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This work describes the implementation and applications of non-Hermitian self-consistent field
(NH-SCF) theory with complex basis functions for the ab initio computation of positions and
widths of shape resonances in molecules. We utilize both the restricted open-shell and the previously
unexplored spin-unrestricted variants to compute Siegert energies of several anionic shape resonances
in small diatomic and polyatomic molecules including carbon tetrafluoride which has been the subject
of several recent experimental studies. The computation of general molecular properties from a
non-Hermitian wavefunction is discussed, and a density-based analysis is applied to the 2B1 shape
resonance in formaldehyde. Spin-unrestricted NH-SCF is used to compute a complex potential energy
surface for the carbon monoxide anion which correctly describes dissociation. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4928529]

I. INTRODUCTION

Metastable electronic states, or resonances, in molecules
play an important role in a variety of chemical processes. They
can be described by a Siegert energy,

E = E − i
Γ

2
, (1)

where E is the position and Γ is the width of the resonance.
Unfortunately, due to their continuum nature, these states
have largely eluded large-scale, reliable computation. Many
of the most promising candidates for reliable compu-
tation of Siegert energies are based on complex-coordinate
methods.1–3

Originally based on the mathematically rigorous theorems
of Aguilar, Balslev, and Combes,4,5 and Simon,6 these methods
rely on the solution of a non-Hermitian effective Hamiltonian.
This effective Hamiltonian is constructed so as to contain in
its spectrum complex eigenvalues equal to the Siegert energies
and corresponding to square integrable eigenfunctions. This
process, which generally involves the scaling of some of the
coordinates of the Hamiltonian by a complex number, is called
complex-scaling. Unfortunately, non-analyticities arising from
the Born-Oppenheimer approximation make the application to
molecular systems difficult.7–9 This problem can be overcome
with the mathematically rigorous method of exterior complex
scaling.8

Though difficult to apply directly, the exterior complex-
scaling transformation can be implicitly applied using complex
basis functions.7,10 In this method, complex Gaussian functions
of the form

φθ(r) = N(θ)(x − Ax)l(y − Ay)m(z − Az)n
× exp

�
−αe−2iθ(r − A)2� (2)

are included in the basis set. The method of complex basis
functions has been applied to a variety of diatomic mole-
cules7,11–18 and has recently been applied to some larger, poly-
atomic molecules in the static exchange (SE) approximation.10

In this study, we employ complex basis functions in computa-
tions on electronic shape resonances in molecules.

Complex coordinate methods, as they are usually used,
reduce the full scattering problem to a variational search
within a basis of square integrable functions. Unfortunately,
in many electron systems, one is almost always forced to
make further approximations to make the many-body problem
computationally feasible. In quantum chemistry, it is the self-
consistent field (SCF) wavefunction that usually serves as a
first approximation and as a starting point for more accurate
methods. The SCF method was first introduced in the context
of complex coordinate methods by McCurdy et al.19 For
metastable anions, these methods explicitly treat the polar-
ization of the target molecule or atom due to the presence
of an additional electron at a mean-field level. While these
methods are usually called complex SCF or complex-scaled
SCF, we will refer to them as non-Hermitian SCF (NH-SCF)
methods so as to highlight the non-Hermitian nature of the
problem and to avoid confusion with complex Hermitian SCF
methods.

NH-SCF methods have been successfully applied in the
context of straight complex-scaling to a variety of atomic
shape resonances.19–24 NH-SCF methods employing complex
basis functions have also been applied to shape resonances
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in a variety of diatomic molecules.11–13,16 Various types of
non-Hermitian DFT methods have also been recently devel-
oped.25–28 While SCF-type methods are not directly applicable
to Feshbach resonances, non-Hermitian multiconfigurational
self-consistent field (NH-MCSCF)29,30 or non-Hermitian
configuration interaction (NH-CI)31–33 approaches have been
successfully applied to Feshbach resonances in atoms. For
molecules, these multi-determinantal methods have also been
shown to provide a description of Feshbach resonances.14–18

Recently, complex scaled coupled-cluster methods have also
been used for shape and Feshbach resonances in atoms.34,35

In this study, we discuss in detail the implementation and
application of NH-SCF theory to molecular anionic shape
resonances. After reviewing the non-Hermitian version of
restricted open-shell Hartree-Fock (NH-ROHF), we introduce
the spin-unrestricted variant (NH-UHF) and apply both to
a variety of small diatomic and polyatomic molecules. This
is the first time that this method has been applied to poly-
atomic molecules. Additionally, we include a discussion of
the calculation and interpretation of general molecular prop-
erties from a non-Hermitian wavefunction. A density based
analysis and visualization of the electron attachment process is
introduced and applied to the 2B1 resonance in formaldehyde.
Finally, we use NH-UHF to compute a complex potential
energy surface for the carbon monoxide anion. Like its Her-
mitian counterpart, NH-UHF theory is found to be capable
of describing full potential energy surfaces with qualitative
accuracy.

II. THEORY

The theoretical background of NH-SCF is described in
detail in other works.19,20 Here, we augment these discussions
with a derivation in terms of the complex variational prin-
ciple36–38 which, in the context of complex basis functions,
states that the Siegert energy of some trial, c-normalizable
function |Ψ),

E =
(Ψ|H |Ψ)
(Ψ|Ψ) , (3)

is stationary with respect to small variations about the true
wavefunction. In the method of complex basis functions, the
“true” wavefunction is the true exterior scaled wavefunction
evaluated in a transformed variable as discussed in Ref. 10. The
brackets (. . . | . . .) are used to denote the c-product,37 which
means that the bra is not complex-conjugated. A complex
NH-SCF energy is determined by requiring that the energy
functional of Equation (3) is made stationary to first order with
respect to variations of a single Slater determinant trial wave-
function. This Slater determinant is constructed from molec-
ular orbitals (MOs) that are constrained to be c-orthonormal.
This gives rise to a Lagrangian,

L = (Ψ|H |Ψ) −

i j

�(φi |φ j) − δi j
�
λi j, (4)

where the many body state |Ψ) is chosen to be a single
Slater determinant of MOs φi(r), and the λi j are Lagrange
multipliers. The MOs are c-orthonormal functions constructed
from real and complex Gaussian basis functions as described

in Ref. 10. As in the real case, the specification of any con-
straints on the spin part of the wavefunctions, followed by the
extremization of L, gives rise to the NH-SCF equations.

A. NH-ROHF and NH-UHF equations

The NH-ROHF equations are the same as in the real
case.39 Stationarity of the Lagrangian of Equation (4) gives
rise to the NH-ROHF equations presented in Ref. 19. For the
Hermitian analog, see Ref. 40. These equations are represented
by a single Fock matrix of the form

F =
*...
,

Rcc Fco Fcv

Foc Roo Fov

Fvc Fvo Rvv

+///
-

, (5)

where the off-diagonal parts are

Fco = Fβ,

Fcv = Fα + Fβ,

Fov = Fα,

(6)

in terms of the α and β Fock matrices from UHF theory. There
is some ambiguity in the specification of the diagonal blocks of
the Fock matrix (see Refs. 39 and 41) which can be exploited
to improve convergence.40 The diagonal terms are chosen to
be

Rcc = Fα + Fβ,

Roo = Fβ,

Rvv = Fα + Fβ.

(7)

This somewhat unconventional choice was found to have good
convergence properties.

The NH-UHF equations are the same as in standard Her-
mitian UHF theory.42 The α and β Fock matrices are given by

Fα = h + Jα + Jβ −Kα,

Fβ = h + Jα + Jβ −Kβ,
(8)

where Jα and Kα are the Coulomb and exchange matrices
generated from just the α electron density and those operators
constructed from the β density are similarly defined. h is
the basis set representation of the core Hamiltonian. These
operators are distinguished from their Hermitian counterparts
in that the matrix elements are computed with the c-norm.

The c-norm, while convenient, is somewhat restrictive
in that it represents an analytic continuation of matrix ele-
ments of a real, symmetric Hamiltonian.37 However, it has
long been known that complex MO coefficients are sometimes
necessary to describe certain forms of symmetry breaking
within the purely Hermitian formalism of traditional electronic
structure theory.43,44 In these cases, the Fock matrix becomes
complex Hermitian. In order to include in our description the
degrees of freedom relevant to complex-Hermitian Hartree-
Fock calculations, a more general bi-orthogonal space must
be considered. While this would certainly be an interesting
extension, it is not relevant to the examples presented in this
study.
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B. Practical considerations in the optimization of
NH-SCF wavefunctions

The NH-SCF equations, like their Hermitian counterparts,
will have continuum solutions. Special care must therefore
be taken with the initial guess and the method of iteration
so as to ensure convergence to the desired resonance state. It
is important to emphasize that the desired solutions are not
minima of Equation (3).

The natural starting point for a NH-SCF calculation is a
SE result. Here, the procedure described in Ref. 10 was used
to generate a guess density for the metastable anion. This is the
same method employed in the previous studies.11,19 In order to
converge preferentially to a Siegert energy that is stationary but
not in any way a minimum, an overlap criterion similar to that
of Gilbert et al.45 was used to select the appropriate occupied
space after each iteration.

In the previous applications of NH-SCF, little is reported
regarding convergence properties and simple iteration was
generally found to yield convergent results. These studies differ
from this work in that the basis sets were generally smaller
and the complex functions were added only in a particular
symmetry. We found that simple iteration only converged to
the desired state in very few cases even when small basis
sets were used. The direct inversion of the iterative subspace
(DIIS) method of Pulay46,47 was found to be significantly more
reliable.

The DIIS method, as it is usually applied to SCF conver-
gence, computes an extrapolated Fock matrix as a linear
combination of Fock matrices from the previous iterations.
The relative weights are determined by requiring that they
minimize an error vector, which is also computed at each
iteration, subject to a normalization constraint. In the standard
SCF problem, this error vector (in this case a matrix) is usually
taken to be

e = SPF − FPS, (9)

where S, P, and F indicate the overlap, density, and Fock
matrices, respectively. The elements of this vector are elements
of the orbital rotation gradient in the AO basis. In the non-
Hermitian case, this method can be used with little modifica-
tion because the (complex) orbital rotation gradient must still
be zero at convergence which suggests that the error vector of
Equation (9) is still appropriate. In the non-Hermitian case, the
error vector is split into real and imaginary parts, and the real
and imaginary parts of the extrapolated Fock matrix are found
in the iterative subspace. In practice, an orthogonalized error
vector is used to give a more balanced description of the error.

Unfortunately, the solution of the NH-SCF equations at
a single value of θ will, in general, not yield a good approxi-
mation to the Siegert energy. In practice, the NH-SCF energy
is computed at many values of θ and an analytic continuation
scheme10,48 is used to compute the energy at the optimal value
of θ. An example of these θ-trajectories is shown in Figure 1.

C. Properties of NH-SCF states

In the method of complex basis functions and in other
complex-coordinate techniques, the wavefunction is not the

FIG. 1. Representative θ-trajectories for N−2 in the caug-cc-pVDZ(cm+)
basis set. The complex basis function parameter, θ, is varied from 10◦ to 25◦

in increments of 0.5◦. The approximate location of the stationary point is
(2.8,−0.1) for NH-UHF, while for NH-ROHF, it is (2.9,−0.15).

true wavefunction of the system and is, in fact, not a physically
realizable state of any kind. In this section, we briefly describe
how properties of the resonance can be extracted from the
non-Hermitian wavefunction in terms of the response of the
complex Siegert energy.

Moiseyev et al.37 showed that there exists an analog to
the Hellmann-Feynman theorem in a c-normalizable space. It
implies, in the context of complex basis functions, that given
some Hamiltonian perturbed by some operator V with strength
α,

H(α) = H0 + αV, (10)

the derivative of the energy with respect to α is

dE
dα
= (Ψ|V |Ψ) (11)

given that |Ψ) is variationally optimized and normalized, and
that the complex basis functions are independent of V (i.e., no
Pulay terms49). The c-expectation value will, in general, have
both real and imaginary parts, but those parts are easily associ-
ated with the response of the position and width, respectively,

dE
dα
= Re(Ψ|V |Ψ) dΓ

dα
= −2 Im(Ψ|V |Ψ). (12)

Note that both these quantities are, at least in theory, observ-
able.

For one-electron properties, the c-expectation value can
be written as

(Ψ|V |Ψ) =

µν

VµνPνµ, (13)

where µ and ν index AO basis functions and V and P are the
AO matrix representations of operator V and the 1-particle
density, respectively. The c-normalization of the wave function
implies that the 1-particle density matrix defined with the same
complex inner product has a real part with a trace equal to the
number of electrons and a traceless imaginary part.

The properties of the trace of the complex 1-particle den-
sity matrix are very similar to those of a real Hermitian density
matrix. As such, it allows for similar kinds of analyses. In
particular, the complex difference density can be decomposed
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into complex attachment and detachment densities50 that can
be visualized to give a picture of both the electron-attached
state and the polarization of the target. The difference density

∆ = Pres − Ptar (14)

is defined as the difference between the complex electron den-
sity of the resonance and the real density of the target. This
quantity can be uniquely decomposed by splitting its eigen-
values into those with positive real part and those with negative
real part,

∆ = U(a − d)UT = A − D, (15)

where a and d are diagonal matrices with positive real parts.
A and D are termed the attachment and detachment densities,
respectively. These quantities describe the electron density
and the hole density of the resonance relative to the target.
Furthermore, the eigenvalues of these two matrices are related
to the scattering process in that

Tr(A) − Tr(D) = Tr(∆) = n, (16)

where n is the number of electrons in the resonance state
relative to the target; n = 1 for an anion resonance. Therefore,
the two equivalent quantities

Tr(A) − n and Tr(D) (17)

provide a measure of the magnitude of the polarization.
Two-electron properties can be expressed in terms of the

2-particle density matrix, but the only two-electron property
relevant in this study is the square of the total spin which can
be computed as51

⟨S2⟩ =
(

Nα − Nβ

2

) (
Nα − Nβ

2
+ 1

)
+ Nβ −

occ
i j

�
iα | jβ�2, (18)

where Nα and Nβ are the numbers of α and β electrons, respec-
tively. For spin-pure wavefunctions such as the NH-ROHF
wavefunction, the expectation value of total spin squared is real
and equal to s(s + 1) where s is the total spin quantum number.
For NH-UHF wavefunctions, the expectation value can vary

from the spin-pure value and can develop an imaginary part.
As in the Hermitian case, the computation of the square of
the total spin provides a measure of the spin contamination
of the unrestricted wavefunction. In practice, the expectation
value of S2 is computed for each value of θ and the rational
interpolation scheme described in Ref. 10 was used to compute
the expectation value at the optimal value of θ.

III. RESULTS

All computations reported in this study were performed
with a modified version of the Q-Chem software package.52

Matrix elements were computed by the methods described
in Ref. 10, while the Armadillo C++ linear algebra library53

was used for all matrix manipulations. All SCF calculations
are converged to the extent that the maximum element of the
(orthogonalized) DIIS error is less than 10−5.

A. Small molecules and comparison to static
exchange

Table I shows the computed Siegert energies of low energy
shape resonances in four different molecular systems and in
three basis sets of increasing size. The geometries are re-
ported in Table II. The positions from NH-SCF calculations
are reported relative to the total Hermitian RHF energy of the
target in the same basis (θ = 0◦). The positions and widths are
computed at the NH-UHF and NH-ROHF levels of theory and
are compared to the SE results in the same basis sets. A recent
summary of the previous theoretical and experimental posi-
tions and widths for these resonances can be found in Ref. 54.
In general, the positions computed with NH-ROHF are 0.9
− 1 eV lower in energy than the corresponding SE result.
The positions computed with NH-UHF are 1 − 1.1 eV lower
in energy than the SE result making them on average about
0.1 eV lower in energy than the corresponding NH-ROHF
result. This is as expected; the extra polarization terms in the
UHF wavefunction should lower the position relative to the
energy of the neutral target.

TABLE I. Positions and widths in eV of the lowest 2Πg resonance in N2 and CO, the lowest 2Πu resonance in CO2, and the lowest 2B1 shape resonance in
formaldehyde (CH2O). Expected values of total spin-squared are reported for the NH-UHF calculations. The basis sets are described in detail in Ref. 10.

SEa NH-ROHF NH-UHF ⟨S2⟩
Molecule Basis Re[E] Im[E] Re[E] Im[E] Re[E] Im[E] Re[⟨S2⟩] Im[⟨S2⟩]

N2

caug-cc-pVDZ(cm+) 3.9752 −0.6363 2.9517 −0.1566 2.8366 −0.1087 0.7580 −0.0044
caug-cc-pVTZ(cm+) 3.8818 −0.6301 2.9621 −0.1613 2.8287 −0.1159 0.7594 −0.0049
caug-cc-pVQZ(cm+) 3.8413 −0.6215 2.9525 −0.1547 2.8271 −0.1078 0.7590 −0.0041

CO
caug-cc-pVDZ(cm+) 3.4173 −0.9715 2.5253 −0.3463 2.4304 −0.2814 0.7568 −0.0015
caug-cc-pVTZ(cm+) 3.3474 −0.9407 2.4124 −0.3185 2.4216 −0.2879 0.7570 −0.0020
caug-cc-pVQZ(cm+) 3.3441 −0.9646 2.5423 −0.3534 2.4263 −0.3032 0.7574 −0.0020

CO2

caug-cc-pVDZ(cm+) 5.5268 −0.2972 4.4207 −0.0175 4.0296 0.0302 0.7620 −0.0007
caug-cc-pVTZ(cm+) 5.5035 −0.3435 4.4625 −0.0677 4.3096 −0.0516 0.7639 −0.0012
caug-cc-pVQZ(cm+) 5.4733 −0.3500 4.4553 −0.0677 4.3111 −0.0559 0.7638 −0.0011

CH2O
caug-cc-pVDZ(cm+) 2.6848 −0.8078 1.7544 −0.2245 1.6251 −0.1676 0.7613 −0.0064
caug-cc-pVTZ(cm+) 2.6459 −0.7887 1.7861 −0.2012 1.6472 −0.1541 0.7624 −0.0063
caug-cc-pVQZ(cm+) 2.5775 −0.8170 1.7467 −0.2007 1.6132 −0.1409 0.7623 −0.0065

aAlso reported in Ref. 10.



074103-5 White, McCurdy, and Head-Gordon J. Chem. Phys. 143, 074103 (2015)

TABLE II. Geometries used throughout the present study.

Molecule Geometry

N2 N≡≡N= 1.094 Å
CO C≡≡O= 1.128 Å
CO2 C==O= 1.16 Å
CH2O C—H= 1.11 Å, C==O= 1.205 Å,

H—C—H= 116.2◦

The widths are not so predictable. We would expect the
widths from NH-SCF calculations to be significantly smaller
than for SE calculations due to the incorporation of polari-
zation. This effect is indeed observed, but the magnitude of
the difference is not as constant among different molecular
systems. For similar reasons, the widths computed with NH-
UHF would be expected to be lower than those computed with
NH-ROHF, and this is generally the case.

The behavior of the Siegert energies as size of the ba-
sis is increased is also generally difficult to predict. How-
ever, despite a couple of exceptions, both the real and imag-
inary parts of the energy are relatively stable with respect
to an increase in the size of the basis. The first exception
is the Πu resonance in CO2 computed within the caug-cc-
pVDZ(cm+) basis set. In this case, the positions are reason-
able, but the computed widths are unreasonably small; the
NH-UHF energy has a positive imaginary part. However, this
case is a pathological one in that the basis set contains exactly
one complex function of πu symmetry. This grossly incom-
plete basis cannot be expected to yield an accurate width,
and it is quite surprising that the SE result is so reasonable.
A more detailed discussion of basis set effects can be found
in Ref. 10. The other slight exception is the Πg resonance in

carbon monoxide as computed with NH-ROHF in the caug-cc-
pVTZ(cm+) basis set. Both the position and width computed
in this basis set differ from their values computed in the larger
and smaller basis sets. The reason for this slight deviation is
unknown.

We also report the expectation values of total spin-squared
for the NH-UHF wavefunctions in Table I. The real parts of the
spin-squared values are comparable to what would be expected
from a Hermitian calculation on a bound anion in that they
are only slightly different from the pure doublet, while the
imaginary parts are quite small. This suggests that for these
cases, the unrestricted wavefunction is not significantly spin-
contaminated.

Comparing to other theoretical and experimental results
is difficult to do systematically because of the wide range
of methods/basis sets and experimental conditions. However,
the results presented here qualitatively reproduce the experi-
mental numbers and agree with many other theoretical results
(cf. Ref. 54). Some selected literature values are shown in
Table III. In general, we can say that the positions are larger
than those computed with correlated methods. The widths fall
within the range of other theoretical results, but seem to be
slightly smaller on average than widths computed at similar
levels of theory.

B. Density based analysis of formaldehyde’s B1
resonance

In this section, the attachment and detachment densities
of the 2B1 resonance in formaldehyde are computed at the
optimal value of θ in the caug-cc-pVTZ basis. Because the c-
norm does not permit a rigorous notion of matrix positivity,
there are, in general, no restrictions on the signs of the real

TABLE III. Selected literature values (in eV) for the resonances studied here from experiment and various levels
of theory.

Molecule Method Position Width

N2

Stieltjes imaging55 2.23 0.40
Schwinger variational + ADC(3) optical potential56 2.534 0.536
NH-SCF with complex basis functions11 3.19 0.44
3rd order decouplings of dilated electron propagator57 2.11 0.18
EOM-EA-CCSD stabilization (aug-cc-pV5Z)58 2.49 0.248
CAP EOM-EA-CCSD (1st order, aug-cc-pVQZ + 3s3p3d)54 2.478 0.286
Experimental estimate59 2.32 0.41

CO

T-matrix (static-exchange)60 3.4 1.65
2nd order electron propagator61 1.71 0.08
3rd order decouplings of the electron propagator57 1.65 0.14
CAP EOM-EA-CCSD (1st order, aug-cc-pV5Z + 3s3p3d)54 1.762 0.604
Experimental estimate62 1.50 0.4

CO2

Schwinger variational (static-exchange)63 5.39 0.64
Schwinger variational (static-exchange + polarization)64 3.78 0.23
CAP EOM-EA-CCSD (1st order, aug-cc-pVTZ + 3s3p3d)54 3.997 0.198
Experiment65 3.14 0.20

CH2O

Complex Kohn (static-exchange + polarization)66 1.0 ∼0.5
2nd order decouplings of the dilated electron propagator (largest basis)67 0.887 0.076
R-matrix (static-exchange + polarization)68 1.32 0.546
CAP EOM-EA-CCSD (1st order, aug-cc-pVTZ + 3s3p3d)54 1.314 0.277
Experiment69 ∼0.86 . . .
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TABLE IV. Traces of attachment and detachment densities for the α and β

difference densities corresponding to the B1 resonance in formaldehyde. The
densities were computed at the optimal value of θ in the caug-cc-pVTZ(cm+)
basis set.

Attachment Detachment

Re Im Re Im

α 1.3233 −0.0391 0.3233 −0.0391
β 0.3905 −0.1140 0.3905 −0.1140

and imaginary parts of these densities, though the real parts
are generally observed to be mostly positive while imaginary
parts are observed to be primarily negative.

The attachment and detachment densities, by definition,
obey the relations of Equation (17). This is confirmed in Ta-
ble IV where the real and imaginary parts of the traces of
the attachment and detachment densities are shown. Note that
the attached electron has α spin in this case. These values
provide an approximate, but quantitative, description of the
polarization during the electron attachment process: approx-
imately 0.32 α electrons and 0.39 β electrons are rearranged.
The larger polarization of the β density is consistent with the
nature of the exchange interaction.

The α and β attachment and detachment densities for
formaldehyde’s B1 resonance are plotted in Figures 2 and 3,
respectively. Note that it is the negative of the imaginary part
that is plotted in the bottom rows of Figures 2(c), 2(d), 2(g),
2(h), 3(c), 3(d), 3(g), and 3(h). The real part of theα attachment
density has very little magnitude in the plane of the molecule
and therefore resembles the density arising from attachment to
a state with π character. The small σ character in the attach-
ment density is likely the result of electron rearrangement.

Comparing the β attachment and detachment densities,
it is clear that the rearrangement in the β space involves the

movement of electron density from orbitals localized around
the oxygen atom to the two hydrogen atoms. It is also inter-
esting to note that the β attachment density is significantly
delocalized in comparison with the detachment density.

C. A1 and T2 resonances in carbon tetrafluoride

Carbon tetrafluoride has been observed to have two low
energy shape resonances of A1 and T2 symmetry. These two
resonances have been the subject of some recent interest due
to their role in dissociative electron attachment.76–78 Computed
positions and widths of these two shape resonances are shown
in Table V. The positions and widths computed at the SE, NH-
ROHF, and NH-UHF levels of theory are shown along with
the literature values from various theoretical calculations. The
spin-squared values for the UHF wavefunctions are shown in
Table VI and a summary of experimental results can be found
in Refs. 79 and 80.

This case is interesting in that the NH-ROHF and NH-
UHF values agree quite closely. The spin squared values
(shown in Table VI) show that there is very little spin contam-
ination in the NH-UHF wavefunction, but the similarity is still
quite striking when compared to similar calculations on small
molecules. Furthermore, while the positions calculated with
NH-UHF are smaller than those computed with NH-ROHF,
the widths are slightly larger in several cases. This is contrary
to the trends observed in other molecules, though it is in no
way prohibited by the theory.

For these resonances in CF4, like those of many poly-
atomic molecules, very few ab initio calculations have been
performed. The results of the present study agree well with
the previous theoretical results shown in Table V excluding the
calculation of Huo.70 Though Huo is the only author to report
a width, all other studies report the computed cross section
which shows the widths of the two, not always resolvable,

FIG. 2. Real and imaginary parts of the α attachment and detachment densities for the 2B1 resonance in formaldehyde are plotted in the xz and yz-planes.
The top row shows the real part and the bottom row shows the negative of the imaginary part. The first four panels (a)-(d) show the attachment density while
the second four (e)-(h) show the detachment density. Note the difference in scales. White dots are used to indicate the positions of the nuclear centers and the
oxygen end of the molecule points in the negative z-direction. The axes are in atomic units (a0). The real and imaginary parts of the attachment density, which
correspond to the extra electron in the resonance state, are predominantly π∗ in character. The detachment density, which corresponds to rearrangement, has
largely σ character.



074103-7 White, McCurdy, and Head-Gordon J. Chem. Phys. 143, 074103 (2015)

FIG. 3. Real and imaginary parts of the β attachment and detachment densities for the 2B1 resonance in formaldehyde are plotted in the xz and yz-planes.
The top row shows the real part and the bottom row shows the negative of the imaginary part. The first four panels (a)-(d) show the attachment density while
the second four (e)-(h) show the detachment density. Note the differences in scales. White dots are used to indicate the positions of the nuclear centers and the
oxygen end of the molecule points in the negative z-direction. The axes are in atomic units (a0). All changes in the β space are due to electron-rearrangement
which is mostly of σ character.

resonances to be on the order of 1 eV which agrees well with
the present study. The results presented here offer the most
complete picture of these two resonances: the T2 resonance
clearly appears approximately 1 eV lower energy and with a
slightly narrower width, though both widths are on the order
of 1 eV. It is possible that this picture is significantly different
when electron-correlation is explicitly included in the theory.

D. Carbon monoxide potential energy curve

One of the great attractions of Hermitian UHF theory
is that, in many situations, it provides a qualitatively correct
description of dissociation processes. NH-UHF theory should
be able to describe potential energy curves of resonances with
the same qualitative accuracy.

As an example, we examine the potential energy curves
of anionic and neutral carbon monoxide at the NH-UHF and
UHF level of theory, respectively. The anion, metastable at
the equilibrium geometry of the neutral, becomes bound as
the molecule is stretched, eventually dissociating to oxygen
neutral and carbon anion.

The potential energy curves at the UHF/NH-UHF level
of theory are shown in Figure 4. The behavior is qualitatively
what would be expected: the anion curve crosses that of the
neutral and the width goes to zero. However, the point at which
the width goes to zero occurs about 0.1 Å before the curves
cross. This is consistent with the previous calculations12,13 and
typical of cases where the same uncorrelated level of theory is
used on the closed-shell neutral and open-shell anion. Higher
levels of theory may be able to remove this discrepancy.81

TABLE V. Calculated positions and widths (eV) of low energy shape resonances in CF4. Static-exchange plus
polarization is abbreviated SEP.

T2 resonance A1 resonance

Reference Position Width Position Width Method

Huo70 6.6 4.1 11.7 22.8 Schwinger variational (SE)
Modelli et al.71 8.95 . . . 8.70 . . . Multiple scattering-Xα

Modelli et al.71 8.58 . . . 8.98 . . . Continuum multiple scattering-Xα

Winstead et al.72 11.5 . . . 13.0 . . . Schwinger multichannel (SE)
Isaacs et al.73 ∼9a . . . ∼9a . . . Complex Kohn
Curik et al.74 8−10a . . . 8−10a . . . Close-coupling (model potential)
Varella et al.75 9.9 . . . 11.0 . . . Schwinger multichannel (SEP)
Present workb 10.6301 2.0553 12.7184 2.0902 SE/caug-cc-pVDZ
Present workb 11.0816 1.9737 12.0561 1.9617 SE/caug-cc-pVTZ
Present work 8.6421 0.8530 9.7906 1.8189 NH-ROHF/caug-cc-pVDZ
Present work 9.0738 0.7813 10.0711 1.1740 NH-ROHF/caug-cc-pVTZ
Present work 8.5996 0.9139 9.5236 1.8346 NH-UHF/caug-cc-pVDZ
Present work 8.8851 0.8191 9.9862 1.1490 NH-UHF/caug-cc-pVTZ

aOverlapping resonances not separately resolved.
bAlso reported in Ref. 10.
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TABLE VI. Spin-squared of the A1 and T2 shape resonances in CF4 com-
puted using NH-UHF.

⟨S2⟩
Resonance Basis Re[⟨S2⟩] Im[⟨S2⟩]

A1
caug-cc-pVDZ(cm+) 0.7542 −0.0032
caug-cc-pVTZ(cm+) 0.7551 −0.0017

T2
caug-cc-pVDZ(cm+) 0.7515 0.0010
caug-cc-pVTZ(cm+) 0.7588 −0.0018

In the region where the anion is bound, the NH-UHF energy
almost exactly reproduces the Hermitian UHF energy of the
bound anion, but with a very small positive imaginary part.
In the region where the anion is unbound and Hermitian UHF
is not useful, NH-UHF provides a qualitatively correct com-
plex potential. Such complex potential curves could be useful
in calculations of vibrational structure in electron scattering
experiments.82–84

The real and imaginary parts of the expectation value of
total spin squared are plotted in Figure 5. In this case, the Her-
mitian UHF solution was obtainable throughout the recoupling
region. The expectation value of total spin-squared of the NH-
UHF agrees remarkably well with that of the Hermitian UHF
solution. This is not surprising, because the anion is bound for
much of this region. It is, however, worthy of note that the NH-
UHF does essentially reproduce the Hermitian UHF solution
in the region where the width is zero.

FIG. 4. Carbon monoxide potential energy curves at the UHF/NH-UHF level
of theory in the caug-cc-pVTZ(cm+) basis set.

FIG. 5. Total spin squared on the carbon monoxide PES in the caug-cc-
pVTZ(cm+) basis set. The black line indicates a pure doublet.

This potential energy curve was not easy to obtain. Only
by reading in orbitals from the previous calculations and taking
small (0.02 Å) steps in internuclear distance and similarly
small (0.5◦) steps in θ was convergence achieved at enough
points so that the analytic continuation scheme could be confi-
dently applied. Also, at some geometries, multiple stationary
points were observed, and great care had to be taken to make
sure that we followed a single stationary solution.

IV. CONCLUSIONS

In this study, complex basis functions were employed in
the implementation of the NH-ROHF method, and the novel
NH-UHF method. These methods were described in detail
and applied to a variety of small diatomic and polyatomic
molecules including carbon tetrafluoride. The computation
and interpretation of molecular properties from non-Hermitian
wavefunctions was discussed and a density-based analysis was
applied to the 2B1 resonance in formaldehyde. This analysis
of the complex analogs of the attachment and detachment
densities allows for an intuitive discussion of target polar-
ization during the process of resonant electron attachment.
The NH-UHF method was also utilized in the computation
of a NH-UHF potential energy surface for the metastable
carbon monoxide anion. These promising results make it worth
investigating the possibility of using a NH-SCF reference for
highly accurate correlated calculations on small molecules.

However, it is also important to be aware that there are
significant challenges in extending NH-SCF methods to larger
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systems than reported here. First, NH-SCF with complex ba-
sis functions often suffers from slow convergence. Second,
there are serious numerical problems associated with linear
dependence in very large basis sets, associated, for instance,
with diffuse complex Gaussians on multiple atomic centers.
Third, the occasional appearance of multiple stationary points
can make the identification of the Siegert energy ambiguous,
though we have not yet seen a case where the difference is
significant. Finally, the θ-trajectories are a significant burden
relative to conventional SCF. More effort is necessary to rem-
edy these problems so that the method can be applied confi-
dently to large molecules.
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APPENDIX: OPTIMAL THETA VALUES

Optimal values of the scaling factor for all single point
energy calculations are provided in Table VII. The optimal
values for the carbon monoxide PES are shown in Table VIII.
Note that the scaling factor is defined as

s ≡ eiθ.

TABLE VIII. Optimal values of θ for all points on the carbon monoxide PES.
θ is reported in polar form with the phase in degrees.

R (Å) |s | Phase [s]

1.08 0.9277 11.639
1.10 1.0998 15.963
1.12 0.9498 11.797
1.14 0.9849 10.117
1.16 1.0154 8.9519
1.18 0.9346 11.334
1.20 0.9495 10.702
1.22 0.9204 11.089
1.24 0.9598 10.566
1.26 0.9655 10.324
1.28 0.9738 9.4073
1.30 1.0000 9.9328
1.32 0.9808 10.255
1.34 0.9981 9.9255
1.36 1.0000 4.0001
1.38 0.9822 9.2917
1.40 1.0051 9.1503
1.42 0.9710 8.7806
1.44 1.0036 9.2459
1.46 0.9799 8.9373
1.48 0.9950 8.8133
1.50 0.9972 8.9010
1.52 0.9981 8.9202
1.54 1.0010 8.9371
1.56 1.0011 8.9626
1.58 1.0009 8.9886
1.60 1.0016 9.0031
1.62 1.0016 9.0394
1.64 0.9983 9.0643
1.66 0.9958 9.0609
1.68 0.9946 9.1075
1.70 0.9907 8.9882

TABLE VII. Optimal values of θ for all single point energy calculations. θ is reported in polar form with the
phase in degrees.

SE NH-ROHF NH-UHF

Molecule Basis |s | Phase [s] |s | Phase [s] |s | Phase [s]

N2

caug-cc-pVDZ(cm+) 1.098 9 20.864 1.0187 13.746 1.0338 10.930
caug-cc-pVTZ(cm+) 0.960 4 23.427 0.9787 9.7308 0.9620 8.8183
caug-cc-pVQZ(cm+) 1.105 2 21.120 1.0005 9.0439 0.9989 12.264

CO
caug-cc-pVDZ(cm+) 0.963 8 25.628 0.9310 19.862 0.9544 14.889
caug-cc-pVTZ(cm+) 1.026 4 23.195 0.9935 25.186 0.9518 11.023
caug-cc-pVQZ(cm+) 1.016 7 27.888 0.9855 17.874 1.0126 17.255

CO2

caug-cc-pVDZ(cm+) 0.906 7 10.560 1.0010 14.383 1.0043 17.380
caug-cc-pVTZ(cm+) 1.068 7 19.233 1.0654 14.960 1.0720 15.507
caug-cc-pVQZ(cm+) 1.002 5 20.992 0.9208 25.423 1.0284 14.639

CH2O
caug-cc-pVDZ(cm+) 1.035 9 23.459 0.9934 19.944 0.9938 19.765
caug-cc-pVTZ(cm+) 0.974 2 18.154 1.0790 4.799 1.0626 17.062
caug-cc-pVQZ(cm+) 1.088 0 26.177 1.0021 22.736 1.0227 24.807

caug-cc-pVDZ(cm+) 0.948 72 24.188 1.0838 6.0529 1.0299 15.164
CF4(T2) caug-cc-pVTZ(cm+) 1.006 0 16.176 0.9877 10.535 1.0247 15.479

caug-cc-pVDZ(cm+) 1.001 0 14.521 1.0916 11.890 1.1124 18.417
CF4(A1) caug-cc-pVTZ(cm+) 0.980 7 19.842 1.0154 15.300 1.0120 15.265
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