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In this article we propose the �SCF(2) framework, a multireference strategy based on second-order
perturbation theory, for ground and excited electronic states. Unlike the complete active space fam-
ily of methods, �SCF(2) employs a set of self-consistent Hartree-Fock determinants, also known
as �SCF states. Each �SCF electronic state is modified by a first-order correction from Møller-
Plesset perturbation theory and used to construct a Hamiltonian in a configuration interactions like
framework. We present formulas for the resulting matrix elements between nonorthogonal states that
scale as N2

occN
3
virt. Unlike most active space methods, �SCF(2) treats the ground and excited state

determinants even-handedly. We apply �SCF(2) to the H2, hydrogen fluoride, and H4 systems and
show that the method provides accurate descriptions of ground- and excited-state potential energy
surfaces with no single active space containing more than 10 �SCF states. © 2013 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4827456]

I. INTRODUCTION

The properties of electronically excited states are crucial
to various aspects of photochemistry, such as photoinduced
electron transfer,1, 2 photocatalysis,3, 4 and photovoltaics.5–7

Extensive efforts toward accurate and affordable electronic
structure calculations of molecular excited states have led to
significant improvements, but state-of-the-art approaches still
cannot achieve sub-kcal mol−1 accuracy for excited states of
any but the smallest of molecules.8 One standard approach to
computing excited states that only requires knowledge of the
ground state wavefunction is linear response, in which exci-
tation energies are identified with poles in the linear response
function due to an electromagnetic perturbation.9 However,
linear response time-dependent Hartree-Fock (TDHF) pro-
vides limited accuracy for excited state energies and poten-
tial energy surfaces (PES), due to the neglect of dynamic
correlation.8 Its counterpart within density functional theory
(DFT), linear response time-dependent DFT10, 11 (TDDFT) is
a relatively affordable way to compute excited states, but its
success with currently available exchange-correlation func-
tionals is limited to certain classes of excited states. For well-
behaved systems, accuracy of around 0.3 eV can be antici-
pated, but for charge transfer or Rydberg excitations, TDDFT
shows significantly worse performance.8 TDDFT fares even
more poorly for excited state PES,12, 13 making it unreliable
when searching for a reaction barrier or propagating dynam-
ics in the excited state. The perennial issue with TDDFT and
other DFT-based methods for excited states is the quality of
the exchange-correlation functional. Efforts to improve on
these approximations are ever ongoing,14–17 but the roadmap
to chemical accuracy for excited states in TDDFT remains
blurry.

Wavefunction based methods building on the HF deter-
minant, on the other hand, provide a more systematic way

a)Electronic mail: tvan@mit.edu

to generate high-quality ground and excited state wavefunc-
tions. Due to the mean field approximation of HF theory, the
HF wavefunction lacks all electron correlation. However, the
static correlation can be recovered through the use of a mul-
tireference wavefunction, while the dynamic correlation is of-
ten more convenient to treat perturbatively.18, 19

Perturbative treatments of dynamic correlation in quan-
tum chemistry are usually based on the Møller-Plesset
series.20, 21 Alternatively, one can extract dynamic correlation
by applying single, double, and possibly higher order excita-
tion operators to the ground state HF determinant. The im-
proved single-reference ground state wavefunction is then a
linear combination of these wavefunctions, the coefficients of
which are obtained either by variational minimization, con-
figuration interaction method (CI), or by solving a set of cou-
pled coefficient equations, coupled-cluster method (CC).22–24

In most cases, both CI and CC methods rapidly converge with
respect to the order of the excitation operators, but the compu-
tational cost of including these higher-order excitations grows
rapidly. Excited state methods rooted in this approach, such as
equation-of-motion CC singles and doubles (CCSD),25, 26 sec-
ond order approximate CC (CC2),27, 28 and quadratic CI sin-
gles and doubles (QCISD),29 are even more computationally
demanding and are unaffordable for excited state dynamics of
more than ∼10-atom systems.

One drawback to single-reference methods is that they
do not capture much static correlation, which can be impor-
tant for systems with electronic degeneracies or small band
gaps and which is required to obtain conical intersections.
A number of multireference methods19, 30–33 have been de-
veloped to treat static correlation. A popular multireference
method that efficiently captures static correlation, while re-
ducing computational costs relative to full CI, is the com-
plete active space self consistent field (CASSCF) method.31

In state-specific CASSCF, CI is applied to an active space of
molecular orbitals – usually a small number of occupied and
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virtual orbitals – instead of the full set. The CI coefficients
and molecular orbitals in the active space are then optimized
self-consistently to minimize the energy of the specified state.
As with full CI, the cost of CASSCF grows combinatori-
ally with the size of the active space. There exist various ac-
tive space reduction strategies, such as restricted active space
SCF (RASSCF),32 to manage the balance between accuracy
and computational cost. However, even with these tools, CAS
methods are notoriously not black-box, and in practice, one
needs to closely monitor the orbitals during PES scans and dy-
namics to ensure the consistency of the active space, and thus
the accuracy of the calculation.18, 19 Because CASSCF cap-
tures most static correlation, it can produce qualitatively ac-
curate potential energy surfaces even for conical intersections
and nuclear dissociation. However, dynamic correlation en-
ters into the CASSCF wavefunction only very gradually with
respect to active space size.

To improve the description of dynamic correlation
in multireference methods, Roos and co-workers extended
CASSCF to include a second order perturbative correc-
tion to the CASSCF energies, resulting in the CASPT2
method.34, 35 There are several choices to be made in the con-
struction of such a formalism, and so a variety of multiref-
erence perturbation theories have since been developed.36–40

In CASPT2, the perturbation correction is applied after de-
termining the CASSCF wavefunction (“diagonalize then per-
turb” approach), but this creates some ambiguity regarding
what to define as the zeroth-order Hamiltonian for the
perturbation theory.41–44 Related methods such as multirefer-
ence Møller-Plesset38 and n-electron valence state perturba-
tion theory44 also follow the “diagonalize then perturb” phi-
losophy and suffer from similar issues of defining the zeroth
order Hamiltonian. A different approach based on the concept
of an effective Hamiltonian which, when diagonalized, only
gives some of the eigenvalues of the exact Hamiltonian45–47

constitutes a “perturb then diagonalize” approach to multiref-
erence perturbation theory. Still other multireference methods
use coupled-cluster theory instead of perturbation theory to
add dynamic correlation to the total energy.48–51 It is impor-
tant to note that only “perturb then diagonalize” methods al-
ways preserve the structure of conical intersections.52

One issue for perturbation methods is that the pertur-
bation series is not guaranteed to converge,53–55 and in par-
ticular, second order perturbation theory can accumulate an
unbounded error in the case of orbital near-degeneracies.
Specifically, the perturbative energy will diverge whenever
one of the orbitals outside the active space crosses one of the
orbitals inside the active space; this is formally known as the
intruder state problem.56 This is still an issue that lacks a non-
empirical solution.57, 58

In treating both ground and excited states via CASPT2,
an additional ambiguity arises in the prescription for the state
averaging procedure used to select the optimal set of orbitals
for all states. In particular, CASPT2 energies can depend sig-
nificantly on the state averaging procedure used.59 Finally, the
accuracy of CASPT2 and other multireference perturbation
theories depend on how large of a reference space is used,
which is limited by computational resources. In the case of
CASPT2 there are two computational bottlenecks: exponen-

tial scaling with respect to the number of active orbitals, and
ninth-order scaling with respect to basis set size due to diag-
onalization of overlap matrices that depend on the third-order
density matrix.60, 61

Recently we62 and others63 have shown that the �SCF-
DFT method64 can often perform as well as TDDFT for a
given choice of exchange-correlation functional. While the
�SCF-DFT method only yields estimates of excited state
properties of roughly the same quality as TDDFT,62 the un-
derlying strategy of �SCF-DFT suggests a unique opportu-
nity to approach multireference problems from a new direc-
tion. In HF theory as in Kohn-Sham DFT, the �SCF approach
can be used to enforce a selected non-Aufbau orbital occupa-
tion pattern during SCF energy minimization and converge
onto an excited state determinant.

In this article, we introduce a “perturb then diagonal-
ize” scheme rooted in the �SCF approach, which we call
�SCF(2). In this scheme, the reference states are composed
of the HF ground state wavefunction and a number of non-
Aufbau HF excited state wavefunctions, each dressed with a
perturbative correction in the spirit of second order Møller-
Plesset perturbation theory (MP2). Due to the equal footing
afforded to ground and excited states, the �SCF(2) method is
well suited to treat both ground and excited states with a small
number of reference wavefunctions.

In the remainder of this article, we first describe the
�SCF(2) method in detail. Then we present applications to
some minimal models of bond breaking and a conical inter-
section to assess its strengths and weaknesses.

II. THEORY

In the �SCF(2) method, the HF ground-state wavefunc-
tion and several non-Aufbau, stationary HF wavefunctions
(|�0

A〉 ≡ |A(0)〉) are used as reference wavefunctions. Each
determinant is obtained from a separate self-consistent HF
calculation, resulting in an independent set of orbitals and
eigenvalues. Static correlation in the ground and excited state
wavefunctions (|�n〉) is expected to be reasonably well ap-
proximated by CI among these reference states:

|�n〉 =
∑
A

cA
n |A〉. (1)

To account for dynamic correlation outside of the reference
space we apply second-order perturbation theory with the
Fock operator as the zeroth-order Hamiltonian, which gen-
erates a first-order correction for each wavefunction,

|A〉 = |A(0)〉 + |A(1)〉 (2)

= |A(0)〉 + 1

4

∑
ij

ab

αab
ij

∣∣Aab
ij

〉
, (3)

where |Aab
ij 〉 is the double excitation i → a, j → b from |A(0)〉

and its amplitude αab
ij is the standard PT2 amplitude for the

|A(0)〉 state,

αab
ij = 〈ij ||ab〉A

εA
a + εA

b − εA
i − εA

j

. (4)
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We use indices i, j, k, l for occupied orbitals, a, b, c, d for
virtual orbitals, and p, q, r, s for either type of orbital. We also
use index notation, so in the following expressions there is an
implicit sum over repeated indices. Throughout this section
we will use αab

ij and βab
ij as the PT2 amplitudes for states |A(0)〉

and |B(0)〉, respectively.
Each reference wavefunction is derived from an inde-

pendent solution to the HF equations, with an independent
set of optimized molecular orbitals (MOs); therefore the two-
electron integrals and orbital energies depend on the reference
wavefunction, as indicated in Eq. (4). In this sense, all states
in �SCF(2) are determined at an equivalent level of theory, in
contrast to the many multireference methods which generate
excited states from constituent orbitals of the ground state, or
from a single set of orbitals determined by state-averaging.
The orbital relaxation that occurs for the non-Aufbau excited
states during SCF convergence avoids the need to simultane-
ously optimize the orbitals and CI coefficients, or to deter-
mine the orbitals via state-averaging; instead, the orbitals for
a given state are prescribed by a self-consistent minimization
of that state’s energy. Furthermore, in contrast to CASPT2,
the choice of the zeroth order Hamiltonian in this basis is un-
ambiguous, as will be described below. However, since the
non-Aufbau wavefunctions are independently obtained solu-
tions to the HF equations, orbitals from different states will
generally be nonorthogonal.

The MP2-corrected ground state and non-Aufbau states
define the basis of wavefunctions for the �SCF(2) method.
In this “perturb then diagonalize” strategy, the �SCF(2) ener-
gies and wavefunctions are finally determined by computing
the eigenvalues and eigenfunctions of the secular equation

Hc = ESc, (5)

where the Hamiltonian and overlap matrix elements are

HAB = 〈A|ĤA|B〉
= 〈A(0)|ĤA|B(0)〉

+ 1

2
(〈A(0)|ĤA|B(1)〉 + 〈A(1)|ĤA|B(0)〉), (6)

SAB = 〈�A|�B〉

= 〈A(0)|B(0)〉 + 1

2
(〈A(0)|B(1)〉 + 〈A(1)|B(0)〉). (7)

Since the perturbation has a different structure for each elec-
tronic state, off-diagonal terms in the Hamiltonian and over-
lap matrices do not possess a well-defined perturbation or-
der. Nevertheless, the term 〈A(1)|ĤA|B(1)〉 can be considered
higher-order in the sense that it depends on both first-order
corrections and thus requires increased computational cost to
evaluate. Based on these considerations, we truncate the per-
turbation expansion before this term. We multiply by a factor
of 1/2 on the two terms on the RHS of Eqs. (6) and (7) so that
the diagonal Hamiltonian matrix elements will reproduce the
MP2 energy and the off-diagonal terms will be symmetric.

The zeroth-order like terms in Eqs. (6) and (7) are
straightforward to evaluate, despite the nonorthogonality of
molecular orbitals of |A(0)〉 and |B(0)〉.9, 33, 65 To solve for
the second order like terms in Eqs. (6) and (7), such as

〈A(0)|ĤA|B(1)〉, we first insert the identity I = |A(0)〉〈A(0)|
+ |Aa

i 〉〈Aa
i | + |Aab

ij 〉〈Aab
ij | + |Aabc

ijk 〉〈Aabc
ijk + . . . to get

〈A(0)|ĤA|B(1)〉 = 〈A(0)|ĤA|A(0)〉〈A(0)|B(1)〉
+ 〈A(0)|ĤA|Aa

i 〉〈Aa
i |B(1)〉

+〈A(0)|ĤA
∣∣Aab

ij

〉〈
Aab

ij

∣∣B(1)〉
+ 〈A(0)|ĤA

∣∣Aabc
ijk

〉〈
Aabc

ijk

∣∣B(1)〉 + . . . . (8)

This gives an expression where the Hamiltonian matrix el-
ements are now evaluated between orthogonal determinants
and we just have overlap matrix elements between nonorthog-
onal determinants. The second term on the RHS of Eq. (8) is
equal to zero because of Brillouin’s theorem, and the last term
on the RHS plus all of the higher order terms are zero be-
cause of the Slater-Condon rules.22 Finally, we arrive at more
manageable expressions for the second-order like terms in
Eqs. (6) and (7):

〈A(0)|ĤA|B(1)〉 = 1

4
EA〈A(0)

∣∣Bab
ij

〉
βab

ij

+ 1

16
〈kl‖cd〉A

〈
Acd

kl

∣∣Bab
ij

〉
βab

ij , (9)

〈A(0)|B(1)〉 = 1

4

〈
A(0)

∣∣Bab
ij

〉
βab

ij . (10)

Here EA is the Hartree-Fock energy of state A. To evaluate
Eqs. (9) and (10), we must address the issue that the MOs of
|A(0)〉 and |B(0)〉, {φA

p } and {φB
p }, are mutually nonorthogonal.

Brute-force computation of the first term in Eqs. (9) and
(10) would entail computing the determinant of the overlap
matrix Mab

ij for all excitations (i, j) → (a, b), where the over-
lap matrix elements are defined by (Mab

ij )rs = 〈φA
r |φB

s 〉 with
φB

a and φB
b substituted for φB

i and φB
j , respectively. Evalua-

tion of each determinant scales as N3
occ, and this determinant

must be evaluated for each (i, j) → (a, b) excitation, leading
to an overall scaling of N5

occN
2
virt for the first term in Eq. (9).

The second term on the RHS of Eq. (9) involves two sets of
excitations, resulting in even steeper scaling.

To more efficiently evaluate the terms in Eqs. (9) and
(10), we rotate the MOs and two-electron integrals for states
A and B into a corresponding orbital basis.66, 67 In this basis,
the occupied-occupied block of the overlap matrix, (S)rs
= 〈φA

r |φB
s 〉, is diagonal, and the matrix elements of the over-

lap matrix become 〈
φA

i

∣∣φB
j

〉 = Siδij , (11)

〈
φA

i

∣∣φB
a

〉 = Sia, (12)

〈
φA

a

∣∣φB
i

〉 = Sai . (13)

This transformation greatly reduces the cost of evaluating the
matrix elements in Eqs. (9) and (10), as shown below.

The overlap between A(0) and Bab
ij , 〈A(0)|Bab

ij 〉, in the cor-

responding orbital basis set is simply 1
SiSj

〈A(0)|B(0)〉(SaiSbj

− SajSbi). Using the symmetry relations of the two-electron
integrals and βab

ij amplitudes, the first term on the RHS of
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Eq. (9) becomes

1

4
EA

〈
A(0)

∣∣Bab
ij

〉
βab

ij = 1

2
EA

SaiSbj

SiSj

〈A(0)|B(0)〉βab
ij , (14)

where 〈A(0)|B(0)〉 =
N∏
k

Sk , and the resulting expression

scales as N2
occ × N2

virt. An analogous procedure can be used
to compute the remaining terms on the RHS of Eq. (9).

First we define the following two projected-overlap quan-
tities in order to simplify the final set of equations,

Sij
pr = 〈

φA
p

∣∣1 −
∑
k �=i,j

∣∣φB
k

〉〈
φA

k

∣∣
Sk

∣∣φB
r

〉
, (15)

Si
pr = 〈

φA
p

∣∣1 −
∑
k �=i

∣∣φB
k

〉〈
φA

k

∣∣
Sk

∣∣φB
r

〉
. (16)

The expression for the overlap between doubly excited
determinants 〈Acd

kl |Bab
ij 〉 depends on how many occupied or-

bitals the states have in common, so we break up 〈Acd
kl |Bab

ij 〉
into cases according to the number of common indices:
(1) two common indices, i = k and j = l; (2) one common
index, i = k and j �= l; and (3) no common indices, i �= k and
j �= l. The simplified expression for the second term on the
RHS of Eq. (9) is given below for each case.

Case 1. i = k, j = l:

1

16
〈kl‖cd〉A

〈
Acd

kl

∣∣Bab
ij

〉
βab

ij

= 1

2

[〈ij‖cd〉AS
ij
ac

][
βab

ij S
ij

bd

]〈A(0)|B(0)〉
SiSj

. (17)

Case II. i = k, j �= l:

1

16
〈kl‖cd〉A

〈
Acd

kl

∣∣Bab
ij

〉
βab

ij

=
[ 〈il‖cd〉ASld

Sl

][
βab

ij Sbj

Sj

]
Si

ac〈A(0)|B(0)〉
Si

−
[ 〈ij‖cd〉ASjd

Sj

] [
βab

ij Sbj

Sj

]
Si

ac〈A(0)|B(0)〉
Si

. (18)

Case III. i �= k, j �= l:

1

16
〈kl‖cd〉A

〈
Acd

kl

∣∣Bab
ij

〉
βab

ij

= 1

4

[ 〈kl‖cd〉ASkcSld

SkSl

] [
βab

ij SaiSbj

SiSj

]
〈A(0)|B(0)〉

−
[ 〈il‖cd〉ASicSld

SiSl

] [
βab

ij SaiSbj

SiSj

]
〈A(0)|B(0)〉

+ 1

2

[ 〈ij‖cd〉ASicSjd

SiSj

] [
βab

ij SaiSbj

SiSj

]
〈A(0)|B(0)〉. (19)

The brackets are a visual aid to indicate where certain indices
are pre-summed to reduce the scaling; for Eq. (17) the scal-
ing is N2

occN
3
virt. The second term of Eq. (18) corrects for the

fact that the implicit summation over i and j includes terms
where i = j. We perform the full summation and then subtract
the extra terms where i = j instead of the restricted sum be-
cause this approach enables evaluation of Eq. (18) with only
N3

occN
2
virt effort. Likewise, the second and third terms in

Eq. (19) correct for the inclusion of terms where i = k and/or
j = l in the full summation, resulting in an expression that
scales as N2

occN
2
virt. Finally, the second-order overlap matrix

elements 〈A(0)|B(1)〉 can be recovered with no additional ef-
fort, as they are equal to the first term on the RHS of Eq. (9)
divided by the energy EA.

Equations (9)–(19) allow us to compute the matrix ele-
ments of the Hamiltonian and overlap matrix in the basis of
perturbed HF states. A technical but nevertheless important
practical consideration is the fact that some diagonal elements
of the overlap matrix in the corresponding orbital basis, Si,
may be nearly zero, i.e., the overlap matrix may be singular.
One way to circumvent the singular overlap matrix problem
is to set all |Si| below a certain threshold with the value of
the threshold, but this only is an approximate resolution of
the problem. Instead, the derivation of Eqs. (14)–(19) may be
modified to avoid the associated numerical instabilities. We
have derived additional sets of equations, given in the sup-
plementary material,78 which specially address cases where
some Si = 0. These considerations do not increase the com-
putational cost of the method, but they do increase the com-
plexity of the equations.

The working equations of �SCF(2) presented above re-
veal that the cost of evaluating the �SCF(2) matrix elements
scales at worst as N2

occN
3
virt, though the two electron integral

transformations, which scale as N5, end up being the slow-
est step in the �SCF(2) method. Since orbital optimization
is implicit in the preparation of basis states for �SCF(2),
the method does not require any simultaneous optimization
of orbital coefficients and CI coefficients. This feature al-
lows �SCF(2) to avoid the N9 overlap diagonalization in
CASPT2s. On the other hand, the substantial number of in-
tegral transforms required to evaluate Eqs. (17)–(19) in the
corresponding orbital basis are a computational disadvantage
relative to reduced active space approaches such as RASSCF.
In �SCF(2), each non-Aufbau HF wavefunction must be de-
termined self-consistently, so the number of HF calculations
also grows as size of the active space squared, although this
step is easily parallelized.

Given these expressions for the Hamiltonian and over-
lap matrix elements in the basis of perturbed �SCF states,
we can diagonalize the Hamiltonian, i.e., solve Eq. (5)
to obtain �SCF(2) energies and wavefunctions for the
ground and excited states. In Sec. IV, we present results
for some simple chemical systems and discuss the method’s
performance.

III. COMPUTATIONAL DETAILS

The �SCF(2) calculations use a modified version of Q-
Chem 4.0,68 and we use an in-house full CI code. The con-
vergence of the �SCF states is aided where necessary by
the maximum overlap method (MOM).69 For systems where
the size of the chosen basis set makes full CI prohibitively
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expensive, we use the Rydberg-Klein-Rees70, 71 (RKR)
method to calculate the experimental dissociation curve of the
ground state with the RKR1 2.0 code.72 The parameters used
to produce the RKR potential for hydrogen fluoride can be
found in a previous study by Coxon and Ogilvie.73 For H2, we
use the cc-pVQZ basis set in order to approach the basis set
limit within �SCF(2). The 6-311G basis set was used for H4

calculations. In the case of hydrogen fluoride we employ the
valence double-zeta Dunning-Hay basis set, as implemented
in GAMESS.74 The Dunning-Hay basis set makes a full CI
computation feasible, permitting a comparison of �SCF(2)
and full CI with a finite basis set for ground and excited states.
We also use the cc-pVTZ basis set in order to compare with
the RKR potential of hydrogen fluoride. The numerical data
for H2 and hydrogen fluoride can be found in the supplemen-
tary material.78

While the mixing of the �SCF states helps push the
worst effects of the intruder-state problem away from the
equilibrium geometry along the dissociation curve, it does
not resolve the issue entirely. Therefore, to avoid intruder-
state problems near dissociation in hydrogen fluoride and H2

stemming from the PT2 correction56 in Eq. (4), we replaced
the denominator of Eq. (4), �εA = εA

a + εA
b − εA

i − εA
j , with

a Lorentzian approximation that removes the divergence,
1

�εA
≈ �εA

�ε2
A+δ2 . Threshold values for the Lorentzian were cho-

sen as small as possible while still ensuring a monotonically
increasing ground state PES near the dissociation limit, re-
sulting in values for δ of 0.3 hartree and 1.05 hartree for
H2 and hydrogen fluoride, respectively. No such modification
was necessary for the H4 calculations.

IV. EXCITED STATE POTENTIAL ENERGY SURFACES

To test this new approach to multireference PT2, we con-
sider ground and low-lying excited states of the H2, hydrogen
fluoride, and tetrahedral H4 molecules.

A. H2 dissociation

The simplest realistic test case for multireference meth-
ods is dissociation of H2: it has only two electrons, and at
the dissociation limit it reduces to two one-electron systems.
Natural basis states for the �SCF(2) method consist of the
ground state, the α- and β-spin HOMO → LUMO non-
Aufbau states, and the doubly excited HOMO → LUMO non-
Aufbau state. The dissociation curves for both �SCF(2) and
full CI are shown in Figure 1. The four different potential en-

FIG. 1. H2 dissociation potential energy curves computed with full CI (cir-
cles) and �SCF(2) in the cc-pVQZ basis. The �SCF(2) calculations in-
cluded four states in total: the ground state, plus the singly and doubly ex-
cited HOMO → LUMO states. The �SCF(2) method performs well for the
ground, singly, and doubly excited states over the entire potential energy
surface.

ergy curves plotted are the ground state (S0), lowest triplet
state (T1), singlet excited state (S1), and the doubly excited
state (S2). One always obtains both the singlet and triplet ex-
cited states associated with a given one-electron excitation
since they are simple linear combinations of the two broken-
symmetry �SCF states, i.e., in the case of H2 the HOMO
→ LUMO excited states. Like other multireference methods,
�SCF(2) correctly describes the shape of the potential energy
surfaces since its multireference nature captures most of the
static correlation. We ascribe most of the discrepancy between
�SCF(2) and full CI to the PT2-level description of dynamic
correlation.75, 76

The �SCF(2) excited states display accuracy similar
to that of the ground state, with T1 having the smallest
mean absolute error (MAE) from full CI and S2 having the
largest MAE, shown in Table I. Also given in Table I is
the non-parallelity error (NPE) from full CI, computed as
NPE= avg(|�E − �Eavg|), where �E is the difference be-
tween �SCF(2) and full CI energies. As the MAEs and NPEs
given in Table I show, the �SCF(2) error grows as the ba-
sis set increases because of the increase in dynamic corre-
lation correctly captured by full CI; but the error does not
change much from the triple-zeta to the quadruple-zeta ba-
sis set. Overall �SCF(2) performs well for both the ground

TABLE I. Mean absolute errors (MAE) and non-parallelity errors (NPE, given in parentheses) of �SCF(2)
from full CI, given in mhartree. Ground and excited state errors are of similar size, both for H2 and for hydrogen
fluoride.

H2 S0 T1 S1 S2

cc-pVDZ 7.04 (2.14) 10.1 (0.60) 5.20 (4.80) 8.83 (8.37)
cc-pVTZ 8.73 (3.05) 13.7 (0.69) 4.51 (4.44) 13.2 (11.1)
cc-pVQZ 8.92 (3.45) 14.7 (1.23) 3.78 (3.78) 14.2 (12.3)

FH X1
 3� 1� 1
 3


Dunning-Hay 8.51 (2.32) 12.7 (0.91) 11.4 (0.35) 12.8 (1.42) 16.9 (4.09)
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and low-lying excited states of H2 with a minimal number of
HF states.

Interestingly, we find that the S0 state from �SCF(2) lies
above the full CI results by only 5 mhartree near the equi-
librium distance yet rises to 14.5 mhartree above full CI at
the dissociation limit, in contrast to what one would expect
from errors due to dynamic correlation. For example, a (2,2)
CASSCF calculation in the cc-pVQZ basis with no state-
averaging has an error of 22 mhartree near equilibrium and
less than 0.07 mhartree at the dissociation limit. As we will
show for hydrogen fluoride, the lower error near equilibrium
is because of the orbital relaxation in the �SCF states.

B. Hydrogen fluoride dissociation

We now turn to hydrogen fluoride as an exemplar for
heteronuclear diatomic molecules since both its ground and
excited states have been studied using a variety of multiref-
erence perturbation theory methods.50, 51, 76 We consider the
ground state, 
 singlet and triplet excited states, and � singlet
and triplet excited states of the hydrogen fluoride molecule. At
equilibrium, the 
 excited states are made up of a transition
from the σ bonding to anti-bonding orbitals. The � excited
states come from the degenerate px and py orbitals to the σ

anti-bonding orbital. The wavefunction basis in the �SCF(2)
calculations is made up of the HF ground state and nine �SCF
states. Initial guesses for the nine �SCF states are constructed
via two single-electron excitations and one two-electron ex-
citation for each of the three relevant orbital transitions:
σ → σ* for the 
 state and px, py → σ ∗ for the � states.

We start by computing the NPE of the ground state of hy-
drogen fluoride in the cc-pVTZ basis with the RKR potential
energy surface, shown in Figure 2. For reference, the full CI

FIG. 2. Non-parallelity error of �SCF(2) (green), �SCF-CI (red), and CAS-
CI (blue) computed in the cc-pVTZ basis with the Rydberg-Klein-Rees
(RKR) potential for hydrogen fluoride. The non-parallelity error is defined
in the text. All three methods include the same number of non-Aufbau states,
but �SCF-CI includes no PT2 correction to the wavefunctions, and CAS-CI
also does not include any orbital relaxation in the excited states. In order to
emphasize the impact of orbital relaxation, both the �SCF-CI and CAS-CI
curves are shifted by average error of �SCF-CI.

equilibrium bond distance for hydrogen fluoride is 0.917 Å.
As in the case of H2, the �SCF(2) ground state is closer to the
RKR potential energy surface near equilibrium than at disso-
ciation. To see if this behavior is due to the PT2 correction, or-
bital relaxation, or both, we compute the NPE for CAS-CI and
for a PT2-free variant of �SCF(2), denoted �SCF-CI. The
�SCF-CI values are computed using the same �SCF states
as in the �SCF(2) calculations, but without any PT2 correc-
tion to the wavefunctions. The CAS-CI calculations consist
of a CI calculation using the same initial non-Aufbau orbital
occupations as in the �SCF(2) calculation, but without any
excited state SCF orbital relaxation, i.e., the ground state or-
bitals are used for every state. In order to make the impact of
orbital relaxation clearer, the CAS-CI curve is shifted by the
same amount as the �SCF-CI curve (376 mhartree). The PT2
correction to the wavefunctions has a huge impact on the en-
ergies: the 376 mhartree error of �SCF-CI is lowered to 80
mhartree by �SCF(2). The �SCF(2) curve is also more par-
allel to the RKR surface because of the PT2 correction. Com-
paring the �SCF-CI and CAS-CI curves, we see that orbital
relaxation is important near the equilibrium distance, which
is why the �SCF(2) curve performs better near equilibrium
than at dissociation for both H2 and hydrogen fluoride.

We can compare �SCF(2) for the hydrogen fluoride
ground state with two different CASPT2 calculations from
Ref. 76. In Ref. 76 the authors compute the ground state
of hydrogen fluoride using a valence and a 1:1 active space
in the 6-31G** basis. The 1:1 active space consists of all
occupied valence orbitals plus an active virtual orbital, of
the same symmetry, for each occupied valence orbital. The
valence active space for hydrogen fluoride has 8 electrons
and 3011 active configurations per irreducible representation
of the largest Abelian subgroup, and the 1:1 active space
consists of 8 electrons and 4022 configurations. The aver-
age errors of CASPT2 in the valence and 1:1 active spaces
are 8.2 and 5.6 mhartree, respectively. The average error in
the ground state for �SCF(2) with a 10-wavefunction basis
set is 10 mhartree, which is quite similar to the CASPT2
error despite the dramatically smaller number of reference
determinants.

While the comparable performance of �SCF(2) and
CASPT2 for the ground state is encouraging, its performance
for excited states is the primary goal of this assessment. Mov-
ing onto the excited states, we plot the deviation of �SCF(2)
from full CI using the Dunning-Hay basis in Figure 3. Overall,
with a minimal set of 10 determinants, the �SCF(2) method
stays fairly parallel to full CI for all states. The �SCF(2)
method does not perform as well at short distances due to the
increased dynamic correlation. Such larger errors at short dis-
tances have also been found for CASPT2 and CASSCF meth-
ods since the limited size of the active space makes it difficult
to capture all of the dynamic correlation in this regime where
core correlation can come into play.50

In Figure 3 we also see that the excited state errors are
similar in size to errors in the ground state. The MAEs of
�SCF(2) for the hydrogen fluoride molecule are between
11 and 17 mhartree, and the NPEs are between 0.3 and 4.0
mhartree, as detailed in Table I. While the MAEs are not
smaller than those observed using alternative multireference
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FIG. 3. Non-parallelity error, defined in the text, of the �SCF(2) potential
energy from full CI for hydrogen fluoride as a function of bond length in
the cc-pVTZ basis with 10 non-Aufbau states described in the text. Here
�E = E�SCF(2) − EFull-CI. The �SCF(2) ground and excited state mean ab-
solute errors vary between 8 and 17 mhartree. All of the states display greatest
deviation from full CI near the equilibrium distance (0.917 Å) because of the
approximate treatment of dynamic correlation in MP2.

methods,51 the �SCF(2) method gives similar errors for all
states using only 10 non-Aufbau basis states.

C. H4 conical intersection

The ability to describe and locate conical intersections
is important for many practical applications, but remains a
challenge for many excited state methods. To test the abil-
ity of �SCF(2) to describe conical intersections, we consider
a minimal chemical model, the tetrahedral H4 molecule. The
conical intersection is located at the symmetric tetrahedral ge-
ometry. To treat the electronic structure at the conical inter-
section, we use a set of six non-Aufbau determinants that are
symmetry-equivalent at the tetrahedral geometry. Plotted in
Figure 4 are the ground state and lowest lying excited state
potential energy surfaces of H4 according to �SCF(2). As
anticipated, since �SCF(2) is a “perturb then diagonalize”
method, it is able to locate conical intersections as long as the
degenerate states at the crossing are in the reference space.

0.05
0.09

0.13
-1.01 -0.99 -0.97 -0.95 -0.93

-1.99

-1.98

-1.97

-1.96

-1.95

FIG. 4. �SCF(2) reproduces the conical intersection in the tetrahedral H4
molecule in the 6-311G basis using six non-Aufbau states, with a non-
parallelity error relative to full CI of 0.33 mhartree for the ground state. The
inset on the right shows the definition of the X and Y coordinates.

For H4 the MAE and NPE in the ground state are 7.4
and 0.33 mhartree, respectively. Just like in CAS methods,
the error is generally reduced if the number of basis states
(e.g., for CASSCF, the size of the active space) is increased.
For example, if we add the HOMO → LUMO+1 double ex-
citation and the HOMO → LUMO+2 double excitation to
the H2 �SCF(2) calculation in the cc-pVDZ basis, the dif-
ference with full CI at equilibrium goes from 5.7 mhartree
to 2.4 mhartree. The energy at dissociation, however, still re-
mains 10 mhartree above the full CI result. Because there is
no state-averaging in �SCF(2), one can compute many ex-
cited states in one shot without sacrificing the accuracy of the
ground state.

It should be noted that the �SCF(2) method is not a black
box method because, as with the selection of an active space
for CASPT2, one needs to choose a proper set of non-Aufbau
HF reference states for �SCF(2). The �SCF(2) method is
more useful when physical intuition, or simple methods like
TDDFT, can be used to determine the desired excited state(s).
That can greatly reduce the amount on �SCF states that need
to be computed. Though one can also take the approach of
computing all the �SCF states in a CAS type active space,
or use a metadynamics based approach for locating multiple
�SCF solutions.33, 77 For smaller molecules we have found
that single excitations from a given state do not mix with that
state, which can be used to reduce the number of �SCF states.
Even though the orthogonality of the single excitations will
break down for larger molecules, we expect these states to be
redundant to include since the orbital relaxation in the �SCF
states accounts for single excitations.

The test cases presented here show that there is promise
for the �SCF(2) method for computing ground and excited
state potential energy surfaces. The NPEs for the different
molecular systems ranged from 0.3 to 12 mhartree for all the
electronic states. Like CASPT2, we do not get all of the dy-
namic correlation when we use a small number of reference
states. In the end we find the �SCF(2) method provides a new
and potentially very accurate way to efficiently compute ex-
cited states in molecular systems.

V. CONCLUSION

Here we have presented a new multireference “perturb
then diagonalize” strategy to obtain both static and dynamic
correlations while treating ground and excited states even-
handedly. The use of non-Aufbau �SCF wavefunctions for
the excited states allows for the ground and excited states to
have their own individually optimized set of molecular or-
bitals. Adding the perturbation before mixing the ground and
excited state wavefunctions allows us to incorporate MP2 cor-
relation in a state-specific manner. We have shown how to
simplify the computation of matrix elements in this method
such that terms scale no worse than N2

occ × N3
virt. By model-

ing a few simple systems we have found that the �SCF(2)
method is able to locate conical intersections and to obtain
ground and excited state potential energy surfaces to similar
degrees of accuracy. �SCF(2) errors for these test systems are
comparable to those from CASPT2 but are obtained using a
substantially smaller space of reference wavefunctions.
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Future work includes a direct implementation and paral-
lelization of �SCF(2) into a computational chemistry pack-
age in order to take advantage of existing optimization tech-
niques to accelerate �SCF(2) calculations. The nature of the
�SCF(2) method also allows it to be parallelized in a semi-
direct fashion. On a more fundamental level, as with other
PT2 methods, �SCF(2) stands to benefit greatly from a non-
empirical solution to the intruder state problem. Future work
will explore the �SCF(2) description of excited states in
larger and more complicated systems, such as open-shell rad-
icals, in order to further asses the abilities and limitations
of �SCF(2), though the present results already indicate the
potential of �SCF(2) for modeling excited states with high
accuracy.
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