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A useful definition of orbital degeneracy—form-degeneracy—is introduced, which is distinct from
the usual energy-degeneracy: Two canonical spatial orbitals are form-degenerate when the energy
expectation value in the restricted Hartree–Fock (RHF) wave function is unaltered upon a two-electron
excitation from one of these orbitals to the other. Form-degenerate orbitals tend to have isomor-
phic electron densities and occur in the highest-occupied and lowest-unoccupied molecular orbitals
(HOMOs and LUMOs) of strongly correlated systems. Here, we present a mathematical proof of the
existence of a triplet instability in a real or complex RHF wave function of a finite system in the space
of real or complex unrestricted Hartree–Fock wave functions when HOMO and LUMO are energy-
or form-degenerate. We also show that a singlet instability always exists in a real RHF wave function
of a finite system in the space of complex RHF wave functions, when HOMO and LUMO are form-
degenerate, but have nonidentical electron densities, or are energy-degenerate. These theorems provide
Hartree–Fock-theory-based explanations of Hund’s rule, a singlet instability in Jahn–Teller systems,
biradicaloid electronic structures, and a triplet instability during some covalent bond breaking. They
also suggest (but not guarantee) the spontaneous formation of a spin density wave (SDW) in a metallic
solid. The stability theory underlying these theorems extended to a continuous orbital-energy spectrum
proves the existence of an oscillating (nonspiral) SDW instability in one- and three-dimensional
homogeneous electron gases, but only at low densities or for strong interactions. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4929354]

I. INTRODUCTION

Electronic structures of molecules and solids are unstable
when electronic excited and ground states are degenerate or
nearly degenerate. Such systems tend to be labile, reactive, and
can display colossal response to a minute external perturbation.
Such response properties include electrical conductivity,
spontaneous symmetry breaking, magnetic orders, electronic
phase transitions or crossovers, and superconductivity.1,2 Some
of these electronic structures are strongly correlated3 and
not to be described quantitatively by a mean-field theory.
Nevertheless, Hartree–Fock (HF) theory seems capable of at
least detecting such instabilities under qualitatively correct
conditions and is thus potentially useful for some critical issues
in chemistry and solid-state physics.

A solution of the HF equation is said to be unstable when
the second variation of the associated energy (the stability
matrix) is not positive semidefinite.1,4–20 This theory was
pioneered by Thouless4 and fully developed by Čížek and
Paldus,7 culminating in a comprehensive study by Seeger and
Pople,11 who listed 13 types of such instabilities and the
corresponding stability matrices. One of the instabilities is
that of a real, singlet, restricted Hartree–Fock (RHF) wave
function of a closed-shell molecule in the space of real, triplet,
unrestricted Hartree–Fock (UHF) wave functions.7,9 Another
is the instability of a complex, singlet RHF wave function in

a)Author to whom correspondence should be addressed. Electronic mail:
sohirata@illinois.edu

the space of complex, triplet UHF wave functions. Together,
they may be called the triplet or spin-density-wave (SDW)
instabilities.7 Yet another is the instability of a real, singlet
RHF wave function in the space of complex, singlet RHF
wave functions. This is called the singlet or charge-density-
wave (CDW) instability.7

Here, we introduce the new concept of form-degeneracy as
a complementary and perhaps more broadly applicable crite-
rion of orbital degeneracy than the usual energy-degeneracy.
Two canonical spatial molecular orbitals, ϕp(r) and ϕq(r), of
a RHF calculation are considered form-degenerate, when the
energy expectation value in the RHF wave function using ϕp(r)
is unaltered by replacing it by ϕq(r). In other words, the excited
state in which two electrons are simultaneously promoted
from ϕp(r) to ϕq(r) has the same energy as the ground state.
The highest-occupied and lowest-unoccupied molecular or-
bitals (HOMOs and LUMOs) of the oxygen molecule and
collinear methylene (systems that are subject to Hund’s rule
and biradicaloids) are form-degenerate. The HOMO and
LUMO of a homonuclear diatomic molecule are frequently
form-degenerate as its covalent bond is stretched infinitely.
On the other hand, HOMO and LUMO of a metal such as a
homogeneous electron gas (HEG) are energy-degenerate.

In this article, we present a mathematical proof of the
existence of a triplet instability in a real or complex RHF wave
function of a finite system with energy- or form-degenerate
HOMO and LUMO. The proof provides a basis of Hund’s rule
within the framework of HF theory. It explains the propensity
of the triplet instabilities in covalent bond breaking. It suggests,
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but not guarantees the spontaneous formation of a SDW in a
metallic solid. We furthermore prove the existence of a singlet
instability in a real RHF wave function of a finite system in
the space of complex RHF wave functions, when HOMO and
LUMO are form-degenerate, but have nonidentical electron
densities, or are energy-degenerate. An application of this is
a CDW formation in the square cyclobutadiene, which is an
electronic driving force for its Jahn–Teller distortion.

II. THEOREMS

We use i and j to label occupied spatial orbitals in a RHF
wave function Φ0 of a finite system, a and b virtual orbitals,
and p, q, r , and s either type of orbitals. We use I and A to
denote HOMO and LUMO, respectively. ΦAA

I I designates the
RHF wave function in which I is replaced by A in Φ0, that is,
the doubly excited determinant in which two electrons in the
Ith spatial orbital are promoted to the Ath spatial orbital.

Definition. The HOMO and LUMO in a RHF wave
function are form-degenerate when

0 = ⟨ΦAA
I I |Ĥ |ΦAA

I I ⟩ − ⟨Φ0|Ĥ |Φ0⟩ ≡ 2δ, (1)

where Ĥ is the Hamiltonian.

Remarks. We can express the first integral in the above
equation as

⟨ΦAA
I I |Ĥ |ΦAA

I I ⟩ = ⟨Φ0|Ĥ |Φ0⟩ + 2(ϵ A − ϵ I) − 4⟨AI |AI⟩
+ 2⟨AI |I A⟩ + ⟨I I |I I⟩ + ⟨AA|AA⟩, (2)

where ϵ p is the energy of the pth RHF orbital and

⟨pq|rs⟩ =


ϕ∗p(r1)ϕ∗q(r2)ϕr(r1)ϕs(r2)
|r1 − r2| dr1dr2. (3)

From Eqs. (1) and (2), we can rewrite the HOMO-LUMO en-
ergy difference as

ϵ A − ϵ I = 2⟨AI |AI⟩ − 1
2
⟨I I |I I⟩ − 1

2
⟨AA|AA⟩ − ⟨AI |I A⟩ + δ,

(4)

with δ = 0 when HOMO and LUMO are form-degenerate.
Form-degenerate orbitals tend to be associated with highly

symmetric molecular geometries and to have isomorphic
electron densities; |ϕA(r)|2 and |ϕI(r)|2 may be superimposed
exactly onto each other by translation and/or rotation. In spite
of this and of the fact that Φ0 and ΦAA

I I have the same energy
expectation value, form-degenerate ϵ A and ϵ I generally differ
from each other, i.e., ϵ A > ϵ I . This is because an electron in
the Ith orbital feels the (N − 1)-electron mean field, whereas
an electron in the Ath orbital experiences the N-electron mean
field, where N is the number of electrons in the molecule.

The usual definition of HOMO-LUMO degeneracy, i.e.,
energy-degeneracy, is ϵ A = ϵ I . This is a much stronger condi-
tion hardly satisfied by any finite system for the aforemen-
tioned reasons.21

The value of δ may be considered as an unambiguous,
quantitative index of strong correlation in the ground state.
δ = 0 corresponds to the strongest limit, where there is at

least one excited-state determinant with the same energy as
the ground-state determinant, and therefore, a multi-reference
wave function is needed to describe the ground state. However,
this simple index cannot distinguish a high density of low-
lying excited states from a low density, each causing the
correspondingly different degree of correlation.

Triplet instability theorem I. A real, singlet RHF wave
function of a finite system is always unstable in the space
of real, triplet UHF wave functions, when HOMO and LUMO
are energy- or form-degenerate.

Proof. In the notation of Seeger and Pople,11 this type
of instability exists when the Nocc.Nvir.-by-Nocc.Nvir. stability
matrix, 3A′ + 3B′, has at least one negative eigenvalue (the
smallest eigenvalue being exactly zero does not imply an insta-
bility). Here, Nocc. (Nvir.) is the number of occupied (virtual)
real spatial orbitals. The matrix elements are given7,11 by

3A′i→a, j→b = (ϵa − ϵ i)δi jδab − ⟨a j |bi⟩, (5)

3B′i→a, j→b = −⟨ab| ji⟩, (6)

where δi j and δab are the Kronecker delta. The readers are
referred to the original papers7,11 for their derivations.

For real spatial orbitals, the stability matrix, 3A′ + 3B′,
is symmetric. Hence, to prove that the lowest eigenvalue is
negative, we only need to show that at least one of its diag-
onal elements is negative. This is because, according to the
Hylleraas–Undheim–MacDonald theorem,22,23 the former is
more negative than the latter.

If the HOMO and LUMO are form-degenerate (δ = 0),
the diagonal element corresponding to these orbitals is

3A′I→ A, I→ A +
3B′I→ A, I→ A

= ϵ A − ϵ I − ⟨AI |AI⟩ − ⟨AA|I I⟩ (7)

= ⟨AI |AI⟩ − 1
2
⟨I I |I I⟩ − 1

2
⟨AA|AA⟩

− ⟨AI |I A⟩ − ⟨AA|I I⟩ + δ, (8)

according to Eq. (4).
As proven in the Appendix, for any locally integrable

function, ξ(r), the following inequality holds:
ξ∗(r1)ξ(r2)
|r1 − r2| dr1dr2 ≥ 0. (9)

Substituting ξ(r) = |ϕI(r)|2 − |ϕA(r)|2 in the above, we find

⟨AI |AI⟩ − 1
2
⟨I I |I I⟩ − 1

2
⟨AA|AA⟩ ≤ 0, (10)

where the equality holds if and only if |ϕI(r)|2 = |ϕA(r)|2
pointwise.24 An alternative proof of the above can be obtained
by using the Cauchy–Schwarz inequality25 and the inequality
of arithmetic and geometric means. Equation (10) indicates
that the sum of the first three terms of the right-hand side of
Eq. (8) is negative.

Exchange integrals such as ⟨AI |I A⟩ and ⟨AA|I I⟩ (in real
orbitals) are also shown to be positive by Slater26 and also
by Roothaan;24 see the Appendix for yet another proof using
Eq. (9). Together, we conclude

3A′I→ A, I→ A +
3B′I→ A, I→ A < 0, (11)
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which proves the existence of the instability in the presence of
form-degenerate HOMO and LUMO (δ = 0).

If the HOMO and LUMO are energy-degenerate, the
corresponding diagonal element is

3A′I→ A, I→ A +
3B′I→ A, I→ A = −⟨AI |AI⟩ − ⟨AA|I I⟩ < 0. (12)

This proves the instability in the presence of energy-degenerate
HOMO and LUMO.

Remarks. This theorem for form-degenerate HOMO and
LUMO was implied by Bofill and Pulay.27 It corresponds to
the case of ∆ = 0 and |B|2 = 1/2 in their notation.

Since the right-hand side of Eq. (8) is strongly negative at
δ = 0, it remains negative even with a small positive value of
δ, or more precisely, whenever

δ < −⟨AI |AI⟩ + 1
2
⟨I I |I I⟩ + 1

2
⟨AA|AA⟩

+ ⟨AI |I A⟩ + ⟨AA|I I⟩ (13)

is satisfied. Therefore, the triplet instability exists even when
HOMO and LUMO are not strictly form-degenerate but only
nearly degenerate. In some cases, the strict energy- or form-
degeneracy occurs only asymptotically (such as at infinite bond
distances or in the thermodynamic limit), but the theorem
suggests that the instability manifests itself before these
asymptotic limits are actually reached.

Triplet instability theorem II. A complex, singlet RHF
wave function of a finite system is always unstable in the
space of complex, triplet UHF wave functions, when HOMO
and LUMO are energy- or form-degenerate.

Proof. The pertinent stability matrix is given11 by

3H′ = *
,

3A′ 3B′
3B′∗ 3A′∗

+
-
, (14)

of which the submatrices are defined by Eqs. (5) and (6). Here,
the orbitals are understood to be complex spatial functions.
The diagonal element involving form-degenerate HOMO and
LUMO (δ = 0) is

3A′I→ A, I→ A = ϵ A − ϵ I − ⟨AI |AI⟩
= ⟨AI |AI⟩ − 1

2
⟨I I |I I⟩ − 1

2
⟨AA|AA⟩

− ⟨AI |I A⟩ + δ < 0. (15)

The inequality follows from Eq. (10) and ⟨AI |I A⟩ > 0.24,26

Likewise, the same element involving energy-degenerate
HOMO and LUMO is

3A′I→ A, I→ A = −⟨AI |AI⟩ < 0. (16)

Since 3H′ is Hermitian, these prove the negativity of its
lowest eigenvalue, as per the Hylleraas–Undheim–MacDonald
theorem,22,23 and thus the existence of the instability.

Remarks. The instability exists for near-degenerate
HOMO and LUMO if

δ < −⟨AI |AI⟩ + 1
2
⟨I I |I I⟩ + 1

2
⟨AA|AA⟩ + ⟨AI |I A⟩

(17)

is satisfied.

Singlet instability theorem. A real, singlet RHF wave
function of a finite system is always unstable in the space
of complex, singlet RHF wave functions, when HOMO and
LUMO are form-degenerate, but have nonidentical electron
densities, or are energy-degenerate.

Proof. For form-degenerate HOMO and LUMO (δ
= 0), the said instability exists when the following matrix
element7,11 is negative:

1A′I→ A, I→ A −
1B′I→ A, I→ A

= ϵ A − ϵ I + 2⟨AI |I A⟩ − ⟨AI |AI⟩ − ⟨AA|I I⟩ (18)

= ⟨AI |AI⟩ − 1
2
⟨I I |I I⟩ − 1

2
⟨AA|AA⟩

+ ⟨AI |I A⟩ − ⟨AA|I I⟩ + δ. (19)

The sum of the first three terms in Eq. (19) is negative because
of Eq. (10) unless |ϕI(r)|2 = |ϕA(r)|2 pointwise. The sum of the
subsequent two terms is zero because orbitals are real. Hence,
the right-hand side is always negative unless the HOMO
and LUMO have the pointwise identical electron densities.
For energy-degenerate HOMO and LUMO, the corresponding
element is

1A′I→ A, I→ A −
1B′I→ A, I→ A = ⟨AI |I A⟩ − ⟨AI |AI⟩, (20)

where ⟨AI |I A⟩ = ⟨AA|I I⟩ is used. The right-hand side is
always negative as per Roothaan.24 These in conjunction with
the Hylleraas–Undheim–MacDonald theorem22,23 prove this
theorem.

Remarks. This theorem and the triplet instability theorem
II imply9 the existence of another instability, that is, the
instability of a real, singlet RHF wave function in the space
of complex, triplet UHF wave functions, when HOMO and
LUMO are form-degenerate, but have nonidentical electron
densities, or are energy-degenerate.

The instability condition for near-degenerate HOMO and
LUMO is given by

δ < −⟨AI |AI⟩ + 1
2
⟨I I |I I⟩ + 1

2
⟨AA|AA⟩. (21)

As shown above, the range of δ that satisfies this condition
is null when |ϕI(r)|2 = |ϕA(r)|2 pointwise and it is generally
smaller than those in the case of the triplet instabilities.
This indicates that the singlet instability is harder to occur
than the triplet instabilities, which is consistent with previous
numerical observations.1

III. DISCUSSION

A. Hund’s rule

The HOMO and LUMO are form-degenerate in the singlet
RHF wave functions of the oxygen molecule in the minimal
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basis set. They are bonding π orbitals perpendicular to each
other, which are isomorphic, but not identical in the sense that
they are superimposable only upon π/2 rotation around the
molecular axis. Since the rest of the electron density (excluding
the density of the HOMO) is axially symmetric, Eq. (1) holds.
Thereupon, the triplet instability theorem I states that one can
always find a triplet UHF wave function with a lower energy.
This can be interpreted as a mathematical basis of Hund’s rule
within the framework of HF theory.

Comparing the RHF energies of open-shell singlet and
triplet states is often used instead to justify Hund’s rule.28

However, an open-shell singlet RHF solution is not even
a solution of the corresponding UHF equation and has a
higher energy than a closed-shell counterpart.11 Therefore, the
criterion based on this theorem, which compares the respective
minimal energies of singlet and triplet, is more stringent.

With a basis set larger than the minimal one, Coulomb
and exchange potentials acting on HOMO and LUMO are
different, making them no longer form-degenerate. A triplet
instability still tends to occur, as strongly suggested, though
not guaranteed by the theorem [cf. Eq. (13)].

The electron densities of the HOMO and LUMO of O2 are
isomorphic, but not identical. This means that the molecule also
has the singlet instability according to the eponymous theorem.

B. Biradicaloids

Collinear methylene (CH2) is another example whose
HOMO and LUMO are form-degenerate in the minimal basis
set. The triplet instability theorem I dictates that its singlet
RHF wave function is unstable in the space of triplet UHF
wave functions. It should be cautioned that a “triplet” UHF
wave function is not an eigenfunction of the Ŝ2 operator and
is a mixture of states with different spin multiplicities. These
molecules in the UHF description may thus be better character-
ized as biradicaloids.29,30 Biradicaloids are often identified as
transition states of radical reactions and associated with small
HOMO-LUMO gaps.30,31 They are also prime candidates of
dyes capable of singlet fission for use in dye-sensitized solar
cells.32

C. Jahn–Teller distortion

The HOMO and LUMO of the singlet RHF solution of
square cyclobutadiene in the minimal basis set are form-
degenerate. Their electron densities are isomorphic, but not
identical. Hence, this solution has both singlet and triplet insta-
bilities as per the respective theorems. In fact, the real singlet
RHF solution already displays a “bond” CDW or alternating
bond orders, even before molecular orbitals are allowed to be
complex-valued; in other words, it has a real singlet instability
in addition to a complex singlet instability, with only the latter
guaranteed by the theorem. The bond CDW is the electronic
driving force of the Jahn–Teller distortion from the square to a
rectangular structure.

The triplet instability theorem II furthermore states that it
has an even lower-lying UHF solution and is subject to Hund’s
rule, although the consideration of electron correlation can
reverse the conclusion.28

D. Covalent bond breaking

In the limit of an infinite bond length in some homonuclear
diatomic molecules with bond order greater than zero, the
HOMO and LUMO are symmetric and antisymmetric linear
combinations of two atomic orbitals with no overlap. Their
electron densities thus become not only isomorphic but also
identical asymptotically. All occupied orbitals (excluding the
HOMO) then also consist of symmetric and antisymmetric
pairs (or axially symmetric π bond pairs, etc.), making Eq. (1)
be satisfied. The HOMO and LUMO of infinitely stretched H2,
Li2, and B2 (having an odd number of occupied spatial orbitals),
for example, display this behavior and are form-degenerate in
any basis set, whereas those of He2, Be2, and C2 (having an
even number of occupied spatial orbitals) do not. The triplet
instability theorem I states that the single RHF wave function
of a molecule in the first group is guaranteed to exhibit the
triplet instability. The singlet instability theorem does not apply
because of the identical HOMO and LUMO electron densities
(but does not preclude such an instability, either).

E. Homogeneous electron gas

Overhauser33 proved that a complex RHF wave function
of a HEG is always unstable towards the formation of a
“spiral” SDW at any density (see also Refs. 34 and 35). The
latter is a general Hartree–Fock (GHF) solution,36–43 in which
each orbital is a sum of α- and β-spin components. Since
the HOMO and LUMO of a HEG are energy-degenerate, the
triplet instability theorem II suggests the spontaneous forma-
tion of an “oscillating” SDW or a complex UHF solution
with a lower energy. However, since every single element
of the stability matrix vanishes in the thermodynamic limit
[e.g., Eqs. (27) and (34) vanish as V → ∞ or ∆ → 0] and the
lowest eigenvalue of the stability matrix being zero does not
imply an instability, the theorem does not hold. We therefore
apply the stability theory underlying the theorems extended
to a continuous orbital-energy spectrum (rather than the theo-
rems themselves) to a HEG.

A canonical RHF orbital of a three-dimensional HEG with
N electrons in volume V is characterized by its wave vector k
and written as

ϕk(r) = V−1/2 exp(ik · r). (22)

The corresponding orbital energy is

ϵk =
k2

2
− V
(2π)3


|k′|≤kF

⟨k,k′|k′,k⟩ dk′ (23)

=
k2

2
− 2kF

π
F

(
k
kF

)
, (24)

with

F(x) = 1
2
− 1

4

(
x − 1

x

)
ln

1 + x
|1 − x | . (25)

Here, k = |k| and kF is the Fermi wave vector, which corre-
sponds to the HOMO and is related to electron density ρ by

k3
F

3π2 =
N
V
= ρ. (26)
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A two-electron integral is evaluated analytically as

⟨k,k′|k′′,k + k′ − k′′⟩ = 4π
V |k − k′′|2 . (27)

The wave vectors of the HOMO and LUMO are designated as
kI and kA, respectively, and kA = kI + ∆ with ∆ = |∆| being a
positive infinitesimal.

A RHF wave function composed of the planewaves of
Eq. (22) has a triplet instability if the lowest eigenvalue of
the stability matrix of Eq. (14) approaches zero from below
and is thus always negative until ∆ = 0 (V = ∞). As per
Hylleraas–Undheim–MacDonald theorem,22,23 this is implied
when ω defined below is negative for one normalized vector,
(x,y),

ω =
(
x∗ y∗

) *
,

3A′ 3B′
3B′∗ 3A′∗

+
-
*
,

x
y
+
-
, (28)

with
3A′ki→ka,k j→kb

= (ϵka − ϵki)δkik j
δkakb − ⟨ka,k j |kb,ki⟩, (29)

3B′ki→ka,k j→kb
= −⟨ka,kb |k j,ki⟩, (30)

where |ka | > kF, |kb | > kF, |ki | ≤ kF, and |k j | ≤ kF. To establish
only the negativity ofω, the vector does not have to be normal-
ized.

For an infinite system, we must switch from the discretized
formula given above to its continuous analog, which reads

ω =
V

(2π)3


x∗(ki)(ϵka − ϵki)x(ki) dki

+
V

(2π)3


y∗(−ki)(ϵ−ka − ϵ−ki)y(−ki) dki

− V 2

(2π)6


x∗(ki)⟨ka,k j |kb,ki⟩x(k j) dkidk j

− V 2

(2π)6


y∗(−ki)⟨−kb,−ki | − ka,−k j⟩y(−k j) dkidk j

− V 2

(2π)6


x∗(ki)⟨ka,−kb | − k j,ki⟩y(−k j) dkidk j

− V 2

(2π)6


y∗(−ki)⟨−ka,kb |k j,−ki⟩x(k j) dkidk j . (31)

Each two-electron integral in the above vanishes identically
unless the momentum conservation law, ka − ki = kb − k j, is
satisfied. The stability matrix is, therefore, block diagonal with
each nonzero block characterized by this momentum transfer.
Let us concentrate on the nonzero block whose momentum
transfer is∆, that is,∆ = ka − ki = kb − k j, where∆ = kA − kI .
Also, let∆point in the positive z direction. The volume spanned
byki that satisfies this condition is thehalf-sphere shell of radius
kF and thickness ∆ along the z axis (not along the radius). This
volume is depicted as domain D1 in Fig. 1. The volume spanned
by −ki is designated as D2 in the same figure.

Using the integration domains defined in Fig. 1, we can
write

ϵka =
|ki + ∆|2

2
− V
(2π)3


S1

4π
V |ki + ∆ − k j |2 dk j

=
|ki + ∆|2

2
− V
(2π)3


S2

4π
V |ki − k j |2 dk j, (32)

FIG. 1. The xz cross section of the z-axially symmetric integration domains
in the k space. Domains S1 and S2 are spheres of radius kF centered at O and
−∆, respectively. Domains D1 and D2 are half-sphere shells of radius kF and
thickness ∆ along the z axis.

ϵki =
|ki |2

2
− V
(2π)3


S1

4π
V |ki − k j |2 dk j, (33)

where S1 and S2 are the spheres of radius kF with their centers
displaced from each other by ∆. Therefore,

ϵka − ϵki = ki · ∆

+
V

(2π)3

D1

4π
V |ki − k j |2 dk j

− V
(2π)3


D2

4π
V |ki − k j |2 dk j, (34)

in the leading order of ∆ at ∆ → 0.
Letting x(ki) = y(−ki) = V−1/2 for any ki within D1 and

x(ki) = y(−ki) = 0 elsewhere, we find

ω =
2

(2π)3

D1

ki · ∆ dki

− 4
(2π)6


D1


D2

4π
|ki − k j |2 dkidk j, (35)

where we have used
D1


D1

4π
|ki + k j |2 dkidk j =


D1


D2

4π
|ki − k j |2 dkidk j, (36)

and so forth. The first (kinetic) term of Eq. (35) is positive and
is an O(∆2k3

F) quantity, whereas the second (exchange) term
is negative and scales as O(∆2k2

F). Therefore, when the Fermi
wave vector kF is sufficiently small (i.e., the electron density
ρ is sufficiently low), we have an unnormalized vector (x,y)
that makes the corresponding value of ω negative, dictating
the existence of an oscillating SDW instability is the HEG. At
a higher density, the same vector (x,y) no longer guarantees
the negativity of ω or the existence of a SDW instability. This
analysis, however, does not preclude an instability of any kind
at any density.

It can be seen that the theorems do not apply to an infinite
system because its HOMO-LUMO energy-degeneracy occurs
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only in theasymptotic limit, atwhich thekineticcontributions to
the stability matrix elements may be comparable in magnitude
to the exchange contributions. The foregoing analysis shows
that the energy-degeneracy of HOMO and LUMO in a HEG
alone may not guarantee the triplet instability; the proof of
its existence requires that the Coulomb interaction be strong
relative to the kinetic energy.44,45

F. Luttinger liquids

In Ref. 46, Overhauser proved a similar theorem for a
one-dimensional metal or the so-called Luttinger liquid with
a δ-function interaction. He demonstrated the existence of a
spiral or oscillating SDW that has a lower energy than the
complex RHF solution at any interaction strength, although an
oscillating SDW occurs only for a strong interaction. Here, we
apply the stability theory to Luttinger liquids with a δ-function
interaction and with the Coulomb interaction.

In a one-dimensional periodic system with N electrons
in period L interacting through a δ-function potential, γδ(zi
− z j), a canonical RHF orbital is written as

ϕk(z) = L−1/2 exp(ik z), (37)

with the orbital energy being

ϵk =
k2

2
+

2L
2π

 kF

−kF

⟨k, k ′|k, k ′⟩ dk ′

− L
2π

 kF

−kF

⟨k, k ′|k ′, k⟩ dk ′ (38)

=
k2

2
+
γkF

π
, (39)

where kF = Nπ/(2L) = ρπ/2 is the Fermi wave vector and

⟨k, k ′|k ′′, k + k ′ − k ′′⟩
=


L−1 exp{−ik z1 − ik ′z2}γδ(z1 − z2)

× L−1 exp{ik ′′z1 + i(k + k ′ − k ′′)z2} dz1dz2 (40)

=
γ

L
. (41)

Let the HOMO and LUMO wave vectors be kI and kA,
respectively. They are taken to be positive: kA − kI = ∆ > 0. A
triplet instability of the complex RHF wave function is proved
to exist if an unnormalized vector, {x(k), y(k)}, is found that
makesω defined by the continuous analog of Eq. (28) negative.
Again, the 3A′ and 3B′ matrices are block diagonal with each
nonzero block associated with the momentum transfer, ka −
ki = kb − k j.

Let x(ki) = y(−ki) = L−1/2 for ki that satisfies ka > kF
≥ ki > 0 and ka − ki = ∆; they are zero elsewhere. We desig-
nate the domain of ki that satisfies this condition D1, whose
length is ∆. The corresponding value of ω is

ω =
L

2π


D1

x(ki)∗kF∆ x(ki) dki

+
L

2π


D1

y(−ki)∗kF∆ y(−ki) dki

− L2

(2π)2

D1


D1

x(ki)∗ γL x(k j) dkidk j

− L2

(2π)2

D1


D1

y(−ki)∗ γL y(−k j) dkidk j

− L2

(2π)2

D1


D1

x(ki)∗ γL y(−k j) dkidk j

− L2

(2π)2

D1


D1

y(−ki)∗ γL x(k j) dkidk j (42)

=
kF∆

2

π
− γ∆2

π2 . (43)

Hence, only when γ > πkF is ω negative. This guarantees
the existence of an oscillating SDW only for a strong inter-
action, but not for a weak interaction, although it does not
preclude the instability for the latter. Note that this threshold
(γ = πkF) coincides with the interaction strength at which the
ferromagnetic (fully spin-polarized) solution begins to have
a lower energy than the paramagnetic (RHF) one.46 This is
unsurprising because the increase in the kinetic energy and the
decrease in the interaction energy in Eq. (43) have the same,
quadratic dependence on ∆.

Next, we consider the Luttinger liquid with electrons in-
teracting through Coulomb forces in a compensating uniform
positive charge. The two-electron integral is defined by

⟨k, k ′|k ′′, k + k ′ − k ′′⟩
=


L−1 exp{−ik z1 − ik ′z2} 1

|z1 − z2|
× L−1 exp{ik ′′z1 + i(k + k ′ − k ′′)z2} dz1dz2 (44)

= −C
L

ln |k − k ′′|, (45)

where C is a positive constant.
Following the same logic leading to Eq. (35), we find the

value of ω with x(ki) = y(−ki) = L−1/2 for ki in domain D1 to
be

ω =
kF∆

2

π
+

4
(2π)2


D1


D2

C ln |ki − k j | dkidk j, (46)

where D2 is the domain of k that satisfies −k − ∆ < −kF
≤ −k < 0. The first (kinetic) term is a positive O(∆2kF) quan-
tity, whereas the second (exchange) term can be either positive
or negative and scales as O(∆2 ln kF). Therefore, Eq. (46)
guarantees an oscillating SDW instability only for a small kF
or at a low density. Again, it does not preclude an instability
in other circumstances.

IV. CONCLUSION

It has long been known qualitatively that, as HOMO and
LUMO approach near-degeneracy, a triplet instability tends to
occur first, often followed by a singlet instability. The three
theorems introduced in this study explain this well-known ten-
dency by dictating the existence of the respective instabilities
in the limit where HOMO and LUMO are form-degenerate.

Form-degeneracy is a new definition of orbital degen-
eracy, which is complementary and perhaps more useful than
the usual energy-degeneracy because HOMO and LUMO in
a finite system are almost never energy-degenerate. On this
basis, we have proved the triplet instability theorems I and II
and the singlet instability theorem. Whereas the theorems hold
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only for finite systems, they suggest (but not dictate) the spon-
taneous formations of oscillating SDW in a metallic solid
such as one- and three-dimensional HEGs. The stability theory
underlying these theorems extended to a continuous orbital-
energy spectrum shows that one- and three-dimensional HEGs
have an oscillating SDW instability at a low density or for
strong interactions, although it does not preclude an instability
elsewhere.

Examples of strongly correlated systems that are the sub-
ject of these theorems are ubiquitous, difficult to characterize
otherwise, and crucial in a range of molecular and solid-state
problems. They include molecules that are subject to Hund’s
rule (O2), biradicaloids (collinear CH2), Jahn–Teller systems
(square cyclobutadiene), and those that are undergoing cova-
lent bond breaking (H2, Li2, B2). The theorems suggest the
emergence of SDW and, to a lesser extent, CDW in a metal,
the former being related to the Mott insulator and antifer-
romagnetic ordering observed in strongly correlated solids.
That HF theory can detect such instabilities in qualitative cor-
rect conditions, while most density-functional approximations
cannot, may elevate the importance of the former in solid-state
applications.
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APPENDIX: A PROOF OF EQ. (9)

The integral can be transformed as
ξ∗(r1)ξ(r2)
|r1 − r2| dr1dr2 = lim

η→0

1
2π2

 |ζ(k)|2
|k|2 + η2 dk ≥ 0, (A1)

with

ζ(k) =


e−ik·rξ(r) dr. (A2)

In Eq. (A1), a use is made of the three-dimensional Fourier
transform of the Coulomb potential,

1
|r1 − r2| = lim

η→0

e−η |r1−r2|

|r1 − r2| = lim
η→0

1
2π2


eik·(r1−r2)

|k|2 + η2 dk. (A3)

The inequality in Eq. (A1) follows from the fact that each
factor in the integrand is non-negative and the equality holds if
and only if ζ(r) = 0.

That an exchange integral, ⟨pq|qp⟩, is always positive can
be proven by substituting ξ(r) = ϕ∗q(r)ϕp(r) in the above.
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