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In the Born-Oppenheimer approximation for molecular dynamics as generalized by Born and Huang,
nuclei move on multiple potential-energy surfaces corresponding to different electronic states. These
surfaces may intersect at a point in the nuclear coordinates with the topology of a double cone. These
conical intersections have important consequences for the dynamics. When an adiabatic electronic
wave function is transported around a closed loop in nuclear coordinate space that encloses a conical
intersection point, it acquires an additional geometric, or Berry, phase. The Schrödinger equation for
nuclear motion must be modified accordingly. A conical intersection also permits efficient
nonadiabatic transitions between potential-energy surfaces. Most examples of the geometric phase in
molecular dynamics have been in situations in which a molecular point-group symmetry required the
electronic degeneracy and the consequent conical intersection. Similarly, it has been commonly
assumed that the conical intersections facilitating nonadiabatic transitions were largely symmetry
driven. However, conical intersections also occur in the absence of any symmetry considerations. This
review discusses computational tools for finding and characterizing the conical intersections in such
systems. Because these purely accidental intersections are difficult to anticipate, they may occur more
frequently than previously thought and in unexpected situations, making the geometric phase effect
and the occurrence of efficient nonadiabatic transitions more commonplace phenomena.
[S0034-6861(96)00404-7]
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I. INTRODUCTION

Within the Born-Oppenheimer approximation for
molecular systems, the nuclei move on a single
potential-energy surface created by the faster moving
electrons. This approximation is extremely reliable for
describing near-equilibrium properties of most mol-
ecules. However, for a reaction as simple as the ex-
change reaction H2+H→H+H2 problems can arise. A re-
cent series of resonance-enhanced multiphoton
ionization and time-of-flight mass spectroscopic mea-
surements characterized the product rotational-state dis-
tributions for the D+H2 reactions (Kliner et al., 1990,
1991; Adelman et al., 1992)

D+H2~v50,j !→HD~v850,j8!1H, (1.1a)

D+H2~v51,j !→HD~v851,j8!1H, (1.1b)

where v is the vibrational quantum number. For reac-
tion (1.1a) at a translation energy (E tr) of 1.05 eV, ‘‘per-
fect’’ agreement (Wu and Kuppermann, 1993) between
the theoretical predictions (Zhang and Miller, 1989;
Blais et al., 1990) and the experimental measurements
(Kliner et al., 1990) was obtained. However, for reaction
(1.1b), that is, for v51, agreement between theory
(Zhang and Miller, 1989; Mielke et al., 1992; Neuhauser
et al., 1992) and experiment (Kliner et al., 1991) deterio-
rates, at virtually the same E tr , E tr=1.02 eV. The culprit
is not, as might be expected, a problem with the
potential-energy surface, the 12A8 potential-energy sur-
face, or the solution of the scattering problem. Rather,
the culprit is a deficiency in the basic adiabatic Born-
Oppenheimer nuclear Schrödinger equation. This defi-
ciency is the result of conical intersections of the 12A8
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potential-energy surface with a second potential-energy
surface of 2A8 symmetry,1 the 22A8 potential-energy sur-
face (Wu and Kuppermann, 1993).
A point of conical intersection is a point in nuclear

coordinate space at the confluence of two Born-
Oppenheimer potential-energy surfaces. The local to-
pology of the potential-energy surfaces at this point is
that of a double cone, a diabolo (Berry and Wilkinson,
1984). Thus points of conical intersection are sometimes
referred to, quite aptly we will argue, as diabolical points
(Berry and Wilkinson, 1984). Conical intersections are
to be distinguished from Renner-Teller or glancing in-
tersections (Renner, 1934; Longuet-Higgins, 1961; Jun-
gen and Merer, 1976). Three types of Renner-Teller in-
tersections, labeled following Lee et al. (1984) and a
Jahn-Teller intersection, a particular example of a coni-
cal intersection, are presented in Figs. 1(a)–1(c) and
1(d), respectively. A detailed discussion of the types of
Renner-Teller intersections can be found in Lee et al.
(1984). Jahn-Teller intersections are also well studied
and have been the subject of many reviews (Englman,
1972; Bersuker 1984a, 1984b; Whetten et al., 1985; Ber-
suker and Ogurtson, 1986). While it is not the purpose
of this review to discuss Renner-Teller or Jahn-Teller
intersections in detail, the differences between these two
classes of surfaces of intersection have considerable rel-
evance in the present context and are reviewed in Sec.
II.
The effect of conical intersections on molecular pro-

cesses may be classified as either direct or indirect, ac-
cording to whether or not nuclear motion actually takes
place on both surfaces in question. Direct effects are
exhibited in radiationless decay of an excited state
(Michl and Bonacic-Koutecky, 1990; Kato and Baba,
1995) and ‘‘nonadiabatic recrossing’’ (Kash et al., 1994;
Waschewsky et al., 1994), in which nuclear motion oc-
curs on two potential-energy surfaces although the over-
all process begins and ends on the same potential-energy
surface, that is, it is ostensibly adiabatic. The more
subtle indirect effect occurs in a true adiabatic, single
potential-energy surface process, as a result of what is
variously referred to as the geometric phase effect
(Longuet-Higgins, 1961; Herzberg and Longuet-Higgins,
1963), molecular Aharonov-Bohm effect (Aharonov and
Bohm, 1959; Mead and Truhlar, 1979; Mead, 1980a), or
Berry phase effect (Berry, 1984). As a consequence of
this effect, nuclear wave functions that are transported
around a path that encloses a point of conical (as op-
posed to Renner-Teller) intersection acquire an addi-
tional nondynamical or geometric phase. This accumu-
lated phase compensates for the changes in the phase of
the adiabatic electronic wave function, which cannot be
both real-valued and continuous. It is this indirect geo-
metric phase effect that results in the disagreement be-

tween theory and experiment in the H+H2 scattering
noted above (Wu and Kuppermann, 1993).
The subtle aspect of the geometric phase effect is that

it shows up when a closed loop around the conical inter-
section becomes energetically accessible, regardless of
the energy of the conical intersection itself, so that the
nuclei need never move on the second potential-energy
surface for that surface to affect the dynamics. In the H3
system the conical intersection is approximately 1.5 eV
higher than the lowest-energy path, so that the effect of
the conical intersection on the dynamics was not widely
anticipated (Mead, 1980c).
While the importance of the energetically inaccessible

1The spectroscopic notation 2A8 refers to an electronic state
that is a spin-doublet and whose spatial part carries the A8
representation of the Cs group.

FIG. 1. Cross sections C1 and C2 of surfaces of revolution
exhibiting Renner-Teller and Jahn-Teller intersections, after
Longuet-Higgins (1961) and Lee et al., (1984): (1) C1=a1r

2,
C2=a2r

2; (2) C1=−a1r
2+b1r

4, C2=a2r
2; (3) C1=−a1r

2+br4,
C2=−a2r

2+b2r
4; (d) C1=−a1r+br2, C2=a1r+b2r

2.
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conical intersections in this low-energy scattering of H2
by H came as something of a surprise Goss-Levi, 1993;
Wu and Kuppermann, 1993)—despite its prediction
more than a decade earlier (Mead, 1980c)—the role of
conical intersections in other observable phenomena has
long been recognized. This topological feature is well
known to provide an efficient pathway, a funnel, for ra-
diationless decay of optically prepared electronically ex-
cited states in both small molecular systems (Desouter-
Lecomte et al., 1979) and large (biologically relevant)
ones (Bernardi, Olivucci, Ragazos, and Robb, 1992).
Even the geometric phase effect has been known for
over three decades in molecular spectroscopy where, in
an explicitly two-state formulation, it produces the dy-
namic Jahn-Teller effect (Gerber and Schumacher, 1978;
Morse et al., 1983). This effect is well understood as a
consequence of the pioneering work of Longuet-Higgins
(Longuet-Higgins et al., 1958; Longuet-Higgins, 1961).
Although initially ‘‘discovered’’ in the context of the

Born-Oppenheimer electronic Hamiltonian, the geomet-
ric phase effect may be evinced in any parametrically
dependent Hamiltonian. This was first appreciated by
Berry (1984). Because of the enormous impact of Ber-
ry’s work, the geometric phase effect is frequently re-
ferred to as the Berry phase effect. The implications of
the geometric/Berry phase effect for general adiabatic
processes have been reviewed in this journal (Mead,
1992) and elsewhere (Jackiw, 1988; Shapere and Wilc-
zek, 1989; Zwanziger et al., 1990; Bohm et al., 1991).
The impact of the geometric phase effect on molecu-

lar dynamics reflects the prevalence of the requisite
conical intersections. Traditionally conical intersections
were viewed as comparatively rare topological features,
invoked when molecular point-group symmetry required
them, normal degeneracies (Tinkham, 1964), as in the
Jahn-Teller effect, or permitted them, in a class of acci-
dental degeneracies referred to as symmetry-allowed
(Frey and Davidson, 1990). Intersections of two surfaces
of the same symmetry, another class of accidental degen-
eracies, although in principal known to exist (von Neu-
mann and Wigner, 1929), were largely ignored. In fact,
the existence of conical intersections of two states with
the same point-group symmetry had been a matter of
some controversy. The conditions under which two
potential-energy surfaces may intersect, referred to as
the noncrossing rule, were first considered by von Neu-
mann and Wigner (1929). In the 1970s several groups
argued against the rule’s validity (Naqvi, 1972; Hatton,
1976, 1977; Hatton et al., 1976, 1977), although it is in
fact quite valid (von Neumann and Wigner, 1929;
Herzberg and Longuet-Higgins, 1963; George et al.,
1975; Longuet-Higgins, 1975; Stone, 1976; Mead, 1979);
see Sec. II.
Conical intersections of two states of the same sym-

metry, a hitherto underappreciated class of conical inter-
sections, are the focus of this review. The occurrence of
this class of conical intersection and the concomitant
geometric phase effect present a particularly diabolical
situation, since neither the existence of the conical inter-
section nor the nuclear trajectories that can result in the

geometric phase effect can be anticipated on the basis of
group-theoretical arguments. However, the develop-
ment of new computational tools (Lengsfield and
Yarkony, 1992; Bearpark et al., 1994; Yarkony, 1995)
has made it possible to locate conical intersections in
general molecular systems and to characterize readily
the nuclear trajectories associated with the geometric
phase (Yarkony, 1996a; 1996b) without the help of
point-group symmetry. These techniques locate conical
intersections directly, that is, without tedious determina-
tion of the potential-energy surfaces in question. Recent
work (Bernardi, De, et al., 1990; Bernardi, Olivucci,
et al., 1990; Bernardi, Olivucci, Ragazos, and Robb,
1992; Bernardi, Olivucci, Robb, and Tonachini, 1992;
Manaa and Yarkony, 1994; Yarkony, 1994; Hettema and
Yarkony, 1995) has suggested that conical intersections
of two states of the same symmetry are much more com-
mon than previously anticipated. This will have impor-
tant consequences for nuclear dynamics. In view of the
important questions raised by this ongoing research, this
review was undertaken to summarize the current state
of this reemerging area.
Section II introduces the tools that will permit the

computational studies. To place these algorithms in their
proper perspective, the elementary theory of nonadia-
batic processes, with particular emphasis on conical in-
tersections and the geometric phase, is reviewed. Read-
ers interested in a more detailed mathematical overview
of the geometric phase and its impact in molecular dy-
namics should consult Mead’s review in this journal
(Mead, 1992). In Sec. III the numerical procedures are
used to characterize conical intersections of two states of
the same symmetry that induce either the geometric
phase effect in an adiabatic process or an electronically
nonadiabatic transition. Section IV summarizes and dis-
cusses the implications of the work reviewed herein.

II. CONCEPTS FOR NONADIABATIC PROCESSES

A. Basic principles

We begin by partitioning the total Hamiltonian
HT(r,R) as follows:

HT~r,R!5 (
a51

Nnuc
21
2Ma

¹a
21H~r;R![Tnuc1H~r;R!.

(2.1)

Here r and R denote the coordinates of the Ne electrons
and Nnuc nuclei, respectively, in a space-fixed frame and
Tnuc is the nuclear kinetic operator. The use of a space-
fixed frame is adequate for the presentation that follows.
The conversion to a coordinate system that separates
internal degrees of freedom from translations and rota-
tions is a nontrivial task. See, for example, Wu and Kup-
permann (1993); Wu et al. (1994); Kendrick and Pack
(1996a). In this work unless otherwise noted relativistic
effects will be ignored, so that H(r;R) is the nonrelativ-
istic Born-Oppenheimer electronic Hamiltonian. With
this approximation, the 2S+1 sublevels of an electronic
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state with total electron spin S can never mix. In this
case only the scalar (Abelian), as opposed to the matrix
or non-Abelian (Wilczek and Zee, 1984; Moody et al.,
1986) realization of the geometric phase effect can oc-
cur. The reader interested in the non-Abelian case
should begin by consulting Mead (1992).
We define a set of adiabatic electronic wave functions,

CI(r;R), by

@H~r;R!2EI~R!#CI~r;R!50. (2.2)

This set is in principle complete. As a consequence of
the partitioning in Eq. (2.1), the electronic wave func-
tions and the Hamiltonian depend only parametrically
on R, while the eigenvalues EI(R) depend explicitly on
R. A semicolon is used to distinguish this parametric
dependence. EI(R) actually depends only on the 3Nnuc

−6[N int subset of the nuclear coordinates referred to as
the internal coordinates and denoted Ri. However, it
will be notationally convenient to suppress this distinc-
tion unless specifically required.
The CI(r;R) are assumed to be expanded in a basis of

Ne-electron functions, referred to as configuration-state
functions (CSFs; Shavitt, 1976), and denoted Ca(r;R),
a=1−NCSF. It will be assumed, if required, that NCSF can
be quite large, > 106. These basis functions are symmetry
adapted, that is, they are eigenfunctions of S2, antisym-
metric under electron interchange, and carry an irreduc-
ible representation of the spatial point group of the nu-
clei. The CSFs are linear combinations of Slater
determinants, antisymmetrized products of molecular
spin orbitals, j i(r;R)gi , i512Nmso and gi=a or b, that
is,

ca5(
i
di

aA)
j51

Ne

j i jg i j
, (2.3)

where A is the Ne particle antisymmetrizer. The mo-
lecular orbitals j i(r;R) are obtained from a self-
consistent-field procedure, which imparts the indicated
R dependence (Lengsfield and Yarkony, 1992). Here
and throughout this work the r and R dependence of a
function may be suppressed for clarity when no confu-
sion will result. Also adopted is the convention that vec-
tors (matrices) are indicated by bold (bold/italic) type-
face. Thus the real-valued electronic wave function is

CI~r;R!5 (
a51

NCSF

ca
I ~R!ca~r;R![cI~R!†c~r;R!. (2.4a)

The cI(R) satisfy the secular problem

@H~R!2IEI~R!#cI~R!50 (2.5)

where H(R) is the electronic Hamiltonian matrix in the
CSF basis.
At any particular nuclear configuration R, it is pos-

sible to choose the adiabatic electronic wave functions
to be real valued. However, since the electronic wave
function is determined only up to a geometry-dependent
phase factor, it may not be possible, as noted in the
Introduction, to require the wave functions to be real
valued at all nuclear configurations and still preserve

continuity with respect to R. This is a key issue in the
theory of conical intersections and is the essential idea
behind the geometric phase effect. To include the possi-
bility of a geometry-dependent phase factor, we define,
following Mead and Truhlar (1979), a gauge transforma-
tion

C̃I~r;R![eiAI~R!CI~r;R!, (2.4b)

where the AI(R) are chosen to make C̃I(r;R) single-
valued and the CI(r;R) are the real-valued solutions to
Eq. (2.2) or Eq. (2.5). Gauge transformations of this
type have been used previously in multistate problems
by Longuet-Higgins in his classic treatment of the dy-
namic Jahn-Teller effect noted above (see also Sec.
II.D) and by Mead (1983) in his treatment of conical
intersections in X3 systems. The R dependence of AI(R)
must reflect the presence of any conical intersection in
accordance with the Berry phase condition given below.
Thus the AI(R) can be constructed only after the conical
intersections have been located. While a generally appli-
cable approach for determining the AI(R) has been sug-
gested (Kendrick and Mead, 1995), its determination re-
mains a nontrivial task. Note that a distinct geometric
phase factor AI(R) may be required for each state. This
reflects the observation (see Fig. 2 and Sec. III.D) that
conical intersections involving distinct, but nondisjoint,
pairs of states are possible, even in a small region of
nuclear coordinate space.
The total wave function, C k

T(r,R), expanded as

Ck
T~r,R!5(

I51

Na

xI
k~R!eiAI~R!CI~r;R!

[xk~R!†C̃~r;R!, (2.6)

satisfies the total, time-independent Schrödinger equa-
tion (HT2E)C k

T(r,R)=0. The expansion of CT on the
right-hand side of Eq. (2.6) represents the Born-Huang
approximation (Born and Huang, 1954; Ballhausen and
Hansen, 1972). The basic premise of this approach is

FIG. 2. Conical intersections of two-dimensional potential-
energy surfaces for states (1,2) and (2,3) in a region of nuclear
coordinate space indicated by the shaded oval.
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that the preliminary solution of Eq. (2.2) allows for the
drastic truncation of the summation in Eq. (2.6), that is,
Na is small, 1, 2, or 3, usually. The strictly adiabatic limit,
the Born-Oppenheimer approximation, corresponds to
Na=1. If Na were to be large, little if anything would be
gained by separating electronic and nuclear motion. In
such a case the nuclei and electrons should be treated on

an equal footing. Such completely nonadiabatic treat-
ments have been performed to date only for small mo-
lecular systems (Deumens et al., 1994), including the
classic treatment of H2 by Kolos and Wolniewicz (1963).
Using expansion (2.6) in the time-independent Schrö-

dinger equation gives the nuclear Schrödinger equation
for xk(R):

F (
a51

Nnuc
21
2Ma

¹a
21EI~R!2EkGxI

k~R!5 (
J51

Na

(
a51

Nnuc F 1
2Ma

$2k̃a
IJ~R!1¹a• f̃ a

IJ~R!1 f̃ a
IJ~R!•¹a%GxJ

k~R!, (2.7a)

or using real-valued wave functions

F (
a51

Nnuc
11
2Ma

~2i¹a1AI
a!21ĒI~R!2EkGxI

k~R!

5 (
J~ÞI !

Na

eiAJI~R! (
a51

Nnuc F 1
2Ma

$2ka
IJ~R!1i~2i¹a1AJ

a!•f a
IJ~R!1ifa

IJ~R!•~2i¹a1AJ
a!%GxJ

k~R!, (2.7b)

where the derivative operator acts on all quantities to its
right, A j

a(R)=¹aAJ(R), AJI(R)=AJ(R)−AI(R). The first
derivative couplings or simply the derivative couplings,
f̃ a
JI(R), are given by

f̃ a
JI~R!5^C̃J~r;R!u¹aC̃I~r;R!&r , (2.8)

k̃a
JI~R!5^¹aC̃J~r;R!•u¹aC̃I~r;R!&r (2.9a)

5 (
K51

NCSF

f̃a
KJ~R!* • f̃a

KI~R!, (2.9b)

and finally

ĒI~R!5EI~R!1 (
a51

Nnuc
ka
II

2Ma
. (2.10)

Here the superscript ˜ on a quantity will be used to
denote the use of complex-valued electronic wave func-
tions and will be omitted when real-valued wave func-
tions are used. The subscript(s) on ^•••u•••& will denote
the coordinates being integrated and will be suppressed
when no confusion will arise. In deriving Eq. (2.7) we
have used the relation

¹af a
JI~R!5^CJ~r;R!u¹a

2CI~r;R!&r1ka
JI~R!. (2.11)

The equivalence of Eqs. (2.7a) and (2.7b) is readily es-
tablished by inserting Eq. (2.4b) into Eqs. (2.8) and
(2.9a) and inserting the result into Eq. (2.7a).
The Berry phase condition (Berry, 1984) is a state-

ment about the line integral of f̃ a
II(R) around a closed

loop C . Note that f̃ a
II(R)=iA I

a(R)Þ0 whereas f a
II(R)=0.

For N int=3 the accumulated phase around the closed
loop C is given by

gI~C ![i R
C
f̃II~Ri!•dRi52 R

C
¹AI~R

i!•dRi

(2.12a)

52Im E E
C

~¹3 f̃II!•dS. (2.12b)

Berry used Eq. (2.12b) to show that gI(C)
56p(eigI(C)521) if C encompasses a conical intersec-
tion and zero (eigI(C)51) otherwise, so that the associ-
ated wave function changes sign when a closed loop en-
closing a conical intersection is traversed (Berry, 1984).
The equivalences between Eqs. (2.12a) and (2.12b) rely
on Stokes’ theorem and must be generalized when
N int>3 (Berry, 1984). Note that f̃II is not the gradient of
a scalar, whereas ¹AI clearly is. Thus, from Eq. (2.12a)
and Stokes’ theorem, ¹AI must be singular at the coni-
cal intersection. This has implications for the numerical
procedures that employ the A J

a(R) (Kendrick and Pack,
1996a,1996b).
From Eq. (2.7b) it can be seen that the effect of coni-

cal intersections is to introduce the A J
a(R) into the

nuclear Schrödinger equation. The A J
a(R) play the role

of vector potentials analogous to those that appear in
electromagnetic theory (Schiff, 1960). Since the A J

a(R)
are singular at a conical intersection, the ‘‘magnetic
field’’ corresponding to these vector potentials,
¹3(¹AI), is zero everywhere except at the conical in-
tersection where it has a delta-function singularity.
(Mead and Truhlar, 1979). Previously Aharonov and
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Bohm (1959) had considered the effect of a true mag-
netic field confined to a narrow solenoid. It was for this
reason that Mead (1980a) suggested the name Molecular
Aharonov-Bohm effect for what is now referred to as
the geometric or Berry phase effect.

If the adiabatic basis is complete (not the operative
assumption in this work), Eq. (2.7a) can be written, with
the help of Eq. (2.9a), in gauge-covariant form as
(Moody et al., 1986; Bohm, Kendrick, and Loewe, 1992;
Bohm, Kendrick, Loewe, and Boya, 1992)

(
J51

Na F (
K51

Na

(
a51

Nnuc
21
2Ma

~¹adIK1fa
IK!•~¹adKJ1fa

KJ!1EI~R!dIJGxJ
k~R!5EkxI

k~R!. (2.7a8)

These analogies have been used to invoke gauge-theory
techniques into the treatment of conical intersections.
(Zygelman 1987; Jackiw 1988; Pacher et al., 1989).
It may appear at this point that the existence of a

conical intersection completely invalidates the standard
Born-Huang equations, that is Eq. (2.7b) without
the A I

a. This is not the case. If the terms in Eq.
(2.6) are reassociated as @xI

K(R)eiAI(R)#CI(r;R)
[ x̃I

K(R)CI(r;R), then the electronic wave functions re-
main real but double-valued functions. In this case no
gauge or vector potentials appear in Eq. (2.7b). This is
compensated for by the fact that the x̃ I

K(R) are now also
doubled valued. This approach was used by Longuet-
Higgins in his treatment of the dynamic Jahn-Teller ef-
fect (Longuet-Higgins, 1961) and in recent treatments of
H3 and its isotopomers. (Wu and Kuppermann, 1993). It
is, however, difficult to implement in general situations
and computationally cumbersome, so that the use of
vector potentials is preferred (Kendrick and Pack,
1996a).
The f a

IJ(R) are key to understanding the limitations of
the single-state Born-Oppenheimer approximation. In
the past they have been difficult to evaluate for wave
functions of the form in Eq. (2.4a) when NCSF is large.
However, within the last decade computational tech-
niques have been introduced that make the determina-
tion of the f a

IJ(R) tractable (Lengsfield and Yarkony,
1992).
The adiabatic correction, the term involving k a

II(R) in
Eq. (2.10), modifies the potential-energy surface EI(R).
In general it represents a small mass-dependent and
R-dependent correction and is routinely neglected.
However, as a conical intersection is approached, k a

II(R)
approaches positive infinity [though ĒI(R)−ĒJ(R) still
becomes quite small] and thus cannot be ignored. See
Sec. II.D for an example. This follows from Eq. (2.9b)
and the fact that at a conical intersection the compo-
nents of fIJ(R) are infinite. (Lengsfield and Yarkony,
1992). As a result there is a node in x(R) at a conical
intersection point. The adiabatic correction has been
evaluated using specialized (Bishop and Cheung, 1983,
1984) and more conventional (Jensen and Yarkony,
1988) electronic structure techniques for small molecu-
lar systems, including H2, BeH

+ (Bishop and Cheung,
1984) and LiH (Bishop and Cheung, 1983; Jensen and

Yarkony, 1988). The correction has also been measured
experimentally (Chen et al., 1986).
In the adiabatic approximation the nuclear Schrö-

dinger equation becomes

F (
a51

Nnuc
21
2Ma

(¹a
22k̃a

II~R!2¹a• f̃a
II~R!2 f̃a

II~R!•¹a)

1EI~R!2EkGxI
k~R!50 (2.13a)

or, using real-valued electronic wave functions,

F (
a51

Nnuc
21
2Ma

~¹a
22AI

a21ka
II2i¹a•AI

a2iAI
a
•¹a!

1EI~R!2EGxI
k~R!50 (2.13a8)

or, equivalently,

F (
a51

Nnuc
11
2Ma

~2i¹a1AI
a!21ĒI~R!2EGxI

k~R!50.

(2.13a88)

In the absence of a conical intersection, the phase gra-
dients do not appear in Eq. (2.13a9), resulting in the
standard adiabatic nuclear Schrödinger equation,

F (
a51

Nnuc
21
2Ma

¹a
21ĒI~R!2EGxI

k~R!50. (2.13b)

The difference between Eqs. (2.13a9) and (2.13b) dem-
onstrates the diabolical nature of conical intersections
noted in the Introduction. The A I

a are required by an
intersection of two potential-energy surfaces, only one
of which explicitly appears in the formulation of the
problem. If the existence of the conical intersection can-
not be anticipated (or ruled out), the dynamical treat-
ment may be flawed. The omission of the A I

a represents
the problem with the H+H2 dynamics noted in the In-
troduction. This point is illustrated further in Sec. II.D,
which juxtaposes the Renner-Teller and Jahn-Teller
problems.
In a sense the geometric phase effect is the price ex-

acted for using an electronically adiabatic basis. An al-
ternative approach, which seeks to retain compactness
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in the Born-Huang expansion while avoiding the pitfalls
of the adiabatic basis—such as the Berry phase effect
and the numerical difficulties associated with the deriva-
tive couplings (Sidis, 1992)—uses diabatic electronic
states (Smith, 1969) C I

d(r;R) in expansion (2.6). To
maintain the compactness of the expansion while elimi-
nating the derivative couplings, diabatic electronic states
should be constructed as a unitary transformation of the
adiabatic states, using the criterion (Smith, 1969)

K CI
d~r;R!U ]

]Ra
int CJ

d~r;R!L
r

50

for a=1−N int. It is well known that the resulting system
of partial differential equations is not solvable when
Na,NCSF (McLachlan, 1961; Baer, 1975; Mead and Tru-
hlar, 1982). However, approximate, or quasidiabatic
states can be used (McLachlan, 1961; Werner et al.,
1988; Pacher et al., 1989; Baer, 1992; Sidis, 1992;
Ruedenberg and Atchity, 1993). We note for complete-
ness that the development of adiabatic states can be re-
phrased in the language of gauge theory (Pacher et al.,
1989; Bohm, Kendrick, and Loewe, 1992; Bohm, Ken-
drick, Loewe, and Boya, 1992), with the transformation
to diabatic states described as a U(N) gauge
transformation—a non Abelian gauge transformation
such that in the new basis the f̄ IJ50, where the overbar
indicates that the new basis is used to evaluate the de-
rivative couplings.
Diabatic states should be used only when Na is re-

quired to be greater than 1, that is, if the nuclear dynam-
ics involves more than one potential-energy surface.
Thus, if single-surface nuclear dynamics can be assumed,
one must be careful to watch out for possible geometry
phase effects.
As noted previously, the effect of a conical intersec-

tion can be quite diabolical, since it need not be ener-
getically accessible for its influence to be exerted. Thus
it is desirable, if not essential, to be able to locate conical
intersections of potential-energy surfaces and character-
ize the circumscribing paths directly, that is, without
prior determination of the potential-energy surfaces
themselves. Before describing algorithms to accomplish
this, it is necessary to say something about the dimen-
sionality of the surface of intersection. This information
is contained in the noncrossing rule, to which we now
turn.

B. Surfaces of intersection: Noncrossing rule

The noncrossing rule defines the conditions for which
there will be degenerate roots in the electronic Schrö-
dinger equation in the full infinite-dimensional Hilbert
space, that is, degeneracies in Eq. (2.2) rather than Eq.
(2.5). However, for anything but the simplest problems,
Eq. (2.2) is necessarily approximated by a problem in a
finite-dimensional space such as Eq. (2.5) (Yarkony,
1996a). The specific results for the full infinite-
dimensional space differ from its finite-dimensional ap-
proximation. It is known, for example, that the rigorous

symmetry-allowed intersections in the one-electron sys-
tem H2

+ become avoided intersections when basis-set
methods are used (Hatton, 1976; Hatton et al., 1976;
Hatton, 1977; Hatton et al., 1977). Still a careful state-
ment of the noncrossing rule is possible and has been
given in the nonrelativistic matrix case by Longuet-
Higgins (1975) and in more general situations by Mead
(1979). According to the noncrossing rule (paraphrasing
Longuet-Higgins), for molecules with an even number
of electrons or if electron spin is ignored, crossings are
exceptional for two electronic states of the same symme-
try in diatomic molecules but not in polyatomic mol-
ecules (Longuet-Higgins, 1975). This is a consequence of
two conditions needing to be fulfilled (Longuet-Higgins,
1975). The solution of the two equations is possible in a
molecule with two or more degrees of freedom, that is, a
polyatomic molecule, but in general extremely unlikely
in a diatomic molecule, which possesses only one inter-
nal degree of freedom.
For the subsequent analysis, we need to know the lo-

cal topology of the surface of conical intersections. This
result will be used in the computational characterization
of the surface of intersection, as well as in computation
of the closed paths surrounding the point of a conical
intersection, which may exhibit the geometric phase ef-
fect. A perturbative approach will be used to develop
this result. This perturbative approach was used previ-
ously by the present author to develop/justify an algo-
rithm for the determination of conical intersections
(Yarkony, 1994, 1995, 1996c) and by Mead in his semi-
nal discussions of the geometric phase effect (Mead and
Truhlar, 1979, 1983; Mead, 1980a, 1983, 1992;
Thompson and Mead, 1985; Thompson et al., 1985,
Pacher et al., 1989; Kendrick and Mead, 1995). The same
perturbative approach was also applied by Mead to the
noncrossing rule (Mead, 1979) and the behavior of de-
rivative couplings in the vicinity of a conical intersection
(Mead, 1983).
Assume that Rx is a point in nuclear coordinate space

corresponding to an intersection of M potential-energy
surfaces. A new basis for the electronic Hamiltonian is
to be constructed from a fixed, geometry-independent
transformation of the CSF basis. The first M compo-
nents of this transformation are the cI(Rx), I512M sat-
isfying Eq. (2.5). We denote this as the Q space. Its
orthogonal complement is the P space. The functions in
the P space, denoted CJ(Rx)

†c(r;R), J5(M11)2NCSF,
need only be orthogonal to, and noninteracting with,
cI(Rx)

†c(r;R), I512M . The CJ(Rx) are not in general
eigenfunctions of H(Rx). This basis has only a limited
geometry dependence through the CSFs. It is similar to
the ‘‘crude adiabatic’’ basis introduced by Longuet-
Higgins in his treatment of the Jahn-Teller and Renner-
Teller effects (Longuet-Higgins, 1961) and will be de-
noted as such subsequently.
In the crude adiabatic basis, at any R Eq. (2.5) be-

comes

SHQQ~R!2IEI~R! HQP~R!

HPQ~R! HPP~R!2IEI~R!
D S Qc~R!

PC~R!
D 5S 00D
(2.14)
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where

HIJ
QQ~R!5cI~Rx!

†H~R!cJ~Rx!,

HIK
QP~R!5CK~Rx!

†H~R!cI~Rx!,

and

HKL
PP ~R!5CK~Rx!

†H~R!CL~Rx!

for I ,J<M and K ,L.M . At Rx , H IK
QP(Rx)=0,

HIJ
QQ(Rx)50, IÞJ ,HII

QQ(Rx)5EI(Rx) with EI(Rx)
−EM(Rx) [DEIM(Rx)=0, I512(M21).
We wish to consider under what conditions there can

be a crossing at a neighboring nuclear configuration R« .
At R« the Hamiltonian matrix in the CSF basis becomes
H(R«)5H(Rx)1(Ra

@]H(Rr)/]Ra#dRa at first order,
where dR=Re−Rx . Here and below, derivatives taken
with respect to R a

i , denoted Ra for simplicity, will be
indexed by the subscript a. Note that the changes in
H(R) result from changes in both the Hamiltonian op-
erator, through the electron-nuclei attraction term, and
in the molecular orbitals j(r;R) used to construct the
CSFs. Thus in the crude adiabatic basis

HII
QQ~R«!5EI~Rx!1gI~Rx!

†
•dR, (2.15a)

HIJ
QQ~R«!5hIJ~Rx!

†
•dR, (2.15b)

where

g a
I ~Rx!5cI~Rx!

†@]H~Rx!/]Ra#cI~Rx!

5@]EI~Rx!/]Ra# ,

and

h a
IJ~Rx!5cI5~Rx!

†@]H~Rx!/]Ra#cJ~Rx!.

Since contributions from the P space alter the energy
at second order [H IK

QP(Rx)=0; Mead, 1983] the degen-
eracy can only be preserved through first order provided
certain conditions are satisfied. From the diagonal ma-
trix elements we get (M21) conditions

gIM~Rx!
†
•dR50, I,M , (2.16a)

where gIM(R)[gI(R)−gM(R), and from the off-diagonal
matrix elements we get M(M21)/2 conditions (Mead,
1979; Katriel and Davidson, 1980)

hIJ~R0!
†
•dR50, I,J<M . (2.16b)

Equations (2.16a) and (2.16b) represent limitations on
the displacements dR. They provide the requisite state-
ment concerning the local topology of the surface of
conical intersection. The degeneracy will be lifted at first
order, that is linearly in the displacements, provided dR
is restricted to the space of dimension M̄5(M21)(M
12)/2 spanned by the vectors gIM(Rx), I512(M21),
and hIJ(Rx), I,J<M . For M=2, the case of interest in
this review, M̄5M and the above space will be referred
to as the g-h plane. As explained more fully in Sec. II.D,
the behavior of the phase of an electronic wave function

transported along a g-h path, a closed loop in the g-h
plane that encloses a conical intersection point, reflects
the geometric phase effect.
The degeneracy is preserved through first order pro-

vided dR is restricted to the g-h' space, the space of
dimension N int−M̄ orthogonal to the g-h plane. The g-h
plane and g-h' space are illustrated in Fig. 3 for N int=3.
In this case the surface of intersection has dimension 1
and is referred to as a seam. The g-h' space is spanned
by a single vector, which represents the tangent to the
seam of conical intersection at Rx .
Note that this result is a local one. For example, for

N int=3, more than one seam may exist; for N int=2, more
than one isolated point of conical intersection may exist.
Examples of these situations are well known. The stan-
dard quadratic Jahn-Teller model (Longuet-Higgins,
1961; Meiswinkel and Köppel, 1990), a two-dimensional
model, has four isolated points of conical intersection
(Zwanziger and Grant, 1987). Additional examples will
be indicated as the discussion proceeds.
The surface of intersection has (for M=2) dimension

N int−2 provided neither gIJ(R) nor hIJ(R) is identically
zero. gIJ(R) will not in general vanish identically. How-
ever, hIJ(R) will vanish identically when cI and cJ corre-
spond to states of different symmetry. For states of the
same spin-multiplicity but distinct point-group symme-
try, the surface of intersection has dimension N̄ int−1,
where N̄ int is the number of totally symmetric internal
degrees of freedom for the point group in question. For
this case the intersection generally remains conical, with
hIJ contained in the space orthogonal to the totally sym-
metric internal degrees of freedom. An exception to this
statement occurs for an intersection of an A8 state and
an A9 state in triatomic systems. In this case, the three
internal coordinates transform as the totally symmetric,
irreducible representation, so that there can be no cou-
pling through first order in the crude adiabatic basis. In
the true adiabatic basis, these states are not coupled by
internal motions at all, but rather by overall molecular
rotation. An example of this situation is, as discussed in
II.D, a Renner-Teller intersection.
For the nonrelativistic electronic Hamiltonian consid-

FIG. 3. g-h plane, g-h' vector and polar coordinates (r,u) for
a point (x ,y) in the g-h plane. For pictorial simplicity gIJ and
hIJ are taken to be perpendicular when defining (x ,y).
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ered here and M=2, the surface of intersection of states
of different spin multiplicity [hIJ(R)=0 for all R] will
have dimension N int−1. However, this intersection is not
conical, since for the nonrelativistic Hamiltonian no
mixing of states of distinct spin multiplicity is possible.
In the presence of the spin-orbit interaction, the charac-
ter of this intersection changes. Even the dimensionality
of the surface of intersection changes for odd-electron
systems. The essential point is the role of Kramer’s de-
generacy (Tinkham, 1964; Truhlar et al., 1975). The de-
tails of this issue are beyond the scope of the present
review; they are discussed by Mead (1979).

C. Surfaces of intersection: Location

Two algorithms that directly locate points on the sur-
face of conical intersections will be presented below, one
based on the above perturbation theory and applicable
to general polyatomic systems (Yarkony, 1995) and a
second that finds its principle applications in triatomic
systems (Manaa and Yarkony, 1990; Yarkony, 1990).

1. Conical intersections in general polyatomic systems

For general polyatomic systems N int can be quite
large, so that it may not be feasible or even desirable to
characterize the entire surface of a conical intersection.
The conical intersections that will be of most interest are
those with energies accessible in chemical processes.
Thus an algorithm is sought in which the energy of the
point on the surface of a conical intersection is mini-
mized. In addition it is frequently desirable, as in the
photodissociation processes discussed in Sec. III, to re-
strict the range of nuclear configurations to be consid-
ered. Thus the problem at hand can be phrased as an
energy minimization, subject to two classes of con-
straints: (i) the constraint of a conical intersection and
(ii) the constraints on the nuclear configurations ex-
pressed as geometrical equality constraints, Ki(R),
i512Ncon. This constrained minimization will be ac-
complished using Lagrange multiplier techniques (Gold-
stein, 1950).

We begin by considering the imposition of the conical
intersection constraint. Assume that R0 is a point in
nuclear coordinate space near, but not at, an intersec-
tion of two potential-energy surfaces. Quasidegenerate
perturbation theory will be used to determine a new ge-
ometry, Rx=R0+dR, which represents a point on the sur-
face of conical intersection. As above, we use cI(R0),
cJ(R0) satisfying Eq. (2.5) at R0 to define the Q and P
spaces. Note that I , J(5I11) need not be 1, 2. How-
ever, it is then necessary to include in the P space
cK(R0), K512(I21). At R0 , H KI

PQ(R0)=0, H IJ
QQ(R0)=0,

H II
QQ(R0)=EI(R0), but EI(R0)ÞEJ(R0). We desire that,

at Rx , EI(Rx)=EJ(Rx) to first order. Since, as above, the
P-space contributions change the energy at second or-
der, dR must be chosen such that HQQ(Rx) has degen-
erate roots, that is,

DHIJ
QQ~Rx![HII

QQ~Rx!2HJJ
QQ~Rx!

5DEIJ~R0!1gIJ~R0!
†
•dR

50 (2.17a)

and

HIJ
QQ~Rx!5hIJ~R0!

†
•dR50. (2.17b)

Note that DH IJ
QQ(R0)=DEIJ(R0) and

(]/]Ra)DH II
QQ(R0)=g a

IJ(R0). Equations (2.17a) and
(2.17b), represent the desired constraints.
On the basis of the above discussion, the following

Lagrangian is to be minimized:

L~R,j,l!5EI~R!1j1DEIJ~R!1j2HIJ
QQ~R!

1 (
i51

Ncon

l iKi~R!. (2.18)

Minimizing L(R,j,l) with respect to R, j, and l through
second order leads to the following Newton-Raphson
equations:

S QIJ~R̄,j,l! gIJ~R! hIJ~R! kIJ~R!

gIJ~R!† 0 0 0

hIJ~R!† 0 0 0

kIJ~R!† 0† 0† 0
D S dR

dj1
dj2
dl

D 52S gI~R!1j1g
IJ~R!1j2h

IJ~R!1(
i

l ik
i~R!

DEIJ~R!

0
K~R!

D (2.19a)

(2.19b)

(2.19c)

(2.19d)

where dR=R8−R, dl=l8−l, dj=j8−j, k a
i (R)

=]Ki(R)/]Ra, and Q
IJ(R) is a second derivative matrix,

Q ab
IJ (R)=]2L(R,j,l)/]Ra]Rb (Manaa and Yarkony,

1993b).
Equation (2.19) is the basis of the computational tools

used in this review to study the conical intersections of
two states of the same symmetry, and thus its use merits

some discussion. The appearance of QIJ(R̄,j,l) rather
than QIJ(R,j,l) in Eq. (2.19) reflects the procedure used
for its solution. Equation (2.19) is solved iteratively until
dR=dj=dl=0. For the algorithm to be numerically vi-
able, the quantities that appear on the right-hand side of
Eq. (2.19) must be readily available at each R. Efficient
evaluation of these quantities is achieved using analytic
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gradient techniques and has been reviewed elsewhere
(Yarkony, 1995). QIJ(R,j,l) is, however, costly to
evaluate, requiring at present the use of divided differ-
ence techniques (Hettema and Yarkony, 1995). Thus it
is not evaluated at each R. Since the solution of Eq.
(2.19) requires only the exact evaluation of the right-
hand side, approximations for QIJ(R,j,l) that do not
adversely affect the rate of convergence to a solution are
quite acceptable.
Equation (2.19) has 2+Ncon zero-diagonal elements, so

that its desired solutions are saddle points in the total
space of R,j,l. The dependence EI(R) on R in the sub-
space R' of internal coordinates orthogonal to the span
of gIJ, hIJ, and ki , i512Ncon, can be deduced from the
projection of the exact QIJ onto that subspace. Local
minima of EI(R) in R

' correspond to a positive-definite
projection of QIJ (Fletcher, 1981). Rmex , the point on
the surface of intersection with the lowest value of
EI(R), is referred to as the minimum-energy crossing
point.
Equations (2.19b) and (2.19c) are identical to Eqs.

(2.17a) and (2.17b) and therefore enforce the degen-
eracy, while Eq. (2.19d) enforces the geometrical con-
straints. Eq. (2.19a) achieves the energy minimization.
These observations lead to additional ways of using Eq.
(2.19). The observation that Eq. (2.19d) enforces the
geometrical constraints can be used to predict (approxi-
mately) the location of neighboring points on the sur-
face of conical intersections. (Manaa and Yarkony,
1993b). This feature is routinely used in characterizing a
particular region of a surface of conical intersection. If
QIJ is replaced by a (diagonal) matrix with large positive
diagonal elements, the energy minimization aspect of
the algorithm will be damped and a point on the surface
of conical intersection near R0 will be located. This lat-
ter aspect of the use of Eq. (2.19) will be considered in
Sec. III.D.

2. Conical, glancing, and avoided intersections

An alternative approach for characterizing surfaces of
conical intersection, which is generally applicable but
has found its principle application in triatomic systems
(Manaa and Yarkony, 1990, 1992; Kuntz et al., 1994),
seeks to find minima in DEIJ(R)

2. The algorithm follows
from the straightforward observation that surfaces of
conical intersections represent a class of solutions of the
equation (]/]Ra)DEIJ(R)

2[G a
IJ(R)=2g a

IJ(R)DEIJ(R)
=0. Three classes of solutions to this equation exist, coni-
cal intersections for which DEIJ(R)=0, g a

IJ(R)Þ0 and
two classes of solutions for which the slopes of the
potential-energy surfaces are parallel: those for which
DEIJ(R)=0 and g a

IJ(R)=0 (Renner-Teller or glancing in-
tersections); and those for which DEIJ(R)Þ0, but
g a
IJ(R)=0. This latter class of extrema will be referred to

as avoided intersections for reasons discussed further be-
low. This situation differs from that of the preceding
algorithm, for which the only solutions are conical inter-
sections.

The solution of G a
IJ(R)=0 can be accomplished using

a Newton-Raphson procedure,

FIJ~R0!d52GIJ~R0!, (2.20)

where FIJ(R0) is the second derivative or hessian matrix
given by

Fab
IJ ~R0!5

]

]Ra
Gb

IJ~R0!

52ga
IJ~R0!gb

IJ~R0!12DEIJ~R0!

3
]

]Ra
gb
IJ~R0!. (2.21)

The key issue in the use of Eq. (2.20) is the subspace of
internal coordinates in which this equation is to be
solved. In triatomic systems Eq. (2.20) can be employed
using orthogonal Jacobi coordinates j5(R ,r ,g). In ac-
cordance with the dimension of the surface of conical
intersection, a preassigned coordinate j1 is fixed at a par-
ticular value and Eq. (2.20) solved in the remaining two-
dimensional space. In this way the surface (here a seam)
of intersection is mapped out as a function of j1 . This
procedure, which has been successfully applied to deter-
mine seams of conical intersection in triatomic systems
(Manaa and Yarkony, 1990, 1992) is entirely adequate
as long as ĵ i , the unit vector in the direction of j i , has a
nonzero projection onto g-h'. If this is not the case, the
procedure will fail. This pitfall can be avoided by exam-
ining the eigenvalues of the hessian matrix FIJ(R0) at
any point on the surface of intersection. The tangent to
the surface of intersection will correspond to the eigen-
vector corresponding to the zero eigenvalue for this ma-
trix. A very careful analysis of this situation has been
provided by Kuntz and co-workers (Kuntz et al., 1994).
This point is discussed from an alternative perspective in
Sec. III.A.2.
When DEIJ(R) is never 0, or not 0 on a domain,

solutions to Eq. (2.20) may still exist on that domain
provided g a

IJ(R)=0, where the components of gIJ(R) are
restricted to (projected onto) the domain under consid-
eration. We shall refer to such solutions as points of
avoided intersection. There appears to be no natural
definition for this domain or even its dimension. In the
past we have found it useful, in triatomic systems, to
take the domain to be orthogonal to a particular internal
Jacobi coordinate and thereby determine an avoided-
crossing seam (Gallo and Yarkony, 1986; Manaa
and Yarkony, 1993b). This leads to a simple analogy
between seams of conical intersections and avoided in-
tersections. Seams of avoided intersection have been de-
termined for the nonadiabatic quenching reactions
M(2P) +HCl→MCl+H for M=Na (Gallo and Yarkony,
1986) and Li (Manaa and Yarkony, 1993b) using the
Jacobi coordinate R(M-HCl) as the seam parameter.
Subsequent studies (Eaker, 1990) of the dynamics of the
M=Na reaction found that the propensity for an elec-
tronically nonadiabatic transition was most significant in
the vicinity of the seam, in accord with intuitive notions.
It is important to reemphasize, however, that the surface
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of intersection is a unique property of the two surfaces
in question. The surface of avoided intersection de-
pends, however, on the domain chosen.

D. Properties of adiabatic wave functions near surface
intersections: A comparison of conical
and Renner-Teller intersections

Not all intersections of potential-energy surfaces pro-
duce the same effect on the adiabatic electronic wave
functions. Conical intersections and Renner-Teller inter-
sections exhibit characteristic differences. The geometric
phase effect arises for a conical intersection but not for a
Renner-Teller intersection. As these examples have im-
portant implications for the numerical studies in Sec. III,
the differences between conical and Renner-Teller in-
tersections are briefly reviewed below.

1. Electronic structure

Equation (2.14) can be used to consider the (phase)
behavior of the real-valued adiabatic wave functions
along closed loops surrounding an intersection point.
This matter has been addressed by Longuet-Higgins
(1961) and Mead (1983). Note from Eq. (2.14) that
the phase behavior of the wave function follows its
behavior in Q space, since [HPP(R)−IEI(R)]

PC(R)
=−HPQ(R)Qc(R). The Q-space portion of the wave
function is determined from the effective eigenvalue
problem:

@Heff2IEI~R!#Qc~R!50 (2.22a)

where

Heff5HQQ1HQP@IEI~R!2HPP#21HPQ. (2.22b)

Heff can be expanded perturbatively. This has been done
by Mead for C3v, symmetry-required, conical intersec-
tions (Mead, 1983). For the presented discussion a phe-
nomenological approach is adequate. Heff can be repre-
sented as

SH1VR VI

VI H2VR
D , (2.23)

which can be diagonalized by the orthogonal transfor-
mation

T~f!5S cosf 2sinf

sinf cosf D , (2.24)

where tan 2f=−VI/VR . VI and VR can be expanded in
power series in the displacements, denoted x ,y :

VR5ax1by1cx212exy1dy2.. . , (2.25a)

VI5 āx1b̄y1 c̄x212 ēxy1d̄y2.. . . (2.25b)

The origin (x ,y)=(0,0) is a point of intersection. Closed
loops around the origin are straightforwardly defined in

terms of polar coordinates (r,u) given by x=r cosu,
y=r sinu. From Eq. (2.15) the linear terms in Eq. (2.25)
could be determined from hIJ(Rx) and g

IJ(Rx), whereas
the quadratic terms contain contributions from both the
P space and the Q space.
For a quadratic Jahn-Teller-like Hamiltonian,

2VR52~vRx2vIy !12@vr~x22y2!1v i2xy# , (2.26a)

VI52~vRy1vIx !12@2vr2xy1v i~x22y2!# . (2.26b)

For a Renner-Teller Hamiltonian, the linear terms are
absent, by symmetry (Longuet-Higgins, 1961). We de-
fine (v(j),h(j)), j=1,2 such that [vR5v(1)cosh(1),
vI5v(1)sinh(1)] and [vr5v(2)cosh(2), v i5v(2)sinh(2)].
Then

tan 2f5
v ~1 !r sin~u1h~1 !!1v ~2 !r2sin~22u1h~2 !!

v ~1 !r cos~u1h~1 !!1v ~2 !r2cos~22u1h~2 !!
(2.27)

so that T(f[r,u)])[T(r,u)=−T(r,u+2p) for r small, and
T(r,u)=+T(r,u+2p) for r large. That is, there is a change
in sign of the real-valued electronic wave functions
transported around a circle with small r, but no such
change for r large.
This simple analysis illustrates two important points

concerning the geometric phase effect and surface inter-
sections. First, the geometric phase effect is present for
(linear) Jahn-Teller-type (conical) intersections but not
for the (quadratic) Renner-Teller-type intersections.
Secondly, a sign change in the real-valued wave function
may not be observed for all closed loops surrounding a
conical intersection. It is instructive to consider further
these observations.
To see that there should be no geometric phase effect

in a Renner-Teller system, observe that in the case of
the Renner-Teller intersection the coordinate u corre-
sponds to an overall molecular rotation, rather than an
internal motion as in the Jahn-Teller or conical intersec-
tion case. The real-valued wave functions in this case are
of A8 and A9 symmetry in the Cs point group and can-
not mix, following instead the plane of the bent mol-
ecule as it is rotated (Longuet-Higgins, 1961).
The absence of a change in phase for a Hamiltonian

defined by Eq. (2.26) for large r can be explained with
the help of Fig. 4. This figure illustrates what happens
when the radius of a closed loop increases from r1 , en-
closing m points of conical intersection, to r2, enclosing
m+1 points of conical intersection. Each conical inter-
section point induces a geometric phase effect, so that if
T(r1 ,u)=−T(r1 ,u+2p) then T(r2 ,u)=+T(r2 ,u+2p). Thus
when a wave function is transported around a closed
loop that encloses an odd (even) number of conical in-
tersection points there will (will not) be a sign change. It
is straightforward to see that this occurs for the Hamil-
tonian defined by Eq. (2.26). The eigenvalues are

«65H6A~v ~1 !r!21~v ~2 !r2!212v ~1 !v ~2 !r3cos~3u1h~1 !2h~2 !!. (2.28)
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As observed by Zwanzinger and Grant, there are four
degenerate eigenvalues, one at r=0 and three more at
the common radius r=v(1)/v(2) with 3u+h(1)−h(2)

=(2n+1)p, n=0,1,2.

2. Dynamics

To see the implications of the above differences for
nuclear dynamics, consider the linear Jahn-Teller and
quadratic Renner-Teller models described. Note that
this approximate treatment neglects such effects as the
spin-orbit interaction (Pople, 1960; Longuet-Higgins,
1961; Ham, 1987) and overall molecular rotation (Jun-
gen and Merer, 1976), which would be present in real
systems. Assume, following Longuet-Higgins (1961),
that the r dependence of the electronic wave functions
is subordinate to the u dependence, that is,
CI(r;r,u);CI(r;u) and CJ(r;r,u);CJ(r;u), and note that

]

]x
5cosu

]

]r
2
sinu

r

]

]u
, (2.29a)

]

]y
5sinu

]

]r
1
cosu

r

]

]u
. (2.29b)

In the Jahn-Teller case, AI(R)=AJ(R)=u/2, so that

Eq. (2.4b) gives C̃I(r;u)=e
iu/2CI(r;u) and C̃J(r;u)

=eiu/2CJ(r;u). It is then readily verified that ¹AI is sin-
gular at the origin, that r¹AI•dR=p, and thus that
¹3¹AI5pd(x)d(y), as discussed following Eq. (2.12).
For the linear Jahn-Teller effect, EI(R)—which is gen-
erally a function of both r and u—depends only on r.
Thus, for the linear Jahn-Teller problem, Eq. (2.7b) for
the single-valued vibrational wave functions xI(r,u) and
xJ(r,u) becomes

S 1
2mr2 F1/41S 2ir

]

]r D 21S 2i
]

]u
1
1
2 D

2G1EI~r!
i
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]
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]
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1
1
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2mr2 F141S 2ir
]
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]

]u
1
1
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2G1EJ~r!
D S xI

xJ

D
5ES xI

xJ

D . (2.30a)

The term 1/(8mr2) is the singular, adiabatic correction discussed in Sec. II.A.
In the Renner-Teller case, AI(R)=AJ(R)=0 and EI(R) is a function only of r2, so that C̃I(r;u)=CI(r;u) and

C̃J(r;u)=CJ(r;u) and Eq. (2.8) becomes

S 1
2mr2 F11S 2ir

]

]r D 21S 2i
]

]u D 2G1EI~r2!
i

mr2 S 2i
]

]u D
2i

mr2 S 2i
]

]u D 1
2mr2 F11S 2ir

]

]r D 21S 2i
]

]u D 2G1EJ~r2!
D S xI

xJ

D 5ES xI

xJ

D .
(2.30b)

FIG. 4. Effect of additional conical intersection points on the
geometric phase effect, after Mead and Truhlar (1979). Closed
loops 6781 and 2345 each contain one point of conical inter-
section and exhibit the geometric phase effect. As a conse-
quence the closed loop 123456781, containing two conical in-
tersections, does not exhibit the geometric phase effect. These
loops can be continuously distorted, without encountering ad-
ditional points of conical intersection, to circular g-h paths
with radii r1 and r2 , respectively.
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In deriving Eqs. (2.30a) and (2.30b), we observed that

]

]u
CI52CJ

]f

]u

and
]

]u
CJ5CI

]f

]u
,

which follows from Eq. (2.24) [neglecting the geometry
dependence of the basis states in Eq. (2.24)] and that
(]f/]u)=1/2 (Jahn-Teller) or (]f/]u)=1 (Renner-Teller),
which follows from Eq. (2.27).
Equations (2.30a) and (2.30b) will not be analyzed in

detail. They were considered by Longuet-Higgins in his
seminal description of the Jahn-Teller and Renner-
Teller effects in molecular spectroscopy (Longuet-
Higgins, 1961). Quite recently, moreover, related Hamil-
tonians in triatomic systems have been analyzed using
wave-packet techniques (Schön and Köppel, 1994) and
gauge-potential approaches (Wu et al., 1994; Kendrick
and Pack, 1996a, 1996b). The key point here is the u
dependence of the ‘‘vibrational’’ wave functions xJ(r,u),
which, being single valued, can be expanded in a basis of
e6inu for n an integer. Since e2iu/2(]/]u)eiu/2xJ(r ,u)
5[(]/]u)1i/2]xJ(r ,u), this expansion in integer n be-
comes an expansion in n+1/2 for the Jahn-Teller prob-
lem while remaining an expansion in n for the Renner-
Teller problem. In the present case −i(]/]u)I commutes
with the Hamiltonian, so that (n+1/2) is a good quantum
number for the linear Jahn-Teller problem and n is a
good quantum number for the Renner-Teller problem.
This essential difference between the Renner-Teller and
Jahn-Teller problems can be viewed as a direct conse-
quence of the geometric phase effect. The analysis of
Sec. III.D.1 shows that the quadratic Jahn-Teller prob-
lem would not exhibit half-integer quantization if the

nuclear motion were restricted to the large-r region. Re-
cently there has been considerable experimental effort
devoted to determining the type of quantization exhib-
ited in X3-like Jahn-Teller systems (Delacrétaz et al.,
1986; Zwanziger and Grant, 1987; Ernst and Rakowsky,
1995a, 1995b).
While the preceding treatment is only approximate, it

illustrates the essential features of recent treatments of
the geometric phase problem in H+H2 molecular scat-
tering (Lepetit et al., 1990; Kuppermann and Wu, 1993;
Wu and Kuppermann, 1993, 1995). In these treatments
hyperspherical coordinates (Johnson, 1980) are used.
For equal mass systems, closed paths around the seam of
a conical intersection correspond to motion in the single
hyperspherical coordinate fl (Kuppermann and Wu,
1993). In these instances the simple form of the gauge
phases used above is applicable.

III. CONICAL INTERSECTIONS IN MOLECULAR SYSTEMS

Analysis of the nuclear dynamics in the vicinity of
Jahn-Teller and Renner-Teller intersections is a difficult
task. On the other hand, the location of the conical in-
tersection and the determination of the g-h plane are
made completely straightforward as a consequence of
molecular point-group symmetry. This section ad-
dresses, from a practical perspective, the location of
conical intersections and the determination of the g-h
plane when molecular point-group symmetry does not
determine these quantities. In this situation the effect of
a conical intersection is particularly diabolical, since its
existence is difficult to anticipate, making efficient nu-
merical procedures to identify such situations highly de-
sirable. While the condition for a conical intersection,
DEIJ=0, can never be achieved exactly in a numerical
computation, for points denoted as conical intersection
points in this work DEIJ is quite small, generally less
than the 0.5 cm−1.
For the Berry phase effect to be evinced in the

nuclear dynamics, an energetically accessible g-h path
on the lower adiabatic potential-energy surface is re-
quired. For a circular g-h path on the lower adiabatic

FIG. 5. CH2: Schematic representation of 1,2,33A9 electronic
states of, and Jacobi coordinates for, methylene.

FIG. 6. CH2: R left-hand ordinate and E23A95E33A9 right-
hand ordinate along the 23A9-33A9 seam of conical intersec-
tions parametrized by r5R(HH). The Jacobi coordinates R ,r
are defined in Fig. 5.
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potential-energy surface, it might be expected (at least
near the conical intersection point) that the energy
would be relatively constant along the path and decrease
as its radius increased. However, this need not be the
case. The diagonal offset term H in Eq. (2.23) and
higher-order contributions can alter this conclusion, pro-
viding an energetic barrier that limits the significance of
the geometric phase effect. Further, the discussion in
Sec. II.D illustrates that the sign change in the adiabatic
wave function may not occur for all g-h paths, so that
behavior of the wave functions along these paths should
also be considered.
The most convincing approach for establishing the

phase behavior of the adiabatic wave function would

proceed as follows: compute using nonorthogonal or-
bital techniques, Oi=^CI(r;Ri)uCI(r;Ri11)&r for i51,N
21, where the Ri describe a circular g-h path with
R1=RN ; require 1>Oi@0; and finally compute
^CI(r;R1)uCI(r;RN)&r , which must be 61. This ideal pro-
cedure would be possible, since the path does not go
through a conical intersection, but it is quite impractical
from a computational perspective. Instead, simpler, but
case-specific, diagnostics will be devised. In this regard
the geometric phase effect has previously been analyzed
in O3 by Ruedenberg and co-workers (Xantheas et al.,
1990).
This section begins with an example of an accidental,

but symmetry-allowed, conical intersection. The second

FIG. 7. CH2: Nuclear configurations and Jacobi coordinates for indicated values of u with r=0.5. The origin, r=0, is the conical
intersection point Rmex . dR[R2Rmex . dr[r2rmex . The normalized g

IJ and hIJ directions, x and y , respectively, are given in the
central figures and indicated pictorially by arrows attached to the atoms.
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subsection considers a conical intersection of two states
of the same symmetry, that is, a conical intersection in
which symmetry plays no role. These examples are prin-
cipally concerned with the geometric phase and its po-
tential effect in single-surface, that is, adiabatic, pro-
cesses. The topology of the potential-energy surface is
considered along circular g-h paths. Decidedly different
topologies are evinced for methylene and methyl mer-
captan. The impact of these conical intersections on
multisurface photodissociation is also discussed.
The third example considers an explicitly nonadia-

batic, that is, multiple potential-energy surface, process
facilitated by a conical intersection of two states of the
same symmetry. It takes cognizance of the fact that the
surface of conical intersection extends over a significant

region of nuclear coordinate space and asks which re-
gions of the surface of conical intersection can be
sampled in a photodissociation process.

A. Conical intersections and the geometric phase
in triatomic systems: The 23A9, 33A9 states of methylene

1. Introduction

The 23A9 state of methylene, CH2, exhibits a seam (a
surface of dimension 1) of symmetry-allowed accidental
conical intersections with the 33A9 state for C2n nuclear
configurations for which the two states are of 3A2 and
3B1 symmetry. The portion of this seam of conical inter-
sections near the equilibrium geometry of the ground

FIG. 7 (Continued.)
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state, 13A9(13B1), plays a key role in the nonadiabatic
photochemical decomposition of CH2 originating on the
33A9 surface (Beärda et al., 1992). The situation is illus-
trated schematically in Fig. 5. The geometric phase ef-
fect attributable to the 23A9-33A9 conical intersection
may also influence adiabatic processes on the 23A9 sur-
face. In this subsection the techniques described in Sec.
II are used to explore these issues.

2. The g-h plane: Berry phase and energetics

Molecular configurations are described in terms of the
orthogonal Jacobi coordinates, R[(R ,r ,g), where
r[R(HH) and R ,g are the polar coordinates for the

line connecting the carbon atom to the center of mass of
the H2 moiety; see Fig. 5. The seam of conical intersec-
tion were determined using Eq. (2.19). As the surface of
intersection has dimension 1, it can be characterized by
a single geometrical parameter. In order to choose this
parameter, Eq. (2.19) was solved in the absence of any
geometrical constraints, yielding the minimum-energy
crossing point Rmex=(0.94217, 4.5938, 90°). The tangent
to the crossing seam at this point is g-h'(Rmex)
=0.2701R̂10.9628r̂10.0ĝ[$0.2701,0.9628,0.0%, where
the caret denotes a unit vector. Thus the tangent to the
seam is largely parallel to r̂ . For this reason the seam of
intersection was determined using r5R(HH)[b as the
parameter, so that the seam and its tangent become
Rx(b)=(R(b),b,g(b)) and g-h'[Rx(b)][g-h'(b), respec-
tively. The slope of the tangent line at this point sug-
gests, and subsequent calculations confirmed, that the
determination of the seam would have been problemati-
cal using R as the parameter and impossible using g. As
noted in Sec. I.C.2, an alternative method for param-
etrizing a seam of intersection in triatomic systems can
be found in Kuntz et al. (1994).
Equation (2.19) was then solved with R(HH)=b con-

strained to its assigned value through Eq. (2.19d). Here
Eq. (2.19a) becomes trivial when a single geometric con-
straint is imposed, since Eq. (2.19a) requires that EI(R)
be a minimum except along three directions given by gIJ,
hIJ, and k. As these directions span the entire internal
coordinate space, there are no internal coordinates left
with which to minimize the energy.
The 23A9-33A9 crossing seam, Rx(b), together with

E(23A9)5E(33A9) and E(13A9) are depicted in Fig.
6. There it can be seen that the seam of intersection is a
line, rather than a closed loop, covering the range
0<r<`, with g[90°. The large r values correspond to
C(3P)12H(2S). It should be noted that more compli-
cated seams of intersection are possible involving com-
binations of symmetry-allowed and same-symmetry in-
tersections. Such a situation has been reported in HCO+

(Kuntz et al., 1994).
The energy and wave functions were studied in the

g-h plane at Rx(4.5938)=Rmex . From Eq. (2.19) it was
found that the g-h plane could be defined by the unit
vectors x̂[$0.9628,−0.2701,0.0% and ŷ[$0.0,0.0,1.0%. Note
that, unlike the Jahn-Teller case, the g-h plane could
not have been determined from symmetry consider-
ations. The molecular motion along circular g-h paths is
depicted in Fig. 7, using standard polar (r,u) coordi-
nates. (Coordinates are displayed for r=0.5a0 , but plot-
ted for r=1.0 for clarity.) Note that (r,180°−u) and
(r,180°+u) are mirror-image configurations, so that
EI(r ,180°1u)5EI(r,180°−u), 0<u<180°.
The geometric phase effect is illustrated in Figs. 8(a)–

8(c), where the coefficients of the principal CSFs are
plotted,

@1a82•••7a82 1a922a92# 8a829a8210a823a92,
(3.1a)

@1a82•••7a82 1a922a92# 8a829a8210a823a911a8,
(3.1b)

FIG. 8. CH2: cI(R) for R corresponding to r=0.1 and
0<u<360°. The origin, r=0, is the conical intersection point
Rmex . I513A9, 23A9, and 33A9 correspond to the upper,
middle, and lower figures, respectively, and are denoted as
Figs. 8(a), 8(b), 8(c) in the text. X designates c 1X

I [Eq. (2.4a)],
where 1X denotes the CSF corresponding to electron configu-
ration 3.1X in the text.
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@1a82•••7a82 1a922a92# 8a829a8210a823a912a8,
(3.1c)

for the 1,2,33A9 states, respectively, along circular g-h
paths with r=0.1. For Figs. 8(b) and 8(c), the sign change
can be seen to ‘‘originate’’ from the behavior of the
wave functions near u=180°, where for each of the
2,33A9 states the coefficients that are large for u=0° pass
through zero. This behavior should be contrasted with
the virtual absence of a u dependence for the 13A9 state
[Fig. 8(a)], for which a conical intersection does not ex-
ist.
Figure 9 considers the energetics along the circular

g-h paths, reporting E23A9 and E33A9 for 0°<u<180°,
and r=0.1,0.25,0.5a0 . It is important to observe that, for
fixed u, E23A9 decreases while E33A9 increases as r in-
creases, consistent with a qualitatively conical structure.

3. Relation to inelastic scattering

The inelastic energy-transfer reaction

H~2S !1CH~a4S2,v ,N ,e/f !

→H~2S !1CH~a4S2,v8,N8,e8/f8! (3.2)

takes place on the 23A9 potential-energy surface. Note
that, although electronically excited, the CH(a4(−) moi-
ety is relatively long lived, with a lifetime greater than
1s (Hettema and Yarkony, 1994). It can be produced
from CHBr3 (Hou and Bayes, 1993), so that it can be
used in laboratory experiments. The presence of the
23A9-33A9 conical intersection may influence reaction
(3.2) through the geometric phase effect. It is thus ger-
mane to ask under what circumstances g-h paths are
energetically accessible. This question is addressed in
Fig. 9, which reports the variation in energy along closed
loops surrounding the lowest-energy conical intersection
point. On the basis of the dissociation energy of CH2
[D0>4.23 eV] and Te [CH(a

4(−)]=5844 cm−1, the lowest-
energy conical intersection (Rmex), 7.1 eV above the
minimum on the 13B1 potential energy surface, is ap-
proximately 2.1 eV above the CH(a4(−)+H(2S) asymp-
tote (Yarkony, 1996b). The analogous value in the H3
case, noted in the Introduction, is 2.7 eV. Thus from Fig.

9 it can be seen that an H atom with approximately 1.3
eV of energy could circumnavigate the conical intersec-
tion at r=0.5, providing the opportunity for the geomet-
ric phase effect to influence reaction (3.2).

4. Relation to photodissociation:
The role of derivative couplings

The near-equilibrium photoexcitation process
X3B1→33A9, which has a large dipole moment
(Yarkony, 1996b), is expected to lead to the nonadia-
batic transition 33A9→23A9 owing to the funneling ef-
fect of the 23A9-33A9 seam of conical intersections.
Since a portion of the 23A9-33A9 seam of conical inter-
section lies in the vicinity of the equilibrium geometry of
the X3B1 state, the initially excited wave packet may
span a closed path around a conical intersection. This
will significantly complicate the description of the ab-
sorption process, X3B1→2,33A9.
It may seem counterintuitive that the seam of conical

intersections would play any role in the actual dynamics
on the 33A9 potential-energy surface, despite the local
topology which would funnel a classical trajectory or
quantum wave packet toward the seam. After all, the
seam itself is of negligible volume as far as this same
classical trajectory or quantum wave packet is con-
cerned. This dilemma is resolved with the realization
that the seam (surface) of conical intersections is at the
center of a volume in which the probability of a nona-

FIG. 9. CH2: E23A9 and E33A9 for 0<u<180, and r=0.1,0.25,
0.5a0 . The origin, r=0, is the conical intersection point Rmex .

FIG. 10. CH3SH: Schematic representation of the X
1A8 state

and the 1,21A9 states of, and geometrical arrangement for, me-
thyl mercaptan. D(I)[I(Rx)−I(Req), where I represents an
internuclear parameter, Rx is the conical intersection point,
and Req is the equilibrium geometry of the 11A8 state dis-
cussed in the text.
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diabatic transition is large. The breadth of the volume is
determined by the derivative couplings. In this regard a
well-studied nonadiabatic process is the electronic
quenching reaction Na( 2P)1H2→Na( 2S)1H2 . De-
rivative couplings have been determined, using ab initio
wave functions by Yarkony (1986) and by Truhlar and
co-workers (Truhlar et al., 1982; Blais, Truhlar, and Gar-
rett, 1983a) using diatomics in molecules wave functions,
in the vicinity of a symmetry-allowed seam of conical
intersections relevant to this reaction. An analysis of the
propensity for a nonadiabatic transition as a funciton of

nuclear coordinates has also been reported (Blais and
Truhlar, 1983).

B. Conical intersections and the geometric phase
in general polyatomic systems: The 11A9,21A9 states
of methyl mercaptan

1. Introduction

The ultraviolet absorption spectrum of methyl mer-
captan,

FIG. 11. CH3SH: Nuclear configurations for indicated values of u with r=0.25,0.175,0.10 (r=1.0 is plotted for emphasis), projected
onto the Z=0 plane. H2 and H3 are superimposed. The origin, r=0, is the conical intersection point Rx . The normalized ḡ

IJ and hIJ

directions, y and x , respectively, are indicated pictorially in the central figures by arrows attached to the atoms.
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CH3SH~X1A8!1hn→CH3SH~1,21A9!

→CH3SH~11A9!

→CH3S+H or CH3+SH, (3.3)

exhibits broad maxima (Vaghjiani, 1993) at ;205 nm
and between 227 nm (Mouflih et al., 1988) and 230 nm
(Vaghjiani, 1993). The two lowest electronically excited
states of methyl mercaptan, the 11A9 and 21A9 states (Cs
point-group symmetry is assumed throughout this dis-
cussion), are responsible for this absorption; see Fig. 10.
It has been shown that these two potential-energy sur-
faces exhibit a surface of conical intersection (Yarkony,
1994).
This subsection studies this surface of conical intersec-

tion and considers its implications for the reaction (3.3).
Ideally this reaction should be treated in the full 12-
dimensional internal coordinate space. This is not prac-
tical, even using the most modern computational tools,
and so a reduced dimensionality approach is sought. The
simplest approach consistent with reaction (3.3) is a two-
dimensional model involving the CS and SH bond dis-
tances, R(CS) and R(SH). The adiabatic predissociation
on the 11A9 potential-energy surface has been studied in
this way (Stevens et al., 1995). According to the non-
crossing rule, this space of dimension 2 should have, at
most, isolated points of conical intersection. Thus the
focus of this subsection is a single representative point
on the surface of conical intersection in the Franck-
Condon region of reaction (3.3). The point of conical

FIG. 11 (Continued.)
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intersection was obtained from the solution of Eq. (2.19)
with the constraint R(CS)=3.58a0 . At this point of coni-
cal intersection, Rx , the following values obtain—each
compared with the corresponding value predicted
for Req the equilibrium geometry of X 1A8 state,
shown in parentheses: R(CS)=3.580(3.495)a0 , R(SH)
=2.406(2.536)a0 , R(CH1) =2.076(2.048)a0 , R(CH2)
=2.073(2.045)a0 , and /CSH=101.4°(96.3°). As discussed
elsewhere, the computed parameters for Req differ only
slightly from geometrical parameters deduced from mi-
crowave spectroscopy (Kojima and Nishikawa, 1957).
Thus Rx differs from Req principally in the CS and SH
bond distances, which are stretched and compressed
by 0.085a0 and 0.13a0 , respectively. At Rx the 1,21A9
states are degenerate to 0.4 cm−1 [a measure of the pre-

cision of the algorithm based on Eq. (2.19)], and the
common energy is E11A95E21A9550420 cm−1 measured
relative to EX1A8(Req).
Rx was chosen as representative because of the prox-

imity of the coordinates other than R(CS) and R(SH) to
their values at Req . The constraint R(CS)=3.58a0 was
designed to keep the conical intersection in the Franck-
Condon region to the extent possible while retaining a
reasonable excitation energy. These attributes are also
desirable for treating nonadiabatic photodissociation
originating on the 21A9 potential-energy surface, since a
recent study of conical intersections in hydroxylamine
(Hettema and Yarkony, 1995; see Sec. III.D) indicates
that it is the energetically accessible conical intersections
in the vicinity of the initially excited wave packet, rather

FIG. 12. CH3SH: Left plates: EI , I51,21A9 left-hand ordinate and E11A8 right-hand ordinate, as a function of u for fixed r. Right
plates: x̄ a

I as a function of u for fixed r: s, d, Rydberg s orbital on sulfur; h, j diffuse s orbital on carbon. Bottom row r=0.25,
middle row r=0.175, and top row r=0.10. Filled markers denote the 11A9 state, and open markers denote the R1A9 state.
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than the lowest-energy conical intersections, that are in-
volved in the photodissociation process.

2. The g-h plane: Berry phase and energetics

The g-h(Rx) plane, constructed as discussed in Sec. II,
is pictured on the center plates in Fig. 11. Here it is
important to recall that the individual gIJ and hIJ direc-
tions are quite arbitrary, whereas the g-h plane is well
defined. This point was checked numerically by deter-
mining gIJ, hIJ and the g-h plane for the last two itera-
tions in the solution of Eq. (2.19). gIJ and hIJ changed
dramatically, while the g-h plane was virtually un-
changed. Circular g-h paths will be defined in terms of
polar coordinates x=r cosu, y=r cosu where unit vectors
x̂ (predominantly C-S stretch) and ŷ (predominantly
S-H stretch) are defined by x̂=hIJ/ihIJi and ŷ=ḡIJ/iḡIJi
and ḡIJ[gIJ−(gIJ†·x̂)x̂ . For reasons discussed below only
g-h paths with r<0.25a0 are considered.
In Fig. 11 the geometrical changes associated with a

circular g-h path around Rx are presented. R(CS),
R(SH), and /CSH are indicated explicitly for r=0.10,
0.175, 0.25a0 , and the indicated values of u, although in
the figure r=1.0 is used to emphasize the structural
changes. The internuclear distances not explicitly re-
ported in Fig. 11 exhibit smaller deviations from their
values at Rx . Along a circular g-h path with r=0.25,
R(CHi), where i=1–3, changes by less than 0.1a0 , while
/H1CS changes by less than 62°.
The principal geometrical changes along a g-h path

reflect the phase relationships between cosu and sinu
and the character of the hIJ and ḡIJ axes noted above.
Defining d(Z)[R(Z)2Rx(Z), we find that the ex-
treme values of d(CS) occur near u=0° and 180°, while
those for d(SH) occur near u=90° and 270°. The first
quadrant corresponds to decreased d(CS) and increased
d(SH), while the third quadrant corresponds to de-
creased d(SH) and increased d(CS). In the second quad-
rant both the SH and CS bonds are stretched, while in
the fourth quadrant both the SH and CS bonds are com-
pressed. Thus the g-h path can lead to either of the two
channels described in reaction (3.3). From Fig. 11 it can
be seen that nuclear configurations in the first quadrant
explore the Franck-Condon region of reaction (3.3).
The g-h plane characterizes nuclear motions that pro-

duce the Berry phase effect. However, as noted in Sec.
II, it is necessary to confirm the existence of the sign
change for each r considered. It is also important to
determine the energetics along these paths, since it is
these energetics rather than the energy of the conical
intersection itself that determine whether the geometric
phase effect will affect the nuclear dynamics. These is-
sues are addressed in Fig. 12. The left-hand column in
Fig. 12 reports the energy for r=0.10, 0.175, and 0.25,
while the right-hand column addresses the question of
the phase behavior along these closed loops.
For technical reasons the demonstration of the geo-

metric phase effect is not entirely straightforward for the
class of wave functions used to characterize this system.

Near Rx the X̃
1A8, 1,21A9 electronic states are described

by the following electron configurations:

@1a82•••7a82 1a922a92# 8a829a8210a823a92, X̃1A8,

(3.4a)

@1a82•••7a82 1a922a92# 8a829a8210a823a9j~1 !,

11A9, (3.4b)

@1a82•••7a82 1a922a92# 8a829a8210a823a9j~2 !,

21A9. (3.4c)

Since the principal change in the character of the 1,21A9
wave functions involves mixing of j(1) and j(2) (symmetry
designations 11a8 and 12a8), a simple diagnostic for the
phase of the wave functions can be constructed. As dis-
cussed elsewhere, it is possible to define composite mo-
lecular orbitals j̄(1) and j̄(2) whose phase behavior mim-
ics that of C11A9 and C21A9 , respectively. The reader
interested in the details of this construction should con-
sult Yarkony (1996c). The right-hand column in Fig. 12
reports representative components of j̄(I), I=1,2. The
geometric phase effect is present for each r considered,
since j̄(I)(r ,0°)52 j̄(I)(r ,360°), so that real-valued
wave functions that are continuous with respect to u are
not single-valued functions of u.
The energetic data in Fig. 12 evince minima in

E21A9–E11A9 near u=285°. Relative to the energy at the
conical intersection, an additional 15, 9, and 4 kcal/mol
are required for r=0.25,0.175,0.10a0 to circumnavigate
the conical intersection on the 11A9 potential-energy
surface. This additional barrier to circumnavigating the
conical intersection occurs near u=285° as a result of the
compression of the SH bond.

3. Relation to photodissociation

The ultraviolet absorption of methyl mercaptan in the
range ;193–240 nm is the focus of the present discus-
sion. The long-wavelength end of this absorption in-
volves only the 11A9 electronic state, while the short-
wavelength end can involve either or both of the 1,21A9
states. It is desirable, then, to treat the long-wavelength
absorption using a single adiabatic surface, while for
shorter wavelengths two potential-energy surfaces are
required. At Rx , E11A9(Rx)5E21A9(Rx)550420 cm−1,
only 990 cm−1 greater than E21A9(Req), so that this coni-
cal intersection is predicted to be energetically acces-
sible with 193 nm light used in recent experimental stud-
ies (Jensen et al., 1993) of reaction (3.3) but not with the
230 nm photons corresponding to the first absorption
maximum. However, as noted in the Introduction, accu-
rate single-surface dynamics must consider the possibil-
ity of a geometric phase effect induced by an energeti-
cally remote conical intersection.
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The energetics in the g-h(Rx) plane discussed in the
previous subsection can be used to consider this possi-
bility in (the two-dimensional description of) the photo-
dissociation dynamics restricted to the 11A9 potential-
energy surface. Key here is the portion of the closed
loop near u=285°, which provides a barrier to circum-
navigating the conical intersection. The height of this
barrier increases with increasing r. Thus energetically
accessible paths are expected to pass quite close to the
conical intersection point itself, which from the above
discussion is at approximately 198 nm. This energy is
higher than the maximum, but within the breadth of the
second (stronger) absorption band, 193–210 nm
(Vaghjiani, 1993), of CH3SH.
Thus it is unlikely that the adiabatic 11A9-state dy-

namics will be influenced by the geometric phase effect.
However, at shorter wavelengths, for which the 21A9
potential-energy surface is involved in the excitation
process, the conical intersections discussed here and pre-
viously (Yarkony, 1994) are essential for rapid photodis-
sociation. In this case derivative coupling data, such as
those presented elsewhere (Yarkony, 1996c), are re-
quired for the quantitative treatment of photodissocia-
tion dynamics. Wave packets dissociating from the 21A9
potential-energy surface via the conical intersection will
span the entire range of u for a given r, since r will be
small. Thus incorporation of the geometric phase effect
into a formulation of the dynamics using two adiabatic
states is essential.
The g-h(Rx) plane cannot be used without suitable

modification to develop a two-dimensional model of the
photodissociation process. In the vicinity of Rx , that is,
for the range of r considered here, motion in the
g-h(Rx) plane involves principally changes in R(CS)
and R(SH). However, as r increases, significant distor-
tions of the CH3 moiety are observed. The g-h(Rx)
plane would have to be distorted to limit changes in the
CH3 moiety as r increases. In this regard it should be
noted the g-h plane is not unique in displaying the
Berry phase effect. Any closed loop obtained by con-
tinuously distorting a closed loop in the g-h plane
(which includes an odd number of points of conical in-
tersection) will display the Berry phase effect. The (r,u)
coordinate system suggested in this work, suitably modi-
fied to limit changes in the CH3 moiety, would permit
incorporation of the geometric phase effect into an
adiabatic-state treatment of the nuclear dynamics.

C. Comments on closed loops surrounding a point
of conical intersection

It is useful at this point to consider in more detail
the g-h paths (and associated energetics) for CH2 and
CH3SH presented in Figs. 7 (9) and 11 (12), respectively,
and to compare them with the g-h path in H3,
a path uniquely determined by symmetry. The g-h path
for H3 is given by (Herzberg and Longuet-Higgins, 1963)
H1 + H2H3(u = 0)→ H1H2H3(u = 60)→H1H2 +H3(u=120)
→ H1 H2 H3(u = 180)→ H1 H3 + H2(u = 240)→ H1 H2H3

(u=300)→ H1+H2H3(u=360). Thus along this path there

is an exchange of hydrogens between the long-bond (H1

with H2H3 at u=0°) and short-bond (H2 with H3 at u=0°)
configurations. This exchange is achieved by passing
through structures in which the three atoms are in close
proximity. In this case it can be shown (Yarkony, 1996)
that, taking the origin as the minimum energy point on
the seam of conical intersections, for r<0.75 the energy
of the lower adiabatic potential energy surface along the
g-h path is uniformly less than energy at the conical
intersection.
Along the g-h path for CH2 the molecular configura-

tions are given by HC+H(u=90°)→CH2(u=180°)
→H+CH(u=270°)→CH2(u=360°). As in H3 the long-
and short-bond configurations are separated by more in-
timately interacting configurations. This exchange of
bonding hydrogens along the g-h path explains why the
geometric phase effect in the H2+H, and the CH+H, re-
actions is associated with H exchange. In CH2 this H
exchange originates from the hIJ displacement. From
Fig. 9 it is seen that it is displacements along this coor-
dinate (u=90°, 270°) that produce a local barrier barrier
on the lower adiabatic potential energy surface along
the g-h path. Note however that, as in H+H2, the energy
at the barrier is lower than the energy at the conical
intersection itself. The height of the barrier is key since
it determines the energy at which the geometric phase
effect will influence the dynamics.
Along the g-h path for CH3SH the molecular configu-

rations are given by CH3S+H(Q1)→CH3+S+H(Q2)
→CH3+SH(Q3)→CH3SH(Q4), where QI indicates
that u is in the Ith quadrant. As in H3 and CH2, there is
a change in bonding, SH (in Q3)↔ CS (in Q1), in be-
tween which the CS and SH bonds are either both
stretched or both compressed. As in CH2 it is a bond-
stretched–bond-compressed configuration that produces
a barrier along the path on the lower
adiabatic potential energy surface. However here the
energy at the barrier is higher than the energy at the
conical intersection. In a sense then the situation in me-
thyl mercaptan is similar to that in the triatomic mol-
ecules, CH2 and H3. However, the triatomic analogy is
simplistic since, as the discussion in Sec. III.B points out,
the CH3 moiety is not a spectator but undergoes changes
in character that become evident as r increases.
While in each case the g-h paths have qualitative

similarities, the details of the energetics along the paths
differ. The key quantitative difference—the height of
the barrier—represents the interplay between the ener-
getics of bond stretching and bond compression and
must be determined on a case-by-case basis.

D. Multistate processes induced by conical intersections
in general polyatomic systems:
The case of hydroxylamine

1. Introduction

Hydroxylamine (NH2OH) is a particularly interesting
example for the study of the effects of conical intersec-
tions in photodissociation. NH2OH can be viewed as a
derivative of ammonia, H-NH2→HO-NH2, a classic sys-
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tem in the field of (nonadiabatic) photodissociation (Mc-
Carthy et al., 1987), and has recently been the subject of
laboratory studies. It has a weak N-O bond that can be
broken photochemically, as evidenced by recent, direct,
and vibrationally mediated photodissociation studies
(Crim, 1993; Scott, 1994). The photodissociation of hy-
droxylamine is considered here as an example of the
complexities of a photodissociation process and the ways
in which Eq. (2.19) can be used to deal with these com-
plexities.
The ground state of hydroxylamine has Cs symmetry

(see Fig. 13), so it is natural to label the relevant elec-
tronically excited states using this symmetry designation.
The principal electron configurations of the electronic
states considered, at the equilibrium geometry of the
X1A8[11A8 state, are

11A8: 1a82•••5a821a926a827a822a92, (3.5a)

21A8: 1a82•••5a821a926a827a88a82a92,

7a8→8a8, (3.5b)

31A8: 1a82•••5a821a926a827a89a82a92,

7a8→9a8, (3.5c)

11A9: 1a82•••5a821a926a827a828a82a9,

2a9→8a8, (3.5d)

21A9: 1a82•••5a821a926a827a829a82a9,

2a9→9a8, (3.5e)

Also indicated above are the excitation levels for the
four excited states, relative to the 11A8 state. In a quali-
tative sense the 7a8,2a9 orbitals represent nitrogen and
oxygen lone pairs, while the 8a8,9a8 represent N-O an-
tibonding. Rydberg orbitals, respectively. Thus the pho-
todissociation processes to be considered are

NH2OH~X1A8!1hn→NH2OH~2,31A8,1,21A9!→NH2OH~11A8,11A9!→OH~X2P!1NH2~X̃
2B1!,

DE;18.0 eV, (3.6a)

NH2OH~X1A8!1hn→NH2OH~2,31A8,1,21A9!→NH2OH~21A8,21A9!→OH~X2P!1NH2~Ã
2A1!,

DE;19.3 eV, (3.6b)

where DE reflects only the N-O bond energy noted
above and Te=10291 cm−1 (Herzberg, 1966) for the
Ã2A1 excited state of NH2. Figure 13 presents a sche-
matic, and, as shown below, somewhat simplistic, picture
of this photodissociation.
The Cs regions of the potential-energy surfaces must

be considered, since they will be the regions of nuclear
coordinate space initially probed by the photoexcitation
process. This restriction is also important from a concep-
tual perspective. It eliminates the possibility of charac-
terizing as ‘‘same-symmetry’’ intersections, intersections
of states that correlate with distinct symmetry (1A8 and
1A9) states for Cs geometries and that have been ‘‘insig-
nificantly’’ changed by nuclear motions that remove the
Cs symmetry.
As a first step in this regard, Fig. 14 reports Ei1A8 ,

i=1–3 and Ei1A8 , i=1,2 as a function of R(N-O) with the
remaining geometrical parameters constrained to their
values in the ground-state equilibrium structure. How-
ever, the constraint of Cs symmetry does preclude con-
sideration of internal rotation around the N-O bond and
must be relaxed. This point is addressed in Fig. 15, which
reports Ei1A , i=1–5 as a function of k, the torsional
angle between the H1O and the H2H3 lines projected
onto the plane perpendicular to the N-O axis (see Fig.
13). The Cs symmetry structure in Fig. 13 corresponds to
k=90°. For kÞ90° the 21A state can readily be identified

as a perturbed 21A8 state. However, the 31A8 and 11A9
states, nearly degenerate for k=90°, are strongly mixed
as k decreases. This point will be discussed further be-
low. From Fig. 15 it can be seen that E21A and E31A are
increasing functions of k for 0<k<90° with minimal val-
ues at k=0°, while E41A increases as k decreases from
k=90°.

2. Conical intersections and energetics

In the discussions that follow it will be convenient to
define dR(XY)[R(XY)2Req(XY) and /̃XYZ
[ /XYZ 2 /eqXYZ where the equilibrium distances
and angles for the X1A8 state will be denoted Req(XY)
and /eqXYZ ; see caption to Fig. 13. Conical intersec-
tions will be sought in which R(NO) is fixed at values
close to its value for the X1A8-state equilibrium geom-
etry, Req(NO), and the remaining geometrical param-
eters are determined to minimize the energy of the point
on the surface of conical intersection.

a. Surfaces of conical intersection: Cs symmetry

The potential for conical intersections can be seen
from Fig. 14. Near dR(NO)=0 the 11A9 and 31A8 states
are nearly degenerate, separated by less than 450 cm−1.
An avoided intersection of the 21A8 and 31A8 states, and
a symmetry-allowed accidental degeneracy of the 11A9
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and 21A8 states, is evident for dR(NO);0.24a0 . An
avoided intersection of the 11A9-21A9 states is evident
near dR(NO)=0.04a0 . The points on the surfaces of
conical intersection are reported in Table I and in Fig.
14.
The surface of conical intersection with the lowest en-

ergy, for the geometrical range considered in this study,
is the 21A8-31A8 surface of intersection. From Table I it
can be seen that as a function of R(NO), dR(OH) and
dR(NH2) vary little, while the angles /H1ON, /H2NH3,
and /ONH2 exhibit considerable variation. The
minimum-energy point on the 21A8-31A8 surface of
conical intersection, Rmex(2

1A8-31A8), occurs at
R(NO)=2.8539a0 and R(OH1)=1.9325a0 with E21A8
5E31A856.19 eV. From Fig. 14 it can be seen that this
and several other points on this surface of intersection
have energy less than E21A8 for the corresponding value
of R(NO) with the remaining coordinates fixed at their
Req values. This reflects the ‘‘relaxation’’ of the remain-
ing internal coordinates and has been observed in previ-
ous treatments of conical intersections in CH3SH
(Yarkony, 1994) and CH3SCH3 (Manaa and Yarkony,
1994). These observations demonstrate that models of
NH2OH nonadiabatic photodissociation that neglect
changes in coordinates other than R(NO) are likely to
be unsuccessful in characterizing this process.
The 11A9-21A9 surface of intersection presented in

Table I and Fig. 14 is considerably higher in energy than
the 21A8-31A8 surface of intersection. In this case
Rmex(1

1A9-21A9) lies above the corresponding
E(21A9). For this reason the 11A9-21A9 surface of
conical intersection will not be considered further.
Also considered in Table I are the 21A8-11A9 and

31A8-11A9 symmetry-allowed surfaces of intersection.
As noted in Sec. II, these intersections are conical when
nontotally symmetric Cs internal modes are considered.
For three points on the 21A8-11A9 surface of intersec-
tion both R(NO) and R(OH1) were fixed, with

FIG. 13. NH2OH: Schematic representation of photo-
dissociation process and geometrical arrangement at
the equilibrium geometry, Rreq(OH

1) = 1.7865(1.818 6 0.015),
Req(NO) = 2.7686(2.746 6 0.004), Req(NH

2) = 1.8917(1.920
6 0.009), /eqH

1ON = 102.17(101.4 6 0.5), /eqONH
2 = 103.62

(103.260.5), /eqH
2NH3=106.87(107.160.5), of the 11A8 state

of hydrox ylamine. Experimental values from Tsunekawa
(1972) given parenthetically.

FIG. 14. NH2OH: R(NO) dependence of Ei1A8(eV), i=1–3
and Ei1A9(eV), i=1,2. All other geometrical variables fixed at
equilibrium values for 11A8 state. Points on the surfaces of
intersection: d, 21A8-31A8; m, 11A9-21A9; j, 21A8-11A9.

FIG. 15. NH2OH: k dependence of Ei1A(eV), i=1–5. All other
geometrical variables fixed at equilibrium values for 11A8
state.
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R(OH1)=1.96a0 , that is, near its value on the 2
1A8-31A8

surface of intersection, to avoid regions of nuclear coor-
dinate space for which dR(OH1) is large. At shorter val-
ues of R(OH1), solutions to Eq. (2.19) were not found.
For the points reported on the 21A8-31A8 surface of

intersection, E21A85E31A8,E11A9, whereas for points
reported on the 21A8-11A9 surface of intersection,
E21A85E11A9,E31A8 . Interestingly, then, both the
21A8-11A9 and 21A8-31A8 surfaces of intersection cor-
respond to intersections of the second and third elec-
tronic states of hydroxylamine. The mixing of 31A8 and
11A9 states that is responsible for this has important con-
sequences and is discussed further below.

b. Surfaces of conical intersection: No spatial symmetry

Figure 15 suggests that the lowest-energy-points on
the 21A-31A surface of conical intersection will occur
for non-Cs geometries. Table II reports points on the
surface of conical intersections of the 21A and 31A states
for kÞ90°. Comparing the portions of 21A8-31A8 and
21A-31A surfaces of intersection reported in Tables I

and II, the latter occur at energies lower by approxi-
mately 0.75 eV, smaller values of dR(OH1)—that is,
closer to dR(OH1)=0—and values of k rotated nearly
90° degrees.

3. Photodissociation: Mechanistic considerations

The 31A state correlates adiabatically with the prod-
uct channel of process (3.6b), the production of
NH2(Ã

2A1), but can produce ground-state products by
accessing the 21A-31A surface of conical intersection.
Characterization of photofragments resulting from the
initial excitation of the 31A state requires a treatment of
the nuclear dynamics, which is beyond the scope of the
present review. However, important mechanistic insights
can be gained by following the steepest-descent path
from a reference geometry, here taken as either (i) the
equilibrium geometry of the X1A8 state with k changed
from 90° to 88°, E31A;7.22 eV (see Fig. 14), or (ii) the
equilibrium geometry with k changed from 90° to 0°,
E31A56.14 eV (see Fig. 15). These points were chosen
to illustrate the range of nuclear coordinates accessible

TABLE I. Points on the Cs section of the I-J surface of conical intersections. Bond lengths R(AB)
are in atomic units (a0=0.0529 nm). Angles are in degrees, the energy Ex5EI5EJ is in eV , and the
energy splitting DEIJ[EI2EJ is in cm

−1. R(NO) is fixed and all the other parameters are optimized
except as noted.

R(NO) R(OH1) R(NH2) /H1ON /ONH2 /H2NH3 Ex DEIJ

21A8-31A8 surface of intersection
2.50 1.9750 2.0167 133.5 124.3 105.9 6.86 0.39
2.59 1.9738 1.9805 128.9 124.1 108.3 6.65 0.73
2.74 1.9518 1.9213 117.8 122.8 113.7 6.33 0.11
2.853912a 1.9325 1.8841 105.7 118.3 123.4 6.17 0.04
2.89 1.9320 1.8861 102.2 115.3 129.0 6.21 1.44
2.95 1.9024 1.9475 99.4 107.6 144.8 6.41 0.15

11A9-21A9 surface of intersection
2.59 1.8663 2.1661 117.7 116.4 78.1 8.91 0.09
2.74 1.7661 2.0976 105.7 116.8 91.2 8.37 0.11
2.80 1.7594 2.0285 93.8 114.7 96.4 8.03 0.13
2.89 1.8526 2.0585 85.0 104.7 97.1 7.65 0.18
2.95 2.0930 2.0281 74.2 104.7 100.7 7.75 2.96

21A8-11A9 surface of intersection
2.59 1.96b 1.9008 118.7 102.5 106.2 7.42 1.91
2.74 1.96b 1.9122 109.5 98.5 103.9 7.05 0.56
2.89 1.96b 1.9031 106.8 99.9 110.3 6.95 0.02
2.95 1.8737 1.8960 113.3 102.7 109.8 6.78 0.00

31A8-11A9 surface of intersection
2.59 2.1448 1.9062 111.6 108.2 112.3 7.16 0.48
2.74 2.0667 1.9050 111.7 105.8 112.2 7.06 1.39
2.89 1.9502 1.9043 114.1 102.8 110.3 6.95 0.60
2.95 1.8711 1.9033 109.2 103.9 112.0 6.83 0.24

aR(NO) was also optimized in this calculation.
bR(OH1) fixed in this calculation.
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in the photodissociation process. They will be referred
to as the high- and low-energy excitation regions, re-
spectively. In an adiabatic process, these paths would
lead to a metastable structure, a local minimum of the
31A surface, or dissociated fragments. However, here it
was found that in each case the steepest-descent path
approached the 21A-31A surface of intersection. When
the steepest-descent path on a surface approaches a
conical intersection point, the steepest-descent algo-

rithm will begin to oscillate (see Fig. 16), unless a very
small step size is used. This oscillation is a signature of a
conical intersection. From the point where the oscilla-
tion begins, the steepest-descent path could be followed
to the conical intersection with a very small step size.
However, it is more efficient to locate approximately the
conical intersection point on the steepest-descent path
using Eq. (2.19), starting from the point where oscilla-
tion begins and heavily damping the portion of the hes-
sian QIJ corresponding to energy minimization, as dis-
cussed in Sec. II. The results of this procedure are
presented in the second part of Table II. Note that, for
the path originating at k;90°, dR(OH1);0.15a0 while
dR(NO) is small (consistent with the results in Table I).
For the path originating at k=0° the opposite is true,
dR(OH1) is small while dR(NO);0.15a0 .
This steepest-descent analysis shows that, following

excitation to the 31A surface, either in the center of the
Franck-Condon region k;90° or in its low-energy tail
k;0°, the system is likely to behave nonadiabatically,
encountering a conical intersection of the 21A and 31A
states that will lead to ground-state products. It is impor-
tant to note that, while the energy of a point on a surface
of conical intersection determines whether it is acces-
sible, only an analysis of the nuclear motion on the sur-
face in question can determine whether that conical in-
tersection region is accessed. In particular, note that the
nuclear dynamics, following excitation to the 31A state
in the high-energy k ;90° portion of the Franck-Condon

TABLE II. Points on the 21A-31A surface of conical intersection. Distances are in a0 , angles are in
degrees, the energy Ex5EI5EJ is in eV, and the energy splitting DEIJ[EI2EJ is in cm

−1. R(NO)
is fixed and all the other parameters are optimized except as noted.

R(NO) R(OH1)
R(NH2)
R(NH3) /H1ON

/ONH2

/ONH3 /H2NH3 k Ex DEIJ

Energy minimized points
2.6686 1.8863 1.9928 118.3 138.2 105.6 8.42 5.64 0.32

1.9237 116.3
2.7686 1.8524 1.9474 110.7 132.2 114.4 9.61 5.43 0.13

1.9060 113.5
2.8145a 1.8431 1.9371 107.2 128.0 120.0 12.3 5.38 0.25

1.9044 112.0
2.89 1.8423 1.9515 101.0 119.7 130.9 10.1 5.42 0.14

1.9102 109.4

dR(NO)
[R(NO)]

dR(OH1)
[R(OH1)]

dR(NH2)
dR(NH3) /̃H1ON

/̃ONH2

/̃ONH3 /̃H2NH3 k dEd DEIJ

Near steepest-descent points
0.0639 0.1405 0.0298 9.03 12.08 10.93 81.3 −0.86 1.63b

[2.8325] [1.9270] 0.0259 8.58
0.1534 0.0227 0.0529 −1.77 4.580 4.63 1.53 −0.38 0.35c

[2.9222] [1.8092] 0.0445 3.280

aR(NO) was also optimized in this calculation.
bSteepest descent begun from X1A8 equilibrium structure except that k→88°.
cSteepest descent begun from X1A8 equilibrium structure except that k→0°.
ddE5E31A(Rx)2E31A(Rref) where Rref is the equilibrium geometry of the X1A8 state with k
modified as indicated and Rx is the point on the surface of conical intersection.

FIG. 16. NH2OH: Steepest-descent path on surface I in the
vicinity of conical intersection of states I and J . Points on com-
puted steepest-descent path, open circles, illustrate oscillation
of steepest-descent algorithm with finite step size as algorithm
attempts to move to filled circle points on surface J .
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region, is not likely to sample the minimum-energy re-
gion of the 21A-31A surface of conical intersection that
occurs for k;10°, but rather the geometrically closer re-
gion indicated in row 5 of Table II. Similarly the
steepest-descent path originating at k=0° encounters the
region of the 21A-31A surface of conical intersection
that is 0.35 eV above the minimum-energy crossing
point (see rows 3 and 6 in Table II).

IV. CONCLUSIONS AND IMPLICATIONS

Conical intersections of two states of the same sym-
metry can have important implications both for explic-
itly nonadiabatic processes, that is, processes in which
the nuclear dynamics takes place on more than one
Born-Oppenheimer potential-energy surface, and for
adiabatic, single-potential-energy-surface processes. Of
particular concern here was the ‘‘diabolical’’ nature of
this class of conical intersections, which was attributed
to the difficulty in (i) anticipating the existence of the
conical intersection itself and (ii) determining the path-
ways that may give rise to the geometric phase effect.
Despite the inherent difficulty in anticipating their exist-
ence, it is suggested that when one is concerned with
electronically excited states these conical intersections
should not be viewed as rare occurrences.
This issue is of more than academic interest. Ad-

vances in laser design have led to proposals for control
of chemical reactions using electronically excited states
as ‘‘intermediates.’’ In such situations the geometric
phase effect may be encountered. It has been suggested,
for example, that control of a chemical reaction may be
achieved by using tailored pulses in pump-dump experi-
ments (Tannor and Rice, 1985, 1988; Tannor et al.,
1986). In these processes the system propagates for a
time on an electronically excited potential-energy sur-
face before being dumped back onto the ground-state
surface. If the excited state exhibits a conical intersec-
tion, proper treatment of the geometric phase effect will
be required to correctly predict the outcome of these
experiments. In this regard note that very recent dynam-
ics studies of model Jahn-Teller systems have demon-
strated that the geometric phase effect can have a sig-
nificant impact on femtosecond pump-probe
experiments (Schön and Köppel, 1994, 1995).
In a related vein it has been proposed (Romero-

Rochı́n and Cina, 1989; Cina and Romero-Rochin, 1990;
Cina, 1991; Cina et al., 1993) that the geometric phase
effect can be observed in molecules ‘‘directly,’’ that is
without elaborate spectral fitting, in very sophisticated
spectroscopically based experiments using ultrafast laser
pulses (Scherer et al., 1990, 1992). Such a direct observa-
tion would provide a striking example of the geometric
phase effect.
The geometric phase effect was originally discovered

in a particular, somewhat rare, class of molecular sys-
tems, those that exhibit a dynamic Jahn-Teller effect
(Longuet-Higgins et al., 1958). However, as a result of
the seminal work of Berry (1984), the implications of
this effect have been sought principally outside the area

of molecular spectroscopy. The issues raised in this re-
view suggest that the time has come to revisit the role of
this most diabolical phenomenon in chemical processes.
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