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In this work, we explore the description of quantum chemistry in the complex plane. Using the Hubbard
dimer as a simple model system, we investigate how various methods in electronic structure theory (including
Hartree–Fock, density-functional theory, perturbation theory and full configuration interaction) are formulated in
the complex plane, and how this affects their behaviour in the real plane. For example, we demonstrate how the
position of exceptional points of the real axis controls the convergence of perturbation theory, and explore the
inherent dependence on the set of orbital coefficients. Moreover, we reveal how the avoided crossing of FCI states
correspond to an exceptional point in the complex plane, which in turn demonstrates that multiple FCI solutions
form a more general structure across the complex plane. Ultimately, by exposing these more profound topologies
of electronic structure methods in the complex plane, we hope to pave the way for novel methodologies.

I. INTRODUCTION

The notion of quantised energy levels is a central feature
of Hermitian quantum mechanics. In quantum chemistry, the
ordering of the energy levels represents the different electronic
states of a molecule, the lowest being the ground state while
the higher ones are the so-called excited states. Within this
quantised paradigm, electronic states look completely discon-
nected from one another. However, one can gain a different
perspective on quantisation if one extends quantum chemistry
into the complex domain. In a non-Hermitian complex picture,
the energy levels are sheets of a more complicated topological
manifold called Riemann surface, and they are smooth and con-
tinuous analytic continuation of one another. In other words,
our view of the quantised nature of conventional Hermitian
quantum mechanics arises only from our limited perception of
the more complex and profound structure of its non-Hermitian
variant.

Therefore, by analytically continuing the energy E(λ) in the
complex domain (where λ is a coupling parameter), one can
smoothly connect the ground and excited states of a molecule.
This connection is possible because, by extending real numbers
to the complex domain, one loses the ordering property of real
numbers. Hence, one can interchange electronic states away
from the real axis, as the concept of ground and excited states
has been lost. Amazingly, this smooth and continuous transi-
tion from one state to another has been recently realised exper-
imentally in physical settings such as electronics, microwaves,
mechanics, acoustics, atomic systems and optics.1–18

Exceptional points (EPs)19–22 are non-Hermitian analogs
of conical intersections (CIs)23 where two states become ex-
actly degenerate. CIs are ubiquitous in non-adiabatic processes
and play a key role in photochemical mechanisms. In the
case of auto-ionizing resonances, EPs have a role in deacti-
vation processes similar to CIs in the decay of bound excited
states. Although Hermitian and non-Hermitian Hamiltonians
are closely related, the behaviour of their eigenvalues near
degeneracies is starkly different. For example, by encircling
non-Hermitian degeneracies at EPs leads to an interconversion
of states, and two loops around the EP are necessary to recover
the initial energy. Additionally, the wave function picks up a
geometric phase (also known as Berry phase24) and four loops
are required to recover the starting wave function. In contrast,

encircling Hermitian degeneracies at CIs introduces only a
geometric phase while leaving the states unchanged. More
dramatically, whilst eigenvectors remain orthogonal at CIs, at
non-Hermitian EPs the eigenvectors themselves become equiv-
alent, resulting in a self-orthogonal state.25 More importantly
here, although EPs usually lie off the real axis, these singular
points are intimately related to the convergence properties of
perturbative methods and avoided crossing on the real axis are
indicative of singularities in the complex plane.26,27

II. PERTURBATION THEORY

Within perturbation theory, the Schrödinger equation is usu-
ally rewritten as

HΨ(λ) = (H(0) + λH(1))Ψ(λ) = E(λ)Ψ(λ), (1)

with

E(λ) =

∞∑
k=0

λkE(k). (2)

However, it is not unusual that the series E(λ) has a radius of
convergence |λ0| < 1. This means that the series is divergent in
the domain |λ| < |λ0|, hence for the physical system at λ = 1.
As eluded above, |λ0| is determined by the location of the sin-
gularity of E(λ) closest to the origin. These singularities are
nothing but EPs at λ0 and λ∗0. Here, we propose to thoroughly
investigate the connection between Coulson-Fisher quasi-EPs
and the radius of convergence of various flavours of perturba-
tion theory. For example, Møller-Plesset perturbation theory
(MPPT) has the particularity of relying on a Hartree-Fock
(HF) wave function as a zeroth-order wave function. How-
ever, the flavour of HF one can select (restricted, unrestricted,
generalised, holomorphic, . . . ) is up for grabs, and the conver-
gence properties of the MPPT series will drastically change
depending on this choice. Indeed, the radius of convergence
is intimately connected to the location of singularities in the
complex plane; these singularities are, themselves, linked to
the choice of H(0). Really, it depends on our ability of selecting
a zeroth-order Hamiltonian such as H does not have any EP
inside the unit λ circle.

For example, MPPT calculations based on UHF wave
functions have shown to be slowly convergent due to spin
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contamination while RHF-based MPPT calculations can be
divergent.28,29 Although MPPT is widespread in the commu-
nity, its convergence properties have not, to the very best of
our knowledge, attracted much attention.26,27,30 We believe
that they deserve greater understanding, particularly in a non-
Hermitian setting.

III. THE ASYMMETRIC HUBBARD DIMER

The asymmetric Hubbard dimer is a model two-electron
system whose Hamiltonian reads

Ĥ = T̂ + Ŵ + V̂ , (3)

with

T̂ = −t
∑
σ=↑↓

(ĉ†1σĉ2σ + ĉ†2σĉ1σ), (4a)

Ŵ = U(n̂1↑n̂1↓ + n̂2↑n̂2↓), (4b)

V̂ = ∆v(n̂2 − n̂1)/2, (4c)

where n̂iσ = ĉ†iσĉiσ, n̂i =
∑
σ=↑↓ n̂iσ, U is the site energy, t is

hopping parameter, and ∆v is the difference of on-site potential

which controls the asymmetry of the model. Note that n1 +n2 =

N, where N = 2.
In the basis |1 ↑ 1 ↓〉, |1 ↑ 2 ↓〉, |2 ↑ 1 ↓〉, |2 ↑ 2 ↓〉, the

Hamiltonian reads

Ĥ =


−∆v + U −t t 0
−t 0 0 −t
t 0 0 t
0 −t t ∆v + U

 , (5)

which are composed by three singlet and one triplet states. The
ground-state singlet wave function can therefore be written as

|1Ψ〉 = α
|1 ↑ 2 ↓〉 + |2 ↑ 1 ↓〉

√
2

+ β |1 ↑ 1 ↓〉 + γ |2 ↑ 2 ↓〉 (6)

with α2 + β2 + γ2 = 1.

IV. CONCLUDING REMARKS

What we have done is completely amazing.
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