is a measure of the resonance
MP62°3! He and Cremérhave tabulated MP6 expansions width, I'=2|IE|, with the resonance lifetime given by
for a variety of atoms and small molecules. Table | compared#/T".%” Such resonances correspond to a complex-conjugate
the convergence error from partial summation, rational Padgair of eigenvalues. One of the eigenvalues corresponds to
summation, and quadratic Pasemmation for a representa- outgoing boundary conditions while the other corresponds to
tive sample of 16 of their expansions. The results are anancoming boundary conditions. These two solutions are con-
lyzed in Table II. nected by a branch point on the positive real axis. Quadratic

Table Il compares the summation methods for the totahpproximants have also been used to calculate complex ei-
sample of systems but also breaks down the results accordimgnvalues for shape resonarféemd molecular predissocia-
the two classes. (4@ with R=2R, has branch points on the tion resonance&:??
both the positive and the negative real axes, approximately The convergence of the MPPT to a complex energy sug-
equidistant from the origin. It is grouped with class B be-gests that CElwith C—H distanceR=2R, is a resonance in
cause theE; alternate in sign, indicating that the singularity the e + CHj continuum, with energy-39.172 hartree and
at negativez is dominant at these orderdzor MP2 the ra- width 0.042 hartree. The convergence of the unconstrained
tional approximants are in all cases the most accurate, auadratic approximants is faster than that of the0 ap-
though, with the single exception of Fthe improvement proximants, as expected from the discussion in Sec. Il. There
over the other methods is relatively small. For MP3 the rais a stable branch point in the quadratic approximants at
tional and the quadratic approximants are about equal in a®.71. Apparently, the stronger electron correlation in;CH
curacy and almost always better than partial summation, akauses its energy to rise above that of the catiorz as
though in general this advantage is significant only for clasgreases.

A systems. For class A systems at MP4 the quadratic and

rational approximants are about equal in accuracy and almost

always significantly better than partial summation. HoweverVI. DISCUSSION

for class B systems at MP4 the rational Patdenmation is

Cﬁgﬁ'f;ﬁgtgu::;;\:%rsti:futgfan‘emgdsezh'ft t&igogsg?\lﬂnﬁ ion approximants, using MP6 expansions for 16 representa-
q y X tive atoms and molecules, leads to the following recommen-

partial summation is usually the worst of the methods, bmhdations-
for class A and for class B. The constrained quadratic ap- '

proximants are usually the best method for class B. For clas&@) MP2 should be summed with a ratiorj@/1] Padeap-

A systems at MP5 the unconstrained quadratic approximants  proximant.

are best. For class A at MP6 all three Paaethods are about (b) MP3 should be summed with unconstrained quadratic

equally successful. Padeapproximants.

Comparison of the accuracy of various kinds of summa-
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TABLE I. S—Egq, in hartree, wheré& is a summation approximant of indicated type and order for Mgller—
Plesset perturbation theory. Numbers in parentheses come from approximants that have a branch point within a
distance of 0.2 from the poizt= 1. The value shown faz; is the position of the branch point nearest the origin

in the most accurate of the quadratic approximants at MP6. The expansion coefficients are from Ref. 3.

Partial Rational Quadratic Pade Quadratic Pade
Order sum Pade unconstrained ro=0
BH, R=R, Epg=—25.2276 E,,=0.102355 z,=1.4
MP2 0.028 627 0.028 410 0.102 355 0.028 842
MP3 0.011 049 0.005 546 —0.018 983) 0.005 662
MP4 0.005 048 0.001 932 0.000 227 0.001 079
MP5 0.002 514 0.000 316 —0.000078 0.000 288
MP6 0.001 293 —0.000 039 —0.000 195 0.000 008
BH, R=2R, Epg=-25.12738 E.,=0.139132 z,=1.7
MP2 0.052 830 0.052 531 0.139 132 0.053 126
MP3 0.027 112 0.016 195 —(0.005 670-0.063 449) 0.016 449
MP4 0.013 328 —0.002 672 (-0.031 314-0.047 400) —0.009 516
MP5 0.006 054 —0.002 079 —0.005 416 —0.000 642
MP6 0.002 186 —0.002 181 —0.002 323 —0.002 337
NH,2B;, R=R, Epc=—-55.74262 E,,~=0.165438 z,=2.1
MP2 0.022 172 0.021 802 0.165 438 0.022 539
MP3 0.006 215 0.004 215 0.001 202 0.004 273
MP4 0.001 900 0.000 283 —0.000 480 0.000 438
MP5 0.000 765 0.000 360 0.000 259 0.000 344
MP6 0.000 336 0.000 301 0.000 104 0.000 129
NH,2B;, R=2R, Egrc=-55.50552 E,=0.111898 z,=2.0
MP2 0.036 528 0.036 425 0.111 898 0.036 630
MP3 0.022 472 0.019 250 0.011 673 0.019 285
MP4 0.018 796 0.017 493 0.016 979 0.017 207
MP5 0.017 486 0.016 489 0.016 366 0.016 712
MP6 0.016 688 0.025570 (0.020 764 0.017 317
NH,2A;, R=R, Epg=-55.68878 E,=0.162380 z;=2.1
MP2 0.020 290 0.019 925 0.162 380 0.020 652
MP3 0.005 445 0.003 713 0.001 184 0.003 766
MP4 0.001 617 0.000 271 —0.000 332 0.000 419
MP5 0.000 651 0.000 325 0.000 246 0.000 318
MP6 0.000 275 0.000 281 0.000 085 0.000 114
NH,2A;, R=2R, Epg=-55.41518 E,,=0.154402 z,=1.3
MP2 0.065 312 0.065 168 0.154 402 0.065 455
MP3 0.047 064 0.042 364 0.029 370 0.042 422
MP4 0.040 303 0.036 314 0.033 295 0.035619
MP5 0.037 016 0.033 392 0.032 110 0.033 336
MP6 0.034 810 —0.017 356 0.036 710 0.033 255
CH;, R=R, Ep=-39.7212% E,,=0.150583 z,=2.3
MP2 0.025 262 0.024 864 0.150 583 0.025 656
MP3 0.006 361 0.003 004 —0.003 199 0.003 101
MP4 0.001 981 0.000 655 0.000 129 0.000 428
MP5 0.000 770 0.000 273 0.000 216 0.000 240
MP6 0.000 346 —0.000 025 (0.000611) 0.000172
CH,%B; Epg=-39.04628 E,,=0.113215 z;=1.5
MP2 0.020 925 0.020 706 0.113 215 0.021 143
MP3 0.005 547 0.002 472 —0.003 794 0.002 535
MP4 0.001 880 0.000 730 0.000 297 0.000 501
MP5 0.000 784 0.000 242 0.000 188 0.000 260
MP6 0.000 364 —0.000 028 —0.000 080 0.000 349
CH,'A; Egc=-39.02718 E,,,=0.140886 z,=1.2
MP2 0.031 056 0.030 745 0.140 886 0.031 364
MP3 0.010 590 0.005 903 —0.005 105 0.006 010
MP4 0.004 979 0.002 855 0.001 925 0.002 404
MP5 0.002 949 0.001514 0.001 315 0.001 687
MP6 0.001 977 0.000 501 0.000 203 (0.003 444
Ne Epg=—128.76789 E,,~=0.224066 z,=—2.1
MP2 0.003 830 0.003 452 0.224 066 0.004 206
MP3 0.005 377 0.005 366 0.005 356 0.005 364
MP4 —0.000 650 0.003 919 0.004 146 —0.000 854
MP5 0.000 827 0.000 440 0.000 346 0.000 337
MP6 —0.000 368 —0.000 100 0.000 560 —0.000 102
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TABLE I. (Continued)
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Partial Rational Quadratic Pade Quadratic Pade
Order sum Pade unconstrained ro=0
F Epq=-99.59488 E,=0.194894 z=-2.1
MP2 0.013 123 0.012 790 0.194 894 0.013454
MP3 0.004 941 0.004 555 0.004 109 0.004 572
MP4 0.000 529 —0.005051 (0.007 031) —0.000 319
MP5 0.000 461 0.000 349 0.000 263 0.000 197
MP6 0.000 020 0.000 042 —0.000 047 0.000 007
F~ Egg=—-99.706 69 E,,=0.262994 z,=—0.65
MP2 0.000 588 —0.000 106 0.262 994 0.001 277
MP3 0.013 851 0.013 213 0.012 659 0.013 183
MP4 —0.005 398 0.005 777 0.006 064 —0.005 213
MP5 0.006 671 0.001 833 0.001 458 0.001 611
MP6 —0.006 928 —0.003 697 0.000 529 —0.002 733
HF, R=R, Epg=-100.25097 E,,~=0.203882 z,=—1.6
MP2 0.007 804 0.007 419 0.203 882 0.008 187
MP3 0.005 438 0.005 409 0.005 379 0.005414
MP4 —0.000 264 0.008 481 0.009 507 —0.000 838
MP5 0.000 859 0.000 536 0.000 435 0.000 385
MP6 —0.000 230 0.000 020 —0.000 546 —0.000 004
HF, R=2R, Epg=-100.0811% E,,,=0.263536 z;=—1.1
MP2 0.024 045 0.023 469 0.263 536 0.024 617
MP3 0.026 959 0.026 924 0.026 890 0.026 917
MP4 0.004 840 0.023 946 0.024 385 0.000 718
MP5 0.008 103 0.006 043 0.004 069 0.003878
MP6 —0.001131 —0.003477 0.010 759 —0.004 897
H,0, R=R, Epg=—76.25662 E,,~=0.216083 z,=—2.2
MP2 0.012 966 0.012 422 0.216 083 0.013 506
MP3 0.007 223 0.007 056 0.006 873 0.007 073
MP4 0.000 820 0.035588 0.023 760.030 954 —0.000 206
MP5 0.000 704 0.000 493 0.000 288 0.000 247
MP6 0.000 078 0.000 045 —0.000 142 0.000 005
H,0, R=2R, Ere=—100.18758 E,,=0.369984 z,=—1.7, 1.7
MP2 0.053 667 0.052 661 0.369 984 0.054 663
MP3 0.074 605 0.073 305 0.072 221 0.073 250
MP4 0.014 860 0.058 582 0.059 170 —0.002 185
MP5 0.016 978 0.002 911 —0.050 052) (-0.036 913)
MP6 0.004 058 0.000173 —0.003 652:0.072 216) 0.000 007
“Reference 32. 9Reference 35. 9Reference 32, &p2d basis set.

PReference 33.
‘Reference 34.

*Reference 32, $4p1d basis set.
'Reference 36, &3p2d basis set.

TABLE Il. Comparison of accuracies of summation approximants, from the(C)
results in Table |. The summation methods are partial summaspnra-

tional Padesummation R), unconstrained quadratic summatia@,j, and
constrained 1(,=0) quadratic summationd;). One method is counted as

MP4 and MP5 should be summed with quadratic Pade
approximants. For class A systems unconstrained ap-
proximants are best while constraineg 0) approxi-

more accurate than another if its summation error is at least 10% less. Th(e
entries are the number of systems for which the given relation is true. Fo d)
example, ‘Q,>R,S"” means thatQ, is more accurate thaR andS. The

mants are best for class B systems.
Class B systems at MP6 should be summed with con-
strained (,=0) quadratic approximants.

numbers in parentheses show the results for the nine class A and the seven

class B systems, respectively, considered separately.

MP2 MP3 MP4 MP5 MP6
Q.>R,S 0 6(60 440 1266  4(3,)
Q.>R,S 0 0 8(4,4) 8(2,6 8 (3,5
R>Q,,S 202 220 220 21,9 6(3,3
R>Q..S 2(0,2 0 3(3,0 2(1,) 44,0
s$>Q, R 0 0 6(0,6 0 3(1,2
S>Q.,R 0 0 2(0,2 0 1(0,1)

Q,>S 0 9(8) 7(7.0 1486 752

Q>S 0 8(80 12(84 13(7.6 11(56)

R>S 202 880 880 14(7,7) 11(65
Q,>0Q, 0 7(6) 5(50 5 (5,0 5(4,1)
Q.>0Q, 16(97 220 817 6 (2,9 9(3,6

For class A at MP6 it is best to use one of the Paudthods
rather than partial summation, but it is not clear which of the
methods will be most reliable.

Table IV, which lists median ratios of errors from the
recommended summation methods and from partial summa-
tion, gives an indication of how much improvement can be
expected. For MP2 the median increase in accuracy from
Padesummation is small. However, since the rational ap-
proximant So;1=Eq/(1—E;/Ep) is so easy to compute,
and is more accurate thé for all 16 systems in Table |,
there is no excuse not to employ it. At higher orders there are
occasional cases in which the partial sum is the most accu-
rate result, but the median improvement from the recom-
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TABLE Ill. Energy, in hartree, for CH?A} with R=2R,, from Mgller—Plesset perturbation theory with
indicated summation method and order. The full CI resuEig,= —39.303 132

Partial Rational Quadratic Pade Quadratic Pade
Order sum Pade unconstrained ro=0
Eo —39.123546 —39.123546 —39.123 546, 0
MP2 —39.160114 —39.160148 —39.123546 —39.160 080,—0.036 534
MP3 —39.169229 —39.172255 —39.200885,-39.192912 —39.172235,-9.739878
MP4 —39.175291 —39.187381 —39.1748430.024 181 —39.187 831,—39.325 617
MP5 —39.180360 —39.211255 —39.1737030.023 755 —39.185774,—39.136 261
MP6 —39.185300 —39.138368 —39.1721130.020842 —39.173955:0.022 7884
“Reference 34.
mended summation method can be substantial. branch point closest ta,,s for MP6 in thery=0 approxi-

The last column in Table IV addresses the question ofant is CH *A;, with branch point at 0.8320.018i. The
whether or not it is worth the effort to proceed to the nextaccuracy in this case is relatively poor. The same is true at
higher order of perturbation theory. Alberts and Halfdy MP5 for H,0 with R=2R, in which case there is a branch
have suggested that MP3 does not give sufficient improvepoint at 1.11. It is not always clear at low orders whether or
ment to justify the computational cost. Indeed, for the classiot a branch point is spurious. Therefore, unless one suspects
B systems considered here the accuracy of MP3 in the meyn physical grounds that there should be a branch point close
dian case is lower than that of MP2, even with quadraticgo Zphys: a quadratic approximant with a singularity NEgiys
summation. For class A systems, however, MP3 does appeshould be treated with suspicion. In the present study the
to be worth the effort, with median reduction of the error by yalue ofry, when treated as a parameter, was chosen as zero.
a factor of 6. Class B systems show substantial improvemerfiowever, it may be feasible to shift spurious branch points
at MP4 and MP6. Both classes show only modest improveaway fromz,n,s by varying the value of .
ment at MP5. Perhaps the most striking result described here is that for

The relatively poor accuracy from partial summation is CH, with R=2R,, which is predicted to be a resonance in
due to the inability of the summation approximants, whichthe ionization continuum. In such cases MPPT could be
are nonsingular at finite, to model the singularity structure more accurate than a full configuration-interaction calcula-
of the energy functiorE(z) in the complex plane of the tion. If the basis set consists only of bound-state eigenfunc-
perturbation parameter The dominant singularity is in gen- tions, the Cl wave function will always correspond to a
eral expected to be a two-sheet branch point. The quadratisound state and this will always lead to a real, and incorrect,
approximants model this singularity explicitly, with a result for a resonance energy. The calculation of large-order
square-root branch point, but the accuracy of a quadratiMgller—Plesset expansions in the course of a ClI
approximant can be degraded by a spurious, nonphysicatalculatiort'%!'was developed as a method for studying the
branch point neagy,,s. A perusal of the roots of the dis- |arge-order behavior of the expansion coefficients. However,
criminant polynomial can indicate the likely quality of a par- such expansions, summed with quadratic approximants,
ticular approximant. Of the systems in Table I, the one withcould have practical utility as a means for obtaining highly

accurate energies and widths of autoionizing resonances.
Quadratic approximants may also prove useful for treat-

TABLE IV. Median ratios of errors from summation approximansS, ing resonances betwedround states involved in avoided
=S, ErciandAX,=X,—Egc/, wheren=1 for MP2,n=2 for MP3, etc.,

S, is the partial summation approximant, akq is the recommended kind Ccrossings. .AS the poten'glal energy curves apprqach each
of approximant. The recommended approximants are rationdl ®ad@2,  other, a pair of branch points &(z) at complex—conjugate
constrained (,=0) quadratic for class B systems at MP4, MP5, and MP6, values ofz comes close t@pnys- These singularities seri-
and unconstrained quadratic otherwise. The entries are the median values f@Ust degrade the convergence of partial stimmut will

the nine class A systems or for the seven class B systems included iH .

Table I. ave less of an effect on the convergence of quadratic ap-

proximants. This is closely analogous to a recent application

o ord AS, AS, AS, AX,_q of quadratic and cubic approximants to resonances between
ass e 13s AX. AX. AX, nearly degenerate molecular vibration eigenstates.
A MP2 1 1.01 1.01 458
MP3 2.93 6.08 1.99 6.02 ACKNOWLEDGMENTS
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