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1. Introduction 

1.1. Infinite series and their evaluation 

Infinite series are ubiquitous in the mathematical analysis of scientific problems. They 
naturally appear in the evaluation of integrals, in the solutions of differential and integral 
equations, or as Fourier series. They are also used for both the definition and the evaluation of 
many of the special functions of mathematical physics. The conventional approach for the 
evaluation of an infinite series consists in computing a finite sequence of partial sums 

n 

sn= Cak (1 J-1) 
k=O 

by adding up one term after the other. Then, the magnitude of the truncation error is estimated. 
If the sequence of partial sums so,. . . , s, has not converged yet to the desired accuracy, 
additional terms must be added until convergence has finally been achieved. With this approach 
it is at least in principle possible to determine the value of an infinite series as accurately as one 
likes provided that one is able to compute a sufficiently large number of terms accurately enough 
to overcome eventual numerical instabilities. 

However, in many scientific problems one will only be able to compute a relatively small 
number of terms. In addition, particularly the series terms with higher summation indices are 
often affected by serious inaccuracies which may lead to a catastrophic accumulation of 
round-off errors. 

Consequently, if an infinite series is to be evaluated by adding one term after the other, an 
infinite series will be of practical use only if it converges after a sufficiently small number of 
terms. Unfortunately, many counterexamples are known in which alternative methods for the 
evaluation of infinite series must be used since in these cases the conventional approach of 
evaluating an infinite series does not suffice. 

For instance, when Haywood and Morgan [l] performed a discrete basis-set calculation of the 
Bethe logarithm of the 1s state of the hydrogen atom, they found that even 120 basis functions 
gave no more than 2-3 decimal digits and they estimated that approximately 10” basis functions 
would be needed to obtain an accuracy of more than 10 decimal digits. Haywood and Morgan 
also showed that with the help of a suitable convergence acceleration method an accuracy of 
more than 13 decimal digits can be extracted from their data. 

A good mathematical model for the convergence problems which Haywood and Morgan [l] 
encountered in their calculation of the Bethe logarithm is the following series expansion for the 
Riemann zeta function: 

n=O 

(1 J-2) 

It is well known that this infinite series converges if Re( z) > 1 holds. However, if Re( z) is only 
slightly larger than one, the rate of convergence becomes extremely slow. For instance, Bender 
and Orszag remark in their book (see p. 379 of ref. 121) that about 102’ terms of the above series 
expansion would be needed to compute c(l.1) accurate to one percent. Bender and Orszag also 
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show that only 10 terms of the series in connection with a specially designed acceleration method 
are needed to compute [fl.l) to 26 decimal digits (see table 8.7 on p. 380 of ref. [2]). 

Even more striking examples for the inadequacy of the conventional approach towards the 
evaluation of infinite series are some Rayleigh-Schr8dinger perturbation expansions of elemen- 
tary quantum mechanical systems. For instance, if the following normalization for the Hamilto- 
nian of the quartic anharmonic oscillator is used, 

(1.1-3) 

then it follows from the results obtained by Bender and Wu (see eq. (1.8) of ref. [3]) that the 
coefficients c, of the power series in the coupling constant j3 for the ground state energy 
eigenvalue &,(/?) of the quartic a~armo~c oscillator, 

E,(P) = irt c,iK (1 .l-4) 
n=O 

possesses the following asymptotic behaviour: 

c, - (-l)“+1(3,‘2)“~(n + l/Z), n+co. (1 l-5) 

The radius of convergence of the above Rayleigh-Schri)dinger perturbation series is obviously 
zero, i.e., it diverges for all nonzero values of /3 and summation techniques have to be applied to 
give this series any meaning beyond a mere formal expansion. 

A good mathematical model for the kind of divergence, which occurs in the perturbation series 
of the quartic anharmonic oscillator, is the so-called Euler integral 

E(z)=/,“=, (1.1-6) 

and its associated asymptotic series, the so-called Euler series 

E(z) - 2 (-l)nPZ!Zn=2&(1, 1; -z), Z--+00. (1 J-7) 
n=O 

The radius of convergence of the Euler series is obviously zero. Consequently, this series 
diverges quite wildly for all z # 0 and appropriate summation techniques have to be applied if 
numerical values for the Euler integral are to be computed with the help of this asymptotic series. 
In fact, the Euler series (1.1-7) will be used quite frequently in this report to test the ability of a 
sequence transformation to sum wildly divergent series. 

1.2. A short history of sequence transformations 

In this section, a short sketch of the historical development of sequence transformations will 
be given. A more complete treatment of the history would be beyond the scope of this report. 
Consequently, the emphasis will be on those developments which laid the foundations for the 
sequence transformations which are discussed in this report. 
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The idea of applying suitable transformations for the acceleration of the convergence of a 
series or for the summation of a divergent series is almost as old as analysis itself. According to 
Knopp (see p. 249 of ref. [4]) the first series transformation was published by Stirling [5] already 
in 1730, and in 1755 Euler [6] published the series transformation which now bears his name. 

These early ideas were later extended and refined as well as supplemented by convergence 
proofs, and they finally led to the theory of regular matrix transformations. Let flsnD be a 
sequence of partial sums of a series according to eq. (1.1-1). Then, a new sequence {SAD with 
hopefully better convergence is obtained by forming weighted means of the elements of the 
original sequence, 

n 

d = c !-l.,ksk. 
k=O 

(1.2-1) 

The main appeal of these matrix transformations lies in the fact that for the weights pnk with 
k, n E IV,, which define such a transformation, some necessary and sufficient conditions could 
be formulated which ensure the regularity of the transformation. This implies that such a regular 
matrix transformation can safely be applied to any convergent sequence &rnD since the trans- 
formed sequence @Al will also converge to the same limit. A fairly complete survey of the 
properties of such matrix transformations can be found in books by Knopp [4], Hardy [7], 
Petersen [8], Peyerimhoff [9], Zeller and Beekmann [lo], and Powell and Shah [ll]. 

This general applicability of regular matrix transformations to all convergent sequences is 
undoubtedly quite advantageous from a theoretical point of view. However, for the practical 
usefulness of a transformation in actual computations this general applicability is more likely a 
hindrance rather than an advantage. This may sound paradoxical. But one cannot realistically 
expect that a given method will be particularly efficient in a special case if it is simultaneously 
required that this method should also be able to work in all cases. 

Consequently, in recent years emphasis has shifted towards the more powerful but also more 
specialized nonlinear transformations. Theoretically, nonlinear transformations are much more 
complicated than matrix transformations and their properties are by no means completely 
understood. In addition, nonlinear transformations are usually nonregular, i.e., it is not guaran- 
teed that the transformed sequence (Is:) will converge at all, let alone to the same limit as the 
original sequence 4~~). Hence, unless additional information about the sequence to be trans- 
formed is available, the use of a nonlinear sequence transformation may be risky. However, this 
undeniable disadvantage is compensated by the empirical fact that if a nonlinear transformation 
works, it frequently does so in a spectacular fashion. 

The probably oldest nonlinear sequence transformation is the famous A* process, 

s’=s _[ds,lz_ _ [~~+~--s,12 
n n 

A2s5, n s,+2 - 2s,+l + s, ’ 
nEN,. (1.2-2) 

This sequence transformation is named after Aitken [12] who published this transformation in 
1926 but there are indications that it is in fact much older. For instance, Todd (see p_ 5 of ref. 
[13]) claims that this transformation was in principle already known to Kummer [14]. 
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It is generally accepted that the current interest in nonlinear transformations is due to two 
articles by Shanks [15] and Wynn [16], respectively. Shanks rediscovered in 1955 a sequence 
transformation which was originally derived in 1941 by Schmidt [17]. Wynn showed only one 
year later how this sequence transformation, which was originally defined as the ratio of two 
determinants, can be computed quite efficiently by a nonlinear recursive scheme which is now 
commonly called the 6 algorithm. These two articles by Shanks [15] and Wynn [16] had an 
enormous impact since they stimulated a large amount of research not only in various branches 
of mathematics but also in theoretical physics and in other sciences. This is amply demonstrated 
by the long lists of references in books by Baker [18], Brezinski [19-211, Baker and Graves-Mor- 
ris [22], and Wimp [23], and also by a recent review article by Brezinski [24]. 

This active research on nonlinear transformations contributed significantly not only to the 
understanding of PadC approximants or the c algorithm, but also led to the discovery of several 
other sequence transformations. For instance, in 1956 Wynn [25] introduced the so-called p 

algorithm which is essentially an intelligent and efficient way of computing and extrapolating 
even-order convergents of an interpolating continued fraction. 

In 1971 Brezinski [26] introduced his so-called 9 algorithm which may be interpreted to be 
some kind of improved and accelerated c algorithm. Brezinski’s derivation of this powerful 
algorithm was purely heuristic. It was emphasised by Brezinski [27] that this heuristic approach is 
not restricted to Wynn’s c algorithm and can also be used in the case of other sequence 
transformations. Some examples of new sequence transformations, which were derived in that 
way, will be given later. 

Another class of sequence transformations was introduced by Levin [28] in 1973. According to 
Smith and Ford [29,30] who compared the performances of several linear as well as nonlinear 
sequence transformations, some variants of the Levin transformation are probably the most 
powerful and most versatile convergence accelerators currently known and they are also able to 
sum even wildly divergent series. The sequence transformations introduced by Levin are also the 
basis of a large part of this article since they are the starting point for the derivation of several 
new sequence transformations which offer in some cases computational advantages, in particular 
if wildly divergent series are to be summed. In addition, a theoretical analysis of the properties of 
the new transformations can also often be done more easily than in the case of the Levin 
transformation. 

A general extrapolation algorithm, which encompasses the majority of the currently known 
extrapolation methods and also many of the new sequence transformations of this report as 
special cases, was developed independently by Brezinski [31] and H&vie [32]. 

Finally, Germain-Bonne [33] developed in 1973 a formal theory of convergence acceleration 
which is of considerable importance not only for this report. By means of Germain-Bonne’s 
theory it can in some cases be decided whether a given transformation is regular, i.e., whether the 
convergence of a sequence &snD to some limit s implies the convergence of the transformed 
sequence Qs;) to the same limit s. Also, in some cases it can be decided by a priori considerations 
whether the transformed sequence @iI will converge faster than the original sequence {sn)_ 

1.3. Organization of this report 

No attempt is made to treat all aspects of the acceleration of convergence and the summation 
of divergent series. The emphasis of this report is on convergence acceleration and summation by 
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means of nonlinear sequence transformations. Linear sequence transformations are only treated 
if they are special cases of nonlinear sequence transformations. The nonlinear sequence transfor- 
mations, which occur in this report, are designed to handle convergent or divergent sequences of 
partial sums of infinite series as they occur in scientific applications or in the theory of special 
functions. However, the specific problems, which arise in connection with the acceleration of the 
convergence of Fourier series or of orthogonal expansions, are not treated. Also, the acceleration 
or summation of multidimensional sequences - or vector sequences, as they are called in the 
literature on convergence acceleration - is not considered in this report. 

Several nonlinear sequence transformations as for instance Aitken’s A2 process [12], Wynn’s 6 
algorithm [16], Wynn’s p algorithm [25], Brezinski’s 9 algorithm [26], and Levin’s sequence 
transformation [28] are now relatively well known and many applications of these transforma- 
tions have been reported in the more recent literature. The properties of these nonlinear sequence 
transformations are reviewed shortly in this report and efficient algorithms for their computation 
are discussed. However, the emphasis of this report is on the derivation of new nonlinear 
sequence transformations, on the construction of efficient algorithms for their computation, and 
on the analysis of their properties in convergence acceleration and summation processes. 

In this report, the sequence transformations are always computed with the help of linear or 
nonlinear 2-dimensional recurrence formulas. Also, it is always tried to find computational 
schemes for these recursions which are optimal with respect to storage requirements. Such an 
optimization is actually not necessary if the sequence transformations are programmed in 
FORTRAN because then storage space would not be a problem even if less efficient computa- 
tional algorithms would be used. If, however, sequence transformations are programmed in a 
formal manipulation language such as REDUCE, MACSYMA or MAPLE, it is probably a good 
idea to use such an optimized computational scheme since storage restrictions may then be much 
more severe. 

Some listings of FORTRAN 77 programs are included in the text. In order to save space, all 
comments and also all IF statements, which check the validity of the input data, were removed 
from the programs. Consequently, these FORTRAN 77 programs are not “good” programs 
which comply with the recommendations of books on programming style. The sole purpose of 
these program listings is to facilitate the understanding of the sometimes relatively intricate 
computational algorithms which are discribed in this report. 

In order to make this report more selfcontained, in section 2 the mathematical terminology, 
which is specific for this report, as well as the most important mathematical concepts and 
techniques, which are needed for the derivation and understanding of sequence transformations, 
are introduced. 

In section 3 general properties of nonlinear sequence transformations are discussed. In 
addition, it has been attempted to give a motivation for some of the most important concepts 
and assumptions, which are the basis for the construction of a large class of nonlinear sequence 
transformations. 

Section 4 deals with Wynn’s 6 algorithm [16], which is an efficient algorithm for the 
computation of the Shanks transformation [15] or - if the elements of the sequence to be 
accelerated or summed are the partial sums of a power series - of PadC approximants. Section 5 
deals with Aitken’s A2 process [12] and its iteration, which are both close relatives of Wynn’s 6 
algorithm. Section 6 deals with Wynn’s p algorithm [25], which is structurally almost identical 
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with Wynn’s e algorithm. Also, a new sequence transformation is constructed by iterating the 
explicit expression for p2 (n) along the lines of Aitken’s iterated A2 process. 

Section 7 deals with with Levin’s sequence transformation [28], and several other sequence 
transformations which are either special cases or generalizations of Levin’s sequence transforma- 
tion. Levin’s sequence transformation is also the starting point for two new classes of sequence 
transformations which are treated in sections 8 and 9. The difference between Levin’s sequence 
transformation and the new sequence transformations is that Levin’s sequence transformation is 
based upon the assumption that the remainders of the partial sums can be approximated by 
truncated Poincare-type asymptotic expansions whereas the new sequence transformations 
assume that the remainders can be approximated by truncations of factorial series and related 
expansions which are also based upon Pochhammer symbols. 

Section 10 deals with Brezinski’s 9 algorithm [26], which was derived by modifying the 
recursive scheme for Wynn’s < algorithm, and a closely related sequence transformation which is 
obtained by iterating the expression for 9, (n). In section 11, the recursive schemes of several other 
linear and nonlinear sequence transformations are modified along the lines of Brezinski’s 9 
algorithm and several new nonlinear sequence transformations are derived. 

The practical usefulness of the original version of Germain-Bonne’s formal theory of conver- 
gence acceleration [33] is quite limited since it can only analyze the properties of a sequence 
transformation if its recursive scheme satisfies some very restrictive conditions. Many sequence 
transformations of this report do not satisfy these conditions. Consequently, in section 12 
Germain-Bonne’s formal theory of convergence acceleration is modified in such a way that the 
properties of the sequence transformations of this report can also be analyzed. 

Unfortunately, Germain-Bonne’s theory cannot be applied in all cases of interest. In particu- 
lar, it cannot be used for the analysis of the summation of wildly divergent Stieltjes series as they 
for instance occur in the Rayleigh-Schriidinger perturbation expansion for the energy eigenvalues 
of the quartic anharmonic oscillator. In section 13 the transformation of sequences of partial 
sums of convergent and divergent Stieltjes series is analyzed. The estimates, which are obtained 
in this way, indicate that some variants of the new sequence transformations, which are discussed 
in sections 8 and 9, should sum a divergent Stieltjes series as good or even somewhat better than 
the analogous variants of Levin’s sequence transformation, and that they should all be far more 
efficient than PadC approximants. These theoretical estimates are supported quite convincingly 
by some numerical examples. 

One of the most complicated computational problems, which can occur in this context, is the 
acceleration of the convergence of infinite series with terms u,, that all have the same sign and 
that decay like a fixed power nwu with (Y > 1 as n + cc. A good example of such an extremely 
slowly convergent infinite series with positive terms is the series (1.1-2) for the Riemann c 
function. In the case of such slowly convergent series with positive terms, Germain-Bonne’s 
formal theory of convergence acceleration [33] also does not help. Section 14 deals with the 
acceleration of the convergence of series of that type. Some exactness results and also some error 
estimates are derived. However, it is relatively difficult to obtain theoretical results. Conse- 
quently, the emphasis in section 14 is on numerical testing. 

Finally, section 15 contains a condensed review of the properties of the sequence transforma- 
tions which are treated in this report. 



200 

2. Terminology 
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2.1. Special mathematical symbols and special functions 

In this report, essentially standard mathematical terminology will be used. In particular, N 
stands for the set of positive integers y1 = 1, 2, 3,. . . , and N, stands for the set of nonnegative 
integers y1 = 0, 1, 2, . . . . Also, R and @ denote the sets of real and complex numbers, 
respectively. The following notations are, however, nonstandard: 

Ml: 

uxll: 
n. IF . 

ID”: 

W”: 

Sequence of elements s, with n E N 0. It is always tacitly assumed that the sequence 
elements with negative indices, s_ i, s_~, s _ 3, . . . , are zero. 
Integral part of x E IR, i.e., the largest integer m satisfying the inequality m I x. 

Set of all vectors (xi,. . . , xn) E R” with all components being different from zero, i.e., 
xj#O for all j=l, 2 ,..., n. 
Set of all vectors (xi,...,x,)ER” with all components being distinct, i.e., i #j implies 
xi # xj for all i, j = 1, 2,. . . , n. 

Intersection of IF” and ED”, i.e., the set of vectors (xi, . . . , x,) E R n with all components 
being nonzero and distinct. 

Sometimes sums or products will occur in which the lower limit is greater than the upper limit. 
In this report, we shall always use the convention that such an empty sum will be interpreted as 
zero, i.e., 

n 
C a,=O, if m>n, 

k=m 

and that such an empty product will be interpreted as one, i.e., 

n 
n ak=l, if m>n. 

k=m 

For the commonly occurring special 
conventions of Magnus, Oberhettinger, 
stated. 

2.2. Order symbols 

(2.1-1) 

(2.1-2) 

functions of mathematical physics the notation and the 
and Soni [34] will be used in this report unless explicitly 

Let f(z) and g(z) be two functions defined on some domain D in the complex plane and let 
z0 be a limit point of D, possibly the point at infinity. Then, 

f(Z) = oM4), z + z. (2.2-l) 

means that there is a positive constant A and a neighbourhood U of z0 such that 

IfW -Mz)l (2.2-2) 
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for all z E U n D. If g(z) does not vanish on U n D this simply means that f( z)/g( z) is 
bounded on U I-J D. Also, 

f(z) = OMZ))~ z + zo (2.2-3) 

means that for any positive number 6 E R there exists a neighbourhood U of zO such that 

If(zIsW (2.2-4) 

for all z E U n D. If g(z) does not vanish on U n D this simply means that f( z)/g( z) 
approaches zero as z --+ z,,. 

2.3. Asymptotic sequences and asymptotic expansions 

A finite or infinite sequence of functions a@,,(z) 1 with n E NO, which are defined on some 
domain D of complex numbers on which all Q,(z) are nonzero except possibly at zO, is called an 
asymptotic sequence as z -+ zO if, for all n E N,, 

@n+,(z) = o@%(z))7 z+zo. (2.3-l) 

Examples for asymptotic sequences with n E N, are a( z - z,)“D as z + z,, or {(log z)-“1 as 
z -+ cc. 

The formal series 

f(z) - n~ocn@nbL (2.3-2) 

which need not be convergent, is called an asymptotic expansion of f(z) with respect to the 
asymptotic sequence {Qn( z) D in the sense of Poincark if, for every m E IWO, 

f(z) - I? c,@M = 4@r&))> z+zo. (2.3-3) 
tl=O 

If such a Poincare-type asymptotic expansion exists, it is unique, and its coefficients c, can be 
computed recursively, 

(2.3-4) 

The first term of the asymptotic expansion (2.3-2) is usually called the dominant or leading 
term and one frequently writes 

f(z) - @O(Z)> (2.34) 

indicating that f(z) tends to cO as z --f zO. 
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A particularly simple asymptotic sequence as z + cc is the set a*( z)/z”D, n E N,, with ‘k(z) 
being a suitable function. If a given function f(z) possesses an asymptotic expansion with 
respect to this sequence, 

f(Z) - W) 5 CnP, z+CCl, (2.3-6) 
n=O 

then the ratio f(z)/9( ) z can be expressed as an asymptotic power series in l/z, 

f(WW - : Cn/Zn> z+cO. 

n=O 

(2.3-7) 

2.4. Finite differences 

Let f be a function defined on the set of integers N,. Then, the forward difference A f (n) is 
defined by the relationship 

Af(4 =f (n + 1) -f (4, L?EN,. (2.4-l) 

Higher powers of the difference operator A can be defined recursively, i.e., 

A”f(n) =A[d”-‘f(n)], kEFU(, (2.4-2) 

Aof =f(n). (2.4-3) 

The shift operator E is defined by the relationship 

Ef(n) =f(n + 1). (2.4-4) 

Higher powers of E can again be defined recursively. Obviously, we have 

Ekf (n) =f b + k), kEf+d, (2.4-5) 

E’f(n) =f(n). (2.4-6) 

It follows at once from their definitions that the operators A and E are connected by the 
relationship 

A=E-1. (2.4-7) 

This relationship can be combined with the binomial theorem to give 

A“f(n) = (-l)k ; (-1)/j ;)f(n +j), kENo. 
j=O 

(2.4-8) 
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In the following text it will always be tacitly assumed that in the case of several indices the 
difference operator A and the shift operator E will only act upon n and not on other indices. 

2.5. Special sequences 

Let us assume that the sequence 1~~1 either converges to some limit s, or, if it diverges, can be 
summed by an appropriate summation method to give s. In the case of divergence s is frequently 
called antilimit. Then, the partition of a sequence element s, into the limit or antilimit s and the 
remainder r, according to 

s, = s + r, (2.5-l) 

makes sense for all n E N ,, . If s, is the partial sum of a series, 

n 

s,= C ak, 
k=O 

(2.5-2) 

the remainder r, obviously satisfies 

r, = - f ak- 
k=n+l 

(2.5-3) 

For the ratio of two consecutive terms of an infinite series we write 

P, = an+l/any nEN,. (2.5-4) 

The magnitude of the remainder r, is a natural measure for the convergence of a sequence or 
series. Often, it is also of considerable interest to analyze the asymptotics of the sequence of 
remainders {rnD as n + co. Let {v,(n)), k E N, be a 
with q,(n). Then, w, denotes the dominant part of r, 

cp,(n), i.e., 

rJ(3, - 5 ck’pkb), n+co. 
k=O 

suitable asymptotic sequence as n -+ 00 
with respect to the asymptotic sequence 

(2.5-5) 

Sequences of remainder estimates {c.Q,~ will be of considerable importance in this report. The 
reason is that it is often possible to obtain at least some structural information about the 
behaviour of the dominant term of a remainder r, as n + co. It will become clear later that those 
convergence acceleration or summation methods, which explicitly utilize the information con- 
tained in the remainder estimates @,,D, are frequently particularly efficient. 

Many sequence transformations do not only require the input of the sequences {sn Q and 4~~ 1 
but also the input of an additional sequence of auxiliary quantities as for instance interpolation 
points. In this report, such an auxiliary sequence will usually be denoted by 4~~). 
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2.6. Types of convergence 

It is neither possible nor desirable to set up a complete classification scheme which is able to 
cover all types of convergence, However, in the majority of all practical applications only a few 
types of convergence occur. Consequently, special names were given to them in the literature. 

Let us assume that the sequence 4~~1, which converges to some limt s, satisfies 

lim ‘,+’ -’ = lim 
r ‘+l - p. 

n+cc s,--s n+oo r, 
(2.6-l) 

If 0 < ( p ) -c 1 holds, we say that the sequence $snD converges linearly, if p = 1 holds, we say 
that $s,,D converges logarithmically, and if p = 0 holds, we say that &sn 1 converges hyperlinearly. 
Of course, ( p I> 1 implies that the sequence &snb diverges. 

The standard example for linear convergence is the sequence of partial sums of the geometric 
series, 

O<Izl<l, nEN,. (2.6-2) 

The sequence of partial sums of the series (1.1-2) for the Riemann zeta function is a good 
example for logarithmic convergence. Also, it can be shown quite easily that the partial sums of 
the power series for the exponential function form a sequence which converges hyperlinearly. 

The above definitions for hyperlinear, linear and logarithmic convergence do not seem to be 
particularly well suited for the classification of infinite series because normally only the terms uk 
of a series but not the remainders r,, are known. However, Wimp showed on p. 6 of his book [23] 
that if 0 < I p I -c 1 holds, the two statements 

and 

lim (~,+1/~,) = P 

(2.6-3) 

(2.6-4) 

are equivalent. In addition, Clark, Gray, and Adams [35] showed that if the terms uk of a 
convergent series are all real and have the same sign, then 

lim (r,+,/r,) = lim (~,+,/a,) = p. (2.6-5) 

In eq. (2.6-5), the case p = 1, which corresponds to logarithmic convergence, is not excluded. 
Hence, it is at least possible to classify linearly and logarithmically convergent series - which are 
of particular interest in connection with convergence acceleration methods - according to the 
behaviour of their terms a, as n -+ cc. 

Sequences and series, which converge hyperlinearly, often converge so rapidly that not much 
can be gained by convergence acceleration methods. Consequently, hyperlinear convergence is 
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more or less neglected in the literature on convergence acceleration. This is not entirely justified 
because in some situations the use of convergence acceleration methods can indeed be quite 
helpful. A simple and nevertheless striking example, which shows that convergence acceleration 
methods may be quite useful even in the case of hyperlinear convergence, is the power series for 
the exponential function. It cannot be used for the computation of emX if x is positive and large 
because then large terms with alternating signs would lead to cancellation and to severe 
numerical instabilities. However, if suitable convergence acceleration methods are used, remarka- 
bly accurate results can be obtained after a relatively small number of terms. 

Let us assume that two sequences 4~~1 and 4s;) both converge to the same limit s. We shall 
say that the sequence IsiD converges more rapid& than $sn 1 if 

lim 
s,: - s 
- =o. 

n-+oo s,--s 
(2.6-6) 

In convergence acceleration processes, this definition is somewhat inconvenient since it 
requires the knowledge of the limit s which is usually not known. Consequently, it would be 
desirable to replace eq. (2.6-6) by the alternative condition 

lim s~+1 - so AS,: 

n+* s,+1 -s, 
= ,lirnm ds, = 0. (2.6-7) 

However, it seems that it is not possible to prove the equivalence of eqs. (2.6-6) and (2.6-7) 
without making explicit assumptions about how fast the sequences as,,) and {sib approach their 
common limit s. 

If the sequence {sn 1 converges linearly, the transformed sequence @,‘I can only converge more 
rapidly than {snD if it converges at least linearly or even faster. In this case, the equivalence of the 
two conditions (2.6-6) and (2.6-7) follows at once from the relationship 

s1 -s,’ n+l _ s,: -s [Cd+1 -s)/(s,:-s)] -1 

S nfl - sn sn - s [(s,+1- s)/(s, - s)] - 1 . 
(2.6-8) 

However, if &rnD converges logarithmically, the denominator of the second term on the 
right-hand side of eq. (2.6-8) approaches zero as n -+ cc. In this case, some additional assump- 
tions about the rate of convergence of {SAD to s have to be made in order to be able to show that 
the two conditions (2.6-6) and (2.6-7) are indeed equivalent. 

2.7. Sequence transformations 

In this report a sequence transformation F will always be a rule which transforms a given 
sequence $snD into a new sequence {s:D, 

Since a computational algorithm can only involve a finite number of operations, only finite 
subsets of a sequence $snD can be associated to a new sequence element s; by a sequence 
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transformation Y. In addition, it will always be assumed that the finite subset, which is to be 
transformed, will entirely consist of consecutive elements. This means that only subsets of the 
type {s,, s,+~, . . . , s,+[} with n, 1 E N, will be considered. Since the subsets, which are to be 
transformed, contain 1 + 1 elements, 1 will frequently be called the order of the transformation 
F. Hence, if all elements of the sequence $snD are real and if no sequences of interpolation points 
1~~) or remainder estimates {w,,D are needed, a sequence transformation F of order 1 is a map of 
the following type: 

9-: R’+l-+ R. (2.7-2) 

In this report, a sequence transformation F can always be represented by an infinite set of 
doubly indexed quantities Tk(“) with k, n E N,. The superscript n always indicates the minimal 
index occurring in the finite subset of sequence elements which are used for the computation of 
the transform Tin), and the subscript k is a measure 

The quantities Tin) are gauged in such a way 
untransformed sequence element, i.e., 

T;“’ = s 
n, nEN,. 

for the complexity of such a TJn). 
that T$“’ will always correspond to an 

(2.7-3) 

Increasing values of k imply that the order 1 of the transform TJn) also increases. This means 
that for every k, n E IV, the sequence transformation F will produce a new transform for which 
we shall write 

$“)=F(s,, s,+r,...,s,+/). (2.7-4) 

Here, the order 1 is of course a function of k. The exact relationship, which connects the 
subscript k and the order 1, is specific for every sequence transformation 7. In this report we 
shall encounter a variety of different relationships such as I= k, I= k + 1, 1 = 2k or even I= 3k. 

The transforms Tin) with k, n E N, can be displayed in a 2-dimensional array which is called 
the table of the sequence transformation F. In this report, the transforms TLn) will always be 
ordered in a rectangular scheme in such a way that the superscript n indicates the row and the 
subscript k the column of the array. Hence, in this report the table of a transformation F will 
always be displayed in the following way: 

. . . 
T(l) 

1 TJ" . . . 

T(o) 
n 

T(l) 
n 

54) 
n 

T(3) 
n 

T’“’ 
n 

. . . 

. . . 

. . . 

. . . 

. . . 

(2.7-5) 
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In the process of convergence acceleration or summation only those elements of the table of a 
sequence transformation Y should be computed which will be needed to obtain convergence up 
to a certain accuracy. Of course, this implies that one has to decide in advance which transforms 
Tin) should be used for that purpose. In this context it will be advantageous to introduce the 
following terminology. 

A sequence a( ni, kj)D of ordered pairs of integers nj, kj E IV, is called a path if no = k. = 0 
and if for all integers j E No we have nj+l _ > n , and kj+l 2 kj and if for each j E No either one 
or both of the two relations nj+ 1 = nj + 1 and k,,, = kj + 1 are true. Obviously, nj + kJ + 00 as 
j-00. 

Paths where kj is ultimately constant are called vertical paths, and paths where nj is 
ultimately constant are called horizontal paths. 

We shall say that a sequence transformation F is regular on a given path 9 = a( n j, kj) 1 if for 
every convergent sequence 4~~) we have 

(2.7-6) 

Next, we want to define what we mean by saying that a transformation F is called 
accelerative on a path 9 for a sequence 4~~). In the literature on convergence acceleration the 
following definition is the most common one: 

Tk’“,’ - s 

lim ’ = 0. 
J’+oO s, --s 

(2.7-7) 

However, since for a given subscript k a sequence transformation 7 always acts on 1+ 1 
consecutive sequence elements s,, s,, i, . . . , s,+~ with 1 being a function of k, it would actually 
be better to say that F is accelerative on a path 9 for a sequence {snD if 

T”‘,) - s 

lim ’ =O. 
j-+00 S,,+I --S 

(2.7-8) 
/ 

Hence, if the second definition is used a transformation 9 will be called accelerative 
on a path 9= {( nj, kj) 1 if the transforms T~,“J’ converge faster than the last elements 
S n +/ of the strings S,,, s,,+~,. . ., s,,+~ 

forms TV. 
I which are used for the computation of the trans- 

In this report both definitions (2.7-7) and (2.7-8) will be used. However, it will always be 
stated explicitly which of the two different definitions is actually meant. 

Let us again assume that a sequence asnD converges to some limit s. A sequence transforma- 
tion F will be called exact for the sequence #snD if some integer 1, E No exists such that the 
application of F to every finite string s,, . . . , s, +, of sequence elements with 12 1, yields the 
exact limit s of this sequence. 



208 E.J. Weniger / Nonlinear sequence transformations 

3. On the derivation of sequence transformations 

3.1. General properties of nonlinear sequence transformations 

It was remarked earlier that in many cases of physical interest the conventional approach of 
evaluating an infinite series by adding one term after the other does not suffice. Examples are 
logarithmically convergent series which may converge so slowly that an evaluation by adding one 
term after the other would overstep even the potential of modern supercomputers, or divergent 
series as they for instance occur in Rayleigh-Schrijdinger perturbation theory. 

In such cases it is necessary to replace the conventional process of evaluating a series by a 
generalized summation process which is able to associate a numerical value even to a prohibitively 
slowly convergent or divergent series. 

The generalized summation processes of this report are transformations which are defined on 
finite subsets of the sequence jsnD of partial sums. Let q be such a generalized summation 
process which acts upon 1 + 1 partial sums s,, . . . , s,+/. In view of the fact that in the case of 
convergent series with real terms we have 

2 ba,+&,)=a E a,,+P E b,,, a, PER, (3.1-1) 
n=O n=O n=O 

it seems natural to require that such a generalized summation process q should also be linear. 

Therefore, let us assume that {snD and {tnD are two sequences of partial sums of real terms which 
converge to s and t, respectively. Thus, a generalized summation process q should satisfy 

a, PER, I, n E No. (3.1-2) 

Also, such a generalized summation process should preserve the limit of a convergent 
sequence, i.e., it should be regular. Hence, a linear and regular generalized summation process q 
should satisfy for all sequences {s,,D and at,) which converge to s and t, respectively, 

lim q((~s,+fit,,...,(~s,+~+/B,+~)=cxs+Pt. (3.1-3) 
n*cC 

Unfortunately, the generalized summation processes considered in this report will in general 
be neither linear nor regular and we have to content ourselves with a weaker requirement. Let 
{snD be a sequence and let (Y and r be two constants. We may only assume that a generalized 
summation process q is invariant under translation, i.e., that for all admissible I, n E No 

T((Ys,+7,... ) ffSn+I +7)=cqs, )...) s,+,)+r (3.1-4) 

It must be emphasized that because of the nonregularity of the generalized summation 
processes q of this report we also cannot assume that either 

lim q(s,,...,s,+[) =s (3.1-5) 
n--tm 
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or - if this limit is defined - that 

/im/&,,...,s,+,) =s (3.1-6) 

holds for arbitrary convergent sequences &snD. 
Nonlinearity and nonregularity are undeniably unpleasant complications which one would like 

to avoid instinctively. However, they are essential and indispensable since the power of the 
sequence transformations, which are discussed in this report, stems from their nonlinearity and 
nonregularity. 

3.2. An example: convergence acceleration of alternating series 

If we want to construct a generalized summation process, which is able to accelerate the 
convergence of an infinite series, we are confronted with the practical problem that the 
information contained in a finite string of partial sums s,,, si, . . . , s, has to be extracted and 
utilized in a way which is more efficient than the conventional process of adding up one term 
after the other. If we again assume that for all n E N, a sequence element s, can be partitioned 
into the limit s and the remainder r,, according to 

s,=s+r,, (3.2-l) 

then this essentially means that we have to find a way of eliminating the remainder r, and 
determining the limit s at least approximately by exploiting the information stored in the finite 
string so, sl,. . . , s, of partial sums. 

Essentially the same problem of eliminating the remainder r, and determining the antilimit s 
at least approximately arises if we try to sum a divergent series. The only difference is that in the 
case of a divergent series the remainder r, does not vanish as n + CO, and that the antilimit s 
cannot be obtained by simply adding up the terms of the series. Instead, the antilimit s of a 
sequence can only be determined with the help of a suitable summation method. 

Since we cannot assume that it will be possible to obtain the numerical values of the 
remainders r, directly, the best we can hope for is something which may be called structural 
information. In order to clarify this concept we will consider a simple example. Let us assume 
that the sequence elements s, are partial sums of a series with real and strictly alternating terms, 

s,= e (-qkh,, 
k=O 

(3.2-2) 

which means that all b,, with n E No have the same sign. The remainder r,, of s, is then given by 

r,= - E (-I)kbk. (3.2-3) 
k=n+l 

Let us now also assume that all b,, with n E No are positive and strictly decreasing with 
increasing n and that they vanish as n + CO. This implies that the series converges to some limit 
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s. In addition, it can be shown that the sequence of remainders {rnD is also strictly alternating 
and that the magnitude of a remainder r,, is bounded by the first term which was not included in 
the partial sum s, (see p. 259 of ref. [4]), 

b-,1 -++l, nEfv0. (3.2-4) 

Now, we have to find a way of utilizing this structural information about the behaviour of the 
sequence of remainders (IrnD. Simply adding the next term (- l)“+lb,,+l to s, would only produce 
s n+l and we would not gain anything substantial. Consequently, we need an additional 
assumption which will help us to construct a sequence transformation for alternating series. 

It is a relatively natural idea to assume that the ratio r,J[( - l)“‘ib,+i] can be expanded in a 
Poincare-type asymptotic power series in the variable l/( n + l), i.e., 

r n - (-l)“+‘b,,, f cj(n + 1)-j, n+co. (3.2-5) 
j=O 

The assumption, that such a Poincare-type asymptotic expansion exists, will enable us to 
derive a sequence transformation which is capable of accelerating the convergence of alternating 
series. 

However, the complete elimination of such a remainder r, on the basis of the asymptotic 
expansion (3.2-5) will not be possible since any computational algorithm can only determine a 
finite number of the unknown linear coefficients cj in eq. (3.2-5). Consequently, we can only 
construct a sequence transformation which is able to eliminate model remainders of the 
following type: 

k-l 

~~= (-l)n+lb~+l C cj(n + 1)-j, ??ENo. (3.2-6) 
j=O 

Model remainders of this type are obtained by truncating the infinite series in eq. (3.2-5) after 
the first k terms. Hence, at least for sufficiently large values of k and n the model remainders Fn 
should approximate the actual remainders r, very well. This implies that the partial sums s, can 
also be approximated very well by the elements of the following model sequence, which contain 
only finitely many terms: 

k-l 

s;, = s + (- l)n+lb,,+i ,glcj(“+l)-j, nENO. (3.2-7) 

In eq. (3.2-7) there occur k + 1 unknowns, the limit s and the k coefficients co,. . . , c~__~. Since 
all unknowns occur linearly their determination poses in principle no problems. All that is 
needed are the numerical values of k + 1 sequence elements, e.g., the string s”,, go+ i, . . . , fn+k, 
and it is possible to determine the limit s of the model sequence (3.2-7). 



E.J. Weniger / Nonlinear sequence transformations 211 

Hence, we only have to use Cramer’s rule in order to see that the limit s is given by the 
following ratio of determinants: 

s;, 
(-l)n+lb,+l 

(- I)“;‘b,,, 
(n + l)k-’ 

. . . s”,,k 
n+k+l 

. . . c-l> bn+k+l 

c-l) 

n+k+l 
’ bn+k+l 

. . . 

(n + k + l)k-l 

SE- 

(-l$+‘bn+, ::: 

1 
n+k+l 

(-I) bn+k+l 

(- I)““b,,, * (-I) 
n+k+l 

. bn+k+l 

(n + l)k-’ .** (n + k + l)k-’ 

Now we could try to replace the elements c,, 01 F the model sequence (3.2-7) in the first 
determinant in eq. (3.2-8) by the partial sums s,. This would certainly not produce the exact limit 
s of the alternating series since the partial sums s, satisfy eq. (3.2-7) only approximately. 
However, if the sequence elements F,, are able to approximate the partial sums s, with sufficient 
accuracy then we can hope that the ratio of determinants, in which now the partial sums s,, 
S S n+l,“*, n+k occur, will be a better approximation to the limit s than the last partial sum s,+k 
which occurs in the ratio of determinants. 

(3.2-8) 

We shall see later that this is indeed the case. Actually, with the help of our simple arguments 
we found the determinantal representation of the sequence transformation dp)(P, sn) with 
J3 = 1. This transformation, which will be defined later in eq. (7.3-9), is a special case of a very 
powerful sequence transformation which was introduced by Levin [28]. Levin’s general sequence 
transformation and its numerous variants are discussed quite extensively in section 7 of this 
report. In section 13 it is also shown that dp’(P, sn), eq. (7.3-9), is able to sum even wildly 
divergent series and to accelerate the convergence of linearly convergent series. 

Our approach did not lead to a representation of this sequence transformation dp)( p, sn), eq. 
(7.3-9), which is completely satisfactory from a computational point of view. Determinantal 
representations of sequence transformations are computationally quite unattractive since the 
reliable and economical evaluation of determinants is a more or less unsolved problem of 
numerical mathematics. Consequently, it is important to find other methods for the computation 
of a sequence transformation. In section 7, it will be shown how the determinantal representation 
(3.2-8) can be replaced by other representations which are better suited for numerical work. 
However, the concepts and principles, which will be used for the derivation of a large part of the 
sequence transformations of this report, should now be clear. They can be summarized as 
follows: 
(1): Consider a model sequence with elements S;, = s + Fn and assume that their remainders Fj, can 
be partitioned into a remainder estimate w, multiplied by some other quantity z,. This implies 
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that the elements S;, of the model sequence satisfy: 

(3.2-9) 

(2): Assume that an operator f, which is defined on finite subsets of sequences and which is 
linear, annihilates the quantities z, defined in eq. (3.2-9), i.e., f( z,,) = 0. If we rewrite eq. (3.2-9) 
in the following way 

(3.240) 

we see that a sequence transformation Y( s”,, wn), which is exact for the model sequence eq. 
(3.2-9), i.e., which satisfies Y(S;,, an) = S, is given by the following ratio: 

(3.2-11) 

(3): Replace the elements S;, of the model sequence (3.2-9) in the expression defining the 
sequence transformation Y( S;, , a,,) - in this report either the ratio of two determinants, an 
explicit expression, or a recursive scheme - by the elements of the sequence {snD which is to be 
transformed. 

The crucial step in this approach is the choice of an appropriate sequence of model remainders 
(IFnb since the 7, should have a mathematical structure which permits the construction of a 
manageable annihilation operator f. In addition, the Fn should also be capable of producing 
good approximations for remainders r, which occur in actual problems, because only then we 
may hope that the sequence of transforms will converge more rapidly than the original sequence 
4~~). These aims are usually accomplished by partitioning fn into a remainder estimate o,, 
multiplied by a finite sum, 

m, lIENo. (3.2-12) 
j=O 

Here, the a(pj( n) 1 with j, n E, No are a suitable set of functions - usually an asymptotic 
sequence as for instance (n + 1)-J with j, n E N a - for which a sufficiently simple annihilation 
operator can be found and the cj are so far completely unspecified coefficients which are 
responsible for the flexibility of this ansatz. 

Once the asymptotic sequence j(pj( n) D is chosen, the crucial problem is the determination of a 
suitable sequence of remainder estimates 4~~1. 

Although it may not be obvious at first sight, the determinantal expression (3.2-8) is exactly of 
the form of eq. (3.2-11). To see this, one only has to divide both determinants in eq. (3.2-8) by 
the product (- l)“+‘b,+i . . . (- l)“+k+lb,,+k+l. 

For the sake of simplicity no distinction between the elements of a model sequence {fnb and 
the elements of a sequence jsnD, which is to be transformed, will be made from here on. This 
means that if a sequence transformation is constructed on the basis of a model sequence, then in 
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the explicit expression or the recursive scheme, which defines this transformation, the sequence 
elements s, and not the elements S;, of the model sequence will occur. 

3.3. The general extrapolation algorithm by Brezinski and Hivie 

It is a typical feature of a large part of the modern nonlinear sequence transformations that 
they are by construction exact for special model sequences. The most general ansatz described in 
the literature was introduced independently by Brezinski [31] and Havie [32]. They assume a 
model sequence of the following type: 

k-l 

s,=s+ C q.&(n), k, n EN,. (3.3-l) 
j=O 

Concerning the set {fi( n)D with j, n E N, it is assumed that the fj( n) are known functions of 
n, but otherwise, they are essentially completely arbitrary. Hence, the ansatz (3.3-l) incorporates 
convergent as well as divergent sequences, depending upon the behaviour of the functions fi( n) 
asn-+oo. 

In eq. (3.3-l), there occur k + 1 unknowns, the limit or antilimit s and the k coefficients 
cO,...,ck-1. Since all the unknowns in eq. (3.3-l) occur linearly, the numerical values of k + 1 
sequence elements s,, s,,+i,. . . , s,+k have to be known in order to be able to determine the limit 
or antilimit s with the help of Cramer’s rule. Consequently, the general extrapolation algorithm 
Ek(s,) by Brezinski and H&vie, which is by design exact for sequences of the type of eq. (3.3-l), 
can be formulated as the ratio of two determinants, 

fo>) 1:: fo;tkk) 

f,_;(n) . ..’ f,-,(i + k) 

fob4 . . . f0(n+k) 

fk-i(n) ..: f,-,(i + k) 

(3.3-2) 

Brezinski and Havie were also able to derive a recursive scheme for the computation of the 
transforms Ek(s,), which is, however, relatively complicated. A description of a FORTRAN IV 
program, which computes the transforms Ek(s,) via this recursive scheme, can be found in ref. 

[361. 
Brezinski [31] showed that the general extrapolation algorithm Ek( s,) contains the majority of 

the currently known sequence transformations as special cases, among them Levin’s sequence 
transformation [28]. It will be seen later that many of the new sequence transformations, which 
will be discussed in this report, are actually special cases of the general extrapolation algorithm 
Ek(sn>- 
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Consequently, it may seem that it is sufficient to consider only the general extrapolation 
algorithm E,Js,) and not its numerous special cases. However, the complicated structure of its 
recursive scheme [31,32,36] makes the general extrapolation algorithm Ek(sn) computationally 
much less efficient than its special cases. Of considerable importance is also the following aspect: 
In practical applications it is certainly helpful to know that for arbitrary functions fi(n) the 
sequence transformation Ek(sn) can be computed recursively. But it is clearly of greater practical 
relevance to find out which set afi( n)D p ro d uces the best results for a given sequence (l.s,,D. 
Questions of that kind can only be answered by studying special transformations and by 
exploiting their specific properties. 

3.4. Iterated sequence transformations 

In section 3.3, it was mentioned that a large part of the modern nonlinear sequence 
transformations are constructed in such a way that they are exact for certain model sequences. 
However, it is also possible to find new sequence transformations which are not constructed on 
the basis of model sequences. 

Let us assume that a sequence 4~~) is to be transformed by a sequence transformation 7’i”) 
with k, n E N, and that for some K E N, which is usually a relatively small number, a transform 
r,‘“’ can be expressed explicitly in terms of the sequence elements s,, s,+~, . . . , s,,,~, i.e., 

zy=F(s,, S,+*,...d,+A). (3.4-l) 

Then, a new sequence transformation Op) can be obtained by iterating the expression for 
T(“). This means that we define K 

@A”’ = s 
n, nEN,, (3.4-2) 

and that eq. (3.4-l) is rewritten in the following way: 

@p = F,( @$“‘, @n+l), . . .) @n+h)), nENO. (3.4-3) 

This relationship can now be used to construct a recursive scheme by means of which the 
transforms Or) with k 2 2 can be computed. One simple possibility of obtaining a recursive 
scheme would be to assume that eq. (3.4-3) corresponds to the special case k = 0 of the 
following, more general recursive scheme: 

k, n E N,. (3.4-4) 

Later, we shall encounter several very powerful sequence transformations which are derived by 
iterating explicit expressions for other sequence transformations. A well known example is 
Aitken’s iterated A2 process which is obtained by iterating the explicit expression for Aitken’s A2 
process, eq. (1.2-2). Interestingly, it often happens that the properties of the new sequence 
transformation differ significantly from the properties of the transformation from which it was 
derived. 
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4. The epsilon algorithm and related topics 
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4.1. The Shanks transformation 

In his article on nonlinear sequence transformations Shanks [15] considered the following 
model sequence: 

k-l 

s,=s+ c c~As,,+~, nEN(). (4.1-l) 
j=O 

If the sequence elements s, are partial sums of an infinite series, 

n 

s,= C a,, 
v=o 

(4.1-2) 

the above model sequence can also be rewritten in the following way: 

k-l 

S,=f+ C Cja,+j+l, nEN,. (4.1-3) 
j=O 

Essentially this means that the limit s of the infinite series is approximated by the partial sum 
s, plus a weighted sum of the next k terms a,,,, an+2,.. ., an+k. As in the previous examples 
the model sequence s, contains k + 1 unknowns - the limit or antilimit s and the k linear 
coefficients CO,. . . , c&l - which all occur linearly. Consequently, according to Cramer’s rule the 
sequence transformation ek(S,,), which is by construction exact for the model sequence (4.1-l), 
can be defined by the following ratio of determinants: 

ekbn) = 

%I . . . sn+k 

As, . . . dS,+k 

AS,;,_, ..: dS,;,,_, 

1 . . . 1 
As,, . . . dS,+k 

(4.1-4) 

For the computation of the transform ek( s,) the sequence elements s,, . . . , s,+~~ are needed. 
This implies that ek(s,) is a transformation of order 2k. 

The sequence transformation ek(s,) is a special case of the general extrapolation algorithm 
Ek(s,) introduced by Brezinski [31] and Havie [32]. To see this we only have to replace A(n) in 
eq. (3.3-2) by As,,,~. The transformation (4.1-4) was originally introduced in 1941 by Schmidt 
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[17] who used it for the iterative solution of linear systems. In 1955 it was rediscovered by Shanks 
[15] who also analyzed some of the mathematical properties of the sequence transformation 
ek(s,) and derived several interesting results. For instance, he was able to show that this 
transformation is also exact for model sequences with remainders that are sums of exponentials: 

k-l 

s,=s+ c cjx;, nEN),. (4.1-5) 
j=O 

Concerning the Xj it is assumed that they are ordered in such a way that their magnitudes are 
strictly decreasing, i.e., 

If the condition ( A, I < 1 is satisfied the model sequence (4.1-5) converges. In analogy with 
so-called physical transients, which disappear after a sufficiently long time, Shanks called the 
terms on the right-hand side of eq. (4.1-5) mathematical transients since all A’J with ) Xj I < 1 

vanish as n + 00. However, this concept of a mathematical transient has to be used here in a 
broader sense since the Shanks transformation ek(s,) can also be used for the summation of 
divergent sequences and series. The model sequence (4.1-5) diverges if at least one of the hj 
satisfies I A, I 2 1, because then such a term Ai will not vanish as y1 -+ co. 

Shanks [15] also showed that the transformation ek(s,) and PadC approximants are closely 
related. Let us assume that f(z) is analytic in a neighbourhood of z = 0, 

f(z) = E a,z”. (4.1-7) 
v=o 

Following the notation of Baker and Graves-Morris [22] we say that the PadC approximant of 
f(z) is the ratio of two polynomials p,(z) and q,(z) of degrees 1 and m, respectively, and write 

[vml f(Z) =P,wq,w. (4.1-S) 

The PadC approximants [Z/m] with 1, m E No are displayed in a 2-dimensional rectangular 
scheme called the Pad6 table in such a way that the first index 1 indicates the column and the 
second index m the row of the array. The coefficients of the two polynomials pI( z) and q,(z) 
are defined by the relationship 

f(z) - Plwq,(z) = w+m+l). 

This implies that the coefficients of the Taylor expansion of the Pad& approximant 

(4.1-9) 

Pl(z)/qrn(z) 
have to agree with the series coefficients (Ye up to the coefficient (Y!+~. Let f,(z) stand for a 
partial sum of the power series (4.1-7), 

f,(z) = 2 a,zy. (4.1-10) 
v=o 



Shanks [15] could show that the application of his ~~sfo~a~on to the sequence {f,(z)1 
produces the following elements of the Pade table: 

e&M) = IIn + k/N f(z), k, nEf+l,. (4.1-11) 

4.2. Wynn ‘s epsilon algorithm 

As it stands, the Shanks ~~sfo~ation ek(s,), eq. (4.1-4), is not particularly useful because of 
its de~tion as the ratio of two dete~~ts. Fortunately, only one year after the publication of 
Shanks’ article [15] We f16f found a nonlinear recursive scheme which is now commonly called 
the z algorithm: 

@Ls 
?I) (4.2-la) 

k, n E N,. (4.2~lb) 

Wymr [16] was able to show that the elements of the c table with even subscripts give the 
Shanks transformation, 

4$ = ekfS,), k n E fBlo, (4.2-2) 

whereas the elements of the c: table with odd subscripts are only auxiliary q~titi~ satisfying 

$,?+l = V’e,(&J, k, n E N,. (4.2-3) 

The publication of the z algorithm, which allows a simple and efficient evaluation of the 
Shanks transformation, stimulated an enormous amount of research. According to Wimp (see p. 
120 of ref. [23]) over 50 articles on the c algorithm were published by Wynn alone, and at least 
30 articles by Brezinski. As a fairly complete source of references Wimp recommends Brezinski’s 
first book [19]. Since the main concern of this report are other sequence transformations and not 
W~M’S c algorithm, only those properties of the r algorithm will be discussed which are relevant 
for an unde~t~~ng of its power as well as its station as a ~nverg~ce acceleration and 
su~at~on method. 

In a later article, Wynn 1371 analyzed the convergence properties of the L algorithm by 
applying it to several model sequences. For instance, in the case of sequences, which have strictly 
alternating remainders r,, of the following type, 

s -s+(-l)“~c,/(n+B)‘+l, /3ER+, n n--,oo, (4.2-4) 
j=O 

W~M [37] obtained, assuming co + 0, for fixed k an estimate which shows that the E algorithm 
accelerates convergence: 

14.2-5) 
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Wynn [37] also considered sequences which generalize the model sequence (4.1-5), 

s n -s+ E c,h?, l>A,>X,> *** >o, n-+0. (4.2-6) 
j=O 

For fixed k Wynn [37] obtained the following estimate which shows that the E algorithm 
accelerates convergence: 

cpk) - s + Ck 
{Ok - A,)@, - h> * - * @k - Ak-d2 A” 

{(1-x,)(1-x,)...(1-x,_,)}2 k’ n+ao. 
(4.2-7) 

Wynn [37] also applied the e algorithm to logarithmically convergent sequences of the 
following type: 

s -s+ gcj,(n+j3)j+1. pa,, n n -+ 00. (4.2-S) 
j=O 

Assuming co # 0, Wynn [37] obtained for fixed k an estimate which shows that the E 
algorithm - or equivalently the Shanks transformation - is not able to accelerate the conver- 
gence of sequences of that type: 

(n) 
c2k -‘+ (k+l;;n+fi)’ 

n-+oo. 

This inability of accelerating logarithmic convergence is one of the major defects of the 
otherwise very powerful e algorithm. 

If the elements s, of the sequence to be transformed are partial sums of a power series as in 
eq. (4.1-lo), the e algorithm produces PadC approximants according to eqs. (4.1-11) and (4.2-2), 

CC) = [n + k/k] f(z), k, neN,,> (4.2-10) 

and the convergence theory of PadC approximants can be applied in this case. This convergence 
theory can be found in the standard references on PadC approximants, as for instance the books 
by Baker [18] or by Baker and Graves-Morris [22]. 

4.3. Programming the epsilon algorithm 

In this section it will be discussed how the E algorithm can be programmed efficiently. But 
first, the objectives of such a program, which performs the transformation of a given sequence 
{snD with the help of Wynn’s c algorithm, should be stated. 

Since it is in general not possible to predict by a priori considerations how many sequence 
elements will be needed until convergence has finally been achieved, such a program should be 
input-directed. This means it should read in the sequence elements so, si, . . . , s,, . . . successively 
starting with s,,. After the input of each new sequence element s, as many new elements c?’ 
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should be computed as is permitted by the recurrence formula (4.2-lb). That new element ep), 
which has the largest even subscript k, should be used as the new approximation to the limit of 
the sequence. 

Let us arrange the elements ck (n) of the E table in a rectangular scheme in such a way that the 
superscript n indicates the row and the subscript k the column of the 2-dimensional array: 

. . . . 
. . 

rp ,(n) 
... n . . . 

(4.3-l) 

The entries in the first column of the array are the starting values eg’ = s, of the recursion 
according to eq. (4.2-la). The remaining elements of the c table can be computed with the help 
of the recurrence formula (4.2-lb). This nonlinear 4-term recursion connects four elements of the 
6 table which are located at the vertices of a rhombus: 

(n) 
ck 

(n+l) 
ck-l 

(n+l) 
‘k 

(4.3-2) 

If the sequence elements so, si, . . . , s, are used as initial conditions according to eq. (4.2-la), 
the recurrence formula (4.2-lb) is able to compute all elements ,jP-j) with 0 I p I m and 
0 ~j I p. Obviously, these elements form an equilateral triangle located in the upper left corner 
of the c table. If the next sequence element s,+~ is also used as a starting value for the recursion 
(4.2-lb), the triangle will be enlarged by the neighbouring counterdiagonal ,(m-j+l) with 
0 ~j 5 m + 1. In this context it will be advantageous to rewrite Wynn’s c algorithm, eq. (4.2-l) 
in the following way: 

$Ls n 2 0, 

61 Cn-l) Z,[s. - S,_J) n 2 1, 

,<n-i) = ~(~;i+i) 
.I +l/[tll;j+l)-fjl;j)], n22, 2<j<n. 

(4.3-3a) 

(4.3-3b) 

(4.3-3c) 

Concerning the approximations to the limit it follows from eqs. (4.2-2) and (4.2-3) that one has 
to distinguish between even and odd values of the index m of the last sequence element S, which 
was used in the recursion. If m is even, m = 2~., our approximation to the limit of the sequence 
is the transformation 

{SO, SI,...,S~~} +~$j=ep(so), (4.3-4) 



220 E.J. Weniger / Nonlinear sequence transformations 

and if m is odd, m = 2~ + 1, we use the transformation 

(4.3-5) 

With the help of the notation [xl for the integral part of x, i.e., the largest integer Y satisfying 
v I x, these two relationships can be combined into a single equation yielding 

(4.3-6) 

If the sequence elements S, are partial sums of a power series as in eq. (4.1-lo), our 
approximations to the limit correspond according to eq. (4.2-10) to the following staircase 
sequence in the Pad& table: 

kvol > Wol , [WI > * *. > [v/v] ) [v + l/V] ) [Y + l/V + l] ) . . . . (4.3-7) 

Because of the rhombus structure (4.3-2) of the 4-term recursion in Wynn’s E algorithm it 
appears that a program would either need a single 2-dimensional or at least two l-dimensional 
arrays. However, Wynn [38] could show that a single l-dimensional array is sufficient. Wynn’s 
algorithm, which is called moving lozenge technique, is based upon the observation that for the 
computation of a new element ejrn-j+l) only the two neighbouring elements eS?!;j+‘) and 
~$?;j+~) have to be known but not the whole upper counterdiagonal c~“‘~~) with 0 <j I p I m. 
Hence, in Wynn’s moving lozenge technique these quantities are stored in auxiliary variables 
while the recursion (4.3-3) moves along the current counterdiagonal ~(~-j+‘) with 0 <j I m + 1 
and overwrites the previous entries c:“-~) with 0 I p I m. A good description of Wynn’s moving 
lozenge technique [38] can also be found in Brezinski’s second book (see pp. 326-327 of ref. 

Pm 
Wynn [38] performed the recursion in a l-dimensional array E in which he stored the elements 

of the current counterdiagonal of the e table in such a way that the index of the array element 
coincides with the subscript of the corresponding element of the e table, 

elm-j) + E(j), m20, OIjIm. (4.3-8) 

If the above convention is used three auxiliary variables will be needed. But Wynn’s moving 
lozenge technique can be improved if the elements of the current counterdiagonal of the E table 
are stored in a l-dimensional array E in such a way that the superscript of the corresponding 
element of the e table coincides with the index of the array element, 

c=“-j) + E(m -j), m20, Oljlm. (4.3-9) 

If this convention is used only two auxiliary variables will be needed and the structure of the 
resulting computer program will also be simpler and more elegant. The recursive scheme (4.3-3) 
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can then be reformulated in terms of the elements of the array E in the following way: 

E(n) n 2 0, (4.3-10a) 

E(n - 1) C&(n) - E’(n - l)], n 2 1, (4.3-lob) 

E(n -j) +E’(n-j+l)+l/[E(n-j+l)-E’(n-j)], 

n22, 2IjIn. (4.3-1oc) 

The primed array elements E’( n -j) and E’( n -j + 1) have to be stored in auxiliary 
variables since they will be overwritten during the computation of the current counterdiagonal 
,jn-j) with 0 <j I n. The primes also indicate that the indices of the array elements E’( n -j) 
and E’(n -j + 1) refer to the occupation of E after the previous run, i.e., after the computation 
of the counterdiagonal e~‘-j-‘) with 0 I j I n - 1. 

If a counterdiagonal creCL) with 0 I p I m is computed with the help of the recursive scheme 
(4.3-3) and if the elements &) converge - which means that the whole process is successful - the 
computation of the elements c$‘L+i will necessarily involve divisions by the small quantities 
opt+‘) - cl;k’. This may easily lead to an intolerable magnification of the inevitable rounding 
errors. Hence, it looks as if Wynn’s c algorithm should be extremely susceptible to rounding 

errors. 
Fortunately, this is normally not the case although the elements c$)+i may become quite large 

in magnitude and may have a very low relative accuracy due to the numerical problems described 
above. But in the next step of the recursion the elements $)+i serve as divisors which will 
dampen the rounding errors again. Consequently, it is not clear what the overall effect will be. 
However, numerical experience indicates that in most cases of practical interest Wynn’s 6 
algorithm is remarkably stable. This experimental evidence is supported by a theoretical analysis 
of the numerical stability of the E algorithm which was performed by Wynn [37] in the case of 
several model sequences. 

In some cases - for instance if the elements of the sequence to be transformed are the partial 
sums of the Taylor series of a rational function - it may happen that the difference c$+*) - EP~) 
vanishes. If pathologies of that kind occur, the so-called singular rules of the 6 algorithm can be 
used which were also derived by Wynn [39]. A good discussion of these singular rules and of 
related problems can also be found in section 4.1.2 of Brezinski’s second book [20]. There, one 
can also find listings of FORTRAN IV programs for Wynn’s c algorithm which partly use the 
singular rules mentioned above (see pp. 338-352 of ref. [20]). 

According to the limited experience of the author pathologies of that kind occur only rarely in 
scientific applications. Consequently, Wynn’s singular rules are not used in the following 
FORTRAN 77 program EPSAL which computes the Shanks transformation of a given sequence 
by means of Wynn’s 6 algorithm. However, a good program should take some precautions 
against an approximate equality of the elements ep+‘) and cp) since in this case the reciprocal 
of the difference of these two elements could exceed the largest floating point number represen- 
table on the computer. This would lead to overflow and to an error termination of the program. 
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This safeguard against overflow can be accomplished by defining two variables HUGE and 
TINY. Their values should be close to but not identical with the largest and smallest floating 
point numbers representable on the computer. If the difference ep+‘) - cP’ is smaller in 

magnitude than TINY, then ec!i will be set equal to HUGE. If this approximate equality of the 
elements ~l(l+l) and ~l[t) was accidental the program can continue with the computation of the 
other elements of the c table producing numbers which are normally not noticably affected. It is 
also possible that this approximate equality of the elements ep+l) and ep’ was not accidental 
but due to convergence. However, in this case the program should have been stopped before. 

In order to monitor the exact or approximate vanishing of the denominators, it may also be a 
good idea to define in a FORTRAN program for Wynn’s E algorithm an error variable, for 
instance IFAIL, whose value is changed if one of the differences ~jcn+r) - cI’ is smaller in 
magnitude than TINY. 

The following FORTRAN 77 program EPSAL uses the modification (4.3-10) of Wynn’s 
moving lozenge technique. It is safeguarded against approximate equality of the elements ~p+l) 
and cP’ by using two variables HUGE and TINY as described above. The elements s, with 
n =o, 1, 2, . . . of the sequence to be transformed have to be computed in a DO loop in the 
calling program. Whenever a new sequence element s, is computed in the outer DO loop this 
subroutine EPSAL has to be called again and a new counterdiagonal of the e table will be 
calculated. The new sequence element s, is read in via the variable SOFN and the approximation 
to the limit is returned via the variable ESTLIM. 

Finally, it is important to note that this subroutine EPSAL only calculates the approximations 
to the limit according to eqs. (4.3-3) and (4.3-4) and does not analyze the convergence of the 
whole process. This has to be done in the calling program. 

SUBROUTINE EPSALCSOFN,N,E,LARRAY,ESTLIM) 

DIMENSION ECO:LARRAY) 

PARAMETER (HUGE = l.E+60, TINY = l.E-60, ZERO = O.EO, ONE = l.EO) 

E(N) = SOFN 

IF CN.EQ.0) THEN 

ESTLIM = SOFN 

ELSE 

AUX2 = ZERO 

DO 10 J = N,l,-1 

AUXI = AUX2 

AUX2 q ECJ-1) 

DIFF = E(J) - AUX2 

IF CABSCDIFF) .LE. TINY) THEN 

ECJ-1) = HUGE 

ELSE 

ECJ-1) = AUXl + ONE/DIFF 

END IF 

10 CONTINUE 

IF ( MODCN,2) .EQ. 0 1 THEN 

ESTLIM = E(O) 

ELSE 

ESTLIM = E(l) 

END IF 
END IF 

RETURN 

END 
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5. The iteration of Aitken’s A2 process 

5.1. Aitken’s A* transformation and its iteration 

Let us consider the following model sequence which is obtained by setting k = 1 in eq. (4.1-5): 

s,=s+cY, c#O, Ihl<l, nENO. (5.1-l) 

Each sequence element s, contains the three unknowns c, X, and the limit s. Consequently, a 
sequence transformation will at least require three elements of the above model sequence for the 
determination of the limit s. In order to derive such a transformation we form the first and 
second differences of s,: 

As,, = cY( X - l), (5 .l-2) 

A2s, = ch”( A - l)2. (5 .l-3) 

A short computation shows that the following sequence transformation is exact for the model 
sequence (5.1-1): 

&q”‘=s [As I” - n 
n 

A2s, ’ 
nENO. (5 .l-4) 

This sequence transformation is Aitken’s well-known A2 process [12]. The structure of this 
transformation explains quite clearly why it bears this name. 

It follows at once from the derivation of the sequence transformation ,c41’“) via the model 
sequence (5.1-l) that it is a special case of the Shanks transformation, eq. (4.1-4), or Wynn’s E 
algorithm, eq. (4.2-l), 

a?:n) = e,(s, ) = cp). (5 .l-5) 

Many other representations for Aitken’s A2 process can be derived by suitable manipulations 
of eq. (5.1-4). Examples are: 

Jx?p = s,+1 - 
b%J PSn+ll 

A2s, 

=s 
Psn+,12 

nf2 - 
A2s, 

(5.1-6) 

(5 J-7) 

s = n+2S?l- 1%+112 
A’s,, 

(5 .l-8) 
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= [A%?+11 Sri+++ - [As,] sn+* 
A2S, 

1 
=S ‘+l+ A[l/As,] ’ 

A b,+dAsnl 
= A[l/As,] ’ 

(5 l-9) 

(5.1-10) 

(5.1-11) 

(5 .l-12) 

Aitken’s A2 process was studied in articles by Shanks [15], Clark, Gray, and Adams [35], 
Lubkin [40], Tucker [41,42], Cordellier [43], and Bell and Phillips [44]. A multidimensional 
generalization of Aitken’s transformation to vector sequences was discussed by MacLeod [45]. 
Modifications of Aitken’s A2 process were proposed by Drummond [46] and by Bjerrstad, 
Dahlquist, and Grosse [47]. 

The properties of Aitken’s A2 process are discussed in books by Brezinski (see pp. 37-40 of 
ref. [19] and pp. 43-45 of ref. [20]) and Wimp (see pp. 149-152 of ref. [23]). Those properties 
which are particularly important for our purposes can be summarized as follows: 
(i): The A2 process accelerates linear convergence. 

(ii): The A2 process is regular but not accelerative for logarithmically convergent sequences of 
the type of eq. (4.2-8). 

This shows that Aitken’s A2 process has similar properties as Wynn’s c algorithm. In view of 
eq. (5.1-5) this is not surprising. However, one cannot expect that Aitken’s A2 process will be as 
powerful as Wynn’s e algorithm. The reason is that the transform J%‘{“) is produced by only 
three sequence elements s,, s,+ i, and s,,+~ which implies that ~2~“’ is a transformation of order 
I = 2. This will certainly limit the power as well as practical usefulness of this transformation. 

If the accelerative power of Aitken’s transformation turns out to be insufficient and if it is 
necessary to use a more powerful sequence transformation one could of course use Wynn’s E 
algorithm which because of eq. (5.1-5) can be considered to be a more complex and also more 
powerful generalization of Aitken’s A2 process. Another alternative, which also produces 
sequence transformations with higher transformation orders, would be to iterate the A2 process. 
This means that Aitken’s A2 process will be applied to the transformed sequence {.&{“‘I yielding 
a new sequence a_&:‘)). This process can in principle be repeated indefinitely. 

In order to obtain some heuristic motivation for this iteration, let us apply Aitken’s A2 process 
to the following model sequence which generalizes the sequence (5.1-1): 

s, = s + axn + by”, O~(.Y]~]Xl<l, a, b#O. (5 .l-13) 

A short calculation shows that Aitken’s A2 process eliminates the dominating term ax” from 
the model sequence (5.1-13): 

d&?-p’ = s + 
bib -id/(x - 1)12y" 

1+ (b/a)[(y - 1)/(x - l>l'(v/x)" ’ 
(5 J-14) 
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Since we have by assumption 0 < 1 y 1-c ( x 1-c 1, the transformed sequence (5.1-14) converges 
faster than the original sequence (5.1-13). Also, since (v/x)” vanishes as n -+ cc, at least for 
large values of n the elements of the resulting sequence (5.1-14) have essentially the same 
structure as the elements of the sequence (5.1-1). 

For the iteration of Aitken’s A2 process each of the numerous representations for A$“) given 
above can be used since they are all mathematically equivalent. However, the various representa- 
tions for .&‘j”’ differ considerably in their numerical stability. In the book by Press, Flannery, 
Teukolsky, and Vetterling (see p. 133 of ref. [48]) it is remarked that Aitken’s A2 process should 
be computed with the help of eq. (5.1-4) since the other equivalent representations are numeri- 
cally less reliable. Numerical studies performed by the author confirmed this statement. Conse- 
quently, in this report an iteration of Aitken’s A2 process will always be based upon eq. (5.1-4). If 

(n) we identify the sequence elements s, with the initial values &‘,, of the recursion we obtain the 
following nonlinear recursive scheme: 

(5.1-15a) 

(5%15b) 

As usual, the difference operator A acts upon the superscript n and not upon the subscript k. 

It follows from this recurrence formula that the computation of XZ’~“’ requires the sequence 
(n) elements s,, s,+ i, . . . , s,+~~. Consequently, &k is a transformation of order 2k. In this respect 

&in) is equivalent to <2k (n) which needs the same set s,, s, + r, . . . , s,,+~~ of sequence elements for 
its computation. However, we shall see later that the numerical properties of Wynn’s c algorithm 
and Aitken’s iterated A2 process often differ considerably although they are both generalizations 
of the same sequence transformation &in), eq. (5.1-4). 

The numerical properties of Aitken’s iterated A2 process were studied by Smith and Ford [30]. 
Concerning the theoretical properties of Aitken’s iterated A2 process, very little seems to be 
known. Apparently, there is only one article by Hillion [49] in which the theoretical properties of 
Aitken’s iterated A2 process were studied. Hillion was able to find a model sequence for which 
the iterated A2 process is exact. He also derived a determinantal representation for the 
transforms &in). However, Hillion’s expressions contain in both cases explicitly the lower order 
transforms &Jn), . . . , A($!Y)~, . . . , A?$~+~), . . . , diltk) Consequently, it seems that not much in- . 

sight about the properties of Aitken’s iterated A2 process can be gained by these results. 

5.2. Programming Aitken’s iterated A” process 

A program for Aitken’s iterated A2 process should have the same features as the subroutine 
EPSAL which transforms a given sequence QsnD with the help of Wynn’s c algorithm. This means 
it should read in the sequence elements s,,, si, . . . , s,, . . . successively starting with sO. After the 
input of each new sequence element s, as many new elements .&‘i”) of the Aitken table should 
be computed as it is permitted by the recursive scheme (5.1-15). That element .&in), which has 
the largest subskript k, should be used as the new approximation to the limit of the sequence 

&%zD* 
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Let us arrange the elements J&‘~ (n) of the Aitken table in rectangular scheme in such a way that 
the superscript n indicates the row and the subscript k the column of the 2-dimensional array: 

-02,‘O’ . . . 

sp . . . 
slQ2’ . . . 

(5.2-l) 

The entries in the first column of the array are the starting values s?$“) = s, of the recursion 
according to eq. (5.1-15a). The remaining elements of the Aitken table can be computed with the 
help of the recurrence formula (5.1-15b). The 4 elements, which are connected by this nonlinear 
recursion, form a pattern in the Aitken table which looks like the move of a knight on the 
chessboard: 

.!a$*) ~21 
&qn+l) (5.2-2) 
&Qn+2) 

This pattern implies that the recursion (5.1-15b) has to proceed along a relatively complicated 
path in the Aitken table if the elements so, si, . . . , s,, . . . are read in successively and if one tries 
to increase the subscript k as much as possible. In this context, it is advantageous to rewrite the 
recursive scheme (5.1-15) in the following way: 

Jrp = ,y 
II, n 20, (5.2-3a) 

LpgJn-2i) _d(n-2i) _ 
[ A&zy;2jq 2 

- 
J j-l &&y;Zi) ’ 

n22, lIjrun/211. (5.2-3b) 

Here, [n/2] denotes the integral part of n/2, i.e., the largest integer v satisfying v I n/2. If 
the sequence elements so, sl,. . . , s, are used as starting values, the recursion (5.2-3b) is able to 
compute all elements ~j'p-2i' with 0 I p I m and 0 s j I [p/2]. If the next sequence element 
S m+l is also used as a starting value for the recursion, this set of elements of the Aitken table will 
be enlarged by the string ~$(~-~j+‘) with 0 <j I [(m + 1)/2]. 
As in Wynn’s e algorithm the approximation to the limit depends upon the index m of the last 

sequence element S, which was used in the recursion. If m is even, m = 2~, our approximations 
to the limit of the sequence are the transformations 

{so, Sl,...,S2B} -+.Jzp’, (5.2-4) 
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and if m is odd, m = 2p + 1, the approximation to the limit will be 

(5.2-5) 

As in the case of Wynn’s e algorithm, these two relationships can be combined into a single 
equation, 

(5.2-6) 

Because of the relatively complicated geometrical structure (5.2-2) of the recursion (5.2-3b) it 
appears that a program, which computes Aitken’s iterated A2 process, would need a 2-dimen- 
sional array. However, a single l-dimensional array A is sufficient if the elements of the Aitken 
table are stored according to the following rule: 

.d&;;)+A(n - v), n20, Olvln. (5.2-7) 

With this convention the recurrence formula (5.2-3) can be reformulated in terms of the 
elements of the l-dimensional array A: 

A(n) + s,, n 20, (5.2~8a) 

/qn _ 2j) .+A(n - 2 j) - IAACn - 2j)12 ) 
A2A(n - 2j) 

n 2 2, 1 Ij I l[n/2n. (5.2-8b) 

Aitken’s iterated A2 transformation makes sense only if the second differences A’&$rt\ do not 
vanish for sufficiently large values of k. This will certainly be guaranteed if for fixed k all 
elements of the sequence @.4p1D are different from zero and strictly alternating in sign. 

Unfortunately, the above statement is not particularly helpful since only very little is known 
about the theoretical properties of Aitken’s iterated A2 process. In addition, it does not help at 
all if the initial sequence $snD is not alternating. A related problem, which may easily arise in this 
context, is that some second differences A2&‘L!?)i may become so small that division would lead 
to overflow. Consequently, a good program should be protected against the exact or approximate 
vanishing of the second differences A2&i1),. 

As in the case of Wynn’s c algorithm this can be accomplished by introducing two variables 
HUGE and TINY which have values that are close to but not identical with the largest and 
smallest floating point number representable on the computer. If A2&J’J)i is smaller in magni- 
tude than TINY, J@“) will be set equal to HUGE and the recursion is continued. 

The following FORTRAN 77 subroutine AITKEN performs the recursive computation of the 
Aitken table in a single l-dimensional array A according to eq. (5.2-7). It is safeguarded against 
an exact or approximate vanishing of the second differences A2&,(!\ by using two variables 
HUGE and TINY. The elements s, with n = 0, 1, 2, . . . of the sequence to be transformed have 
to be computed in a DO loop in the calling program. Whenever a new sequence element s, is 
computed in the outer DO loop this subroutine AITKEN has to be called again and a new string 
s$((“-~~) with 0 <j I [n/2] will be calculated. The new sequence element s, is read in via the 
variable SOFN and the approximation to the limit is returned via the variable ESTLIM. 
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It is important to note that this subroutine AITKEN only calculates the approximations to the 
limit according to eqs. (5.2-4) and (5.2-5). The convergence of the whole process has to be 
analyzed in the calling program. 

SUBROUTINE AITKENCSOFN,N,A,LARRAY,ESTLIM) 

DIMENSION ACO:LARRAY) 

PARAMETER ( HUGE = 1 .E+60 , TINY = l.E-60 , TWO = 2.E0 ) 

A(N) = SOFN 

IF CN.LT.2) THEN 

ESTLIM = SOFN 

ELSE 

LOWMAX = N/2 

DO 10 J = l,LOWMAX 

M = N - 2*J 

DENOM = ACM+21 - TWO*ACM+l) + ACM) 

IF CABSCDENOM).LT.TINY) THEN 

ACM) = HUGE 

ELSE 

ACM) = ACM) - (ACM) - ACM+1))**2 / DENOM 

END IF 
10 CONTINUE 

IF ( MODCN,2) .EQ. 0 ) THEN 

ESTLIM = A(o) 

ELSE 

ESTLIM = A(1) 

END IF 
END IF 
RETURN 

END 

6. Wynn’s rho algorithm and related topics 

6.1. Polynomial and rational extrapolation 

Assume that the values of a function f(x) are only known at some discrete points x,, < xi < 
. . . -c x,. It is one of the classical problems of numerical analysis to estimate the value of f at 
somepoint t@ {x0, xi .*. x,}.If xO<<<xm, this problem is called interpolation, and if either 
,$ < x0 or x, < E, this problem is called extrapolation. These problems and their solution are 
discussed in any book on numerical analysis. More specialized treatments of these topics can be 
found in a monograph on interpolation by Davis [50] or in a review article on extrapolation 
processes by Joyce [51]. 

Extrapolation techniques can be used for the construction of convergence acceleration 
methods. In this approach, the existence of a function Sp of a continuous variable is postulated 
which coincides on a discrete set of arguments jxnD with the elements of the sequence 4~~1 to be 
transformed, 

~b,> = s,, nEN,. (6.1-1) 
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This ansatz reduces the problem of accelerating the convergence of a sequence $snD to an 
extrapolation problem. If a finite string s,, s,+~, . . . , s,+~ of k + 1 sequence elements is known 
one can construct an approximation YJ x) to Y(x) which satisfies the k + 1 interpolation 
conditions 

Ykbm+j) = s,+j, O<j<k. (6.1-2) 

In the next step one has to determine the value of the approximant 9$(x) for x --) x,. If this 
can be done and if the assumptions which are implicitly contained in this ansatz - the existence 
of a function Y(x) which can be approximated at least locally by a suitable set of interpolating 
functions - are justified, one can expect that the extrapolated value Yk(x,) will provide a better 
approximation to the limit s of the sequence 4~~1 than the last sequence element s,+~ which was 
used for the construction of Yk(x). 

In interpolation and extrapolation problems the function under consideration has to be 
modelled either in between or beyond a finite set x,,, xi,. . . , x, of interpolation points by a 
suitable set of interpolating functions. These interpolating functions should be flexible and 
general enough to produce good approximations for large classes of functions which can occur in 
practice. In addition, they should also be simple enough to be manageable. The most common 
interpolating functions are either polynomials or rational functions. These two sets will also lead 
to different convergence acceleration methods. 

If interpolation by polynomials is used as the basis of a convergence acceleration method it is 
implicitly assumed that the k-th order approximant Yk( x) is a polynomial of degree k in x, 

9k(x)=cg+c1x+ **a ++xk. (6.1-3) 

For polynomials, the most natural extrapolation point is x = 0. Consequently, the interpola- 
tion points x, have to satisfy the conditions 

x0 > x1 > x2 > - * * > x, > x,+1 > * * * ’ 0, 

lim x, = 0. 
n+oO 

(6.1-4a) 

(6.1-4b) 

The choice x = 0 as the extrapolation point implies that the approximation to the limit is to be 
identified with the constant term c,, of the polynomial (6.1-3). 

Several different methods for the computation of interpolating polynomials 9”(x) are 
described in the mathematical literature. Since only the constant term of a polynomial 9” has to 
be computed and since in most applications it is desirable to compute simultaneously a whole 
string of approximants 9$(O), Y1(0), Y;(O), . . . , the most economical choice is Neville’s scheme 
[52] for the recursive computation of interpolating polynomials. In the case x = 0 Neville’s 
algorithm reduces to the following 2-dimensional linear recursive scheme (see p. 6 of ref. [20]): 

JGYS,, 4 = s,, nEN,, (6.1-5a) 

-GYl(s,, 4 = %JV^k(n+l)bn+l, x,+1) - Xn+k+lJYJ”)(s,, 4 
xn - xn+k+l 

, k, n E N,. (6.1-5b) 
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In the literature on convergence acceleration this variant of Neville’s recursive scheme is 
usually called Richardson extrapolation [53]. Obviously, the linear transformation JVJJ~)(S,,, x,) 
is exact if the sequence elements s, are polynomials of degree k in the interpolation points x,, 
i.e., for model sequences of the following type: 

k-l 

s,=s+ c cjx;+l, 
j=O 

k, n E IV,. (6.1-6) 

The most obvious interpolation points for the Richardson extrapolation scheme, eq. (6.1-5), 
are x, = l/(n + j?) with p > 0 or also x, = l/( 12 + /?)2. These two choices are known to work 
quite well in a variety of cases. However, if either one of these sets of interpolation points jxnD is 
used, the Richardson extrapolation scheme (6.1-5) is not regular, i.e., the convergence of a 
sequence (1~~1 to some limit s does not imply the convergence of the transformed sequence to the 
same limit. In Brezinski’s second book (see pp. 37-38 of ref. [20]) it is shown that the regularity 
of the Richardson extrapolation scheme is guaranteed only if some a > 1 exists such that the 
interpolation points (Ix, 1 satisfy for all n E N 0: 

x,/x,+~ 2 a. (6.1-7) 

This condition (6.1-7) is obviously fulfilled if the interpolation points axnD satisfy x, = b” with 
0 < b < 1 for all n E N,. A good discussion of the properties of the Richardson extrapolation 
scheme as well as a list of various different sets of interpolation points {xnD can be found in 
Brezinski’s second book (see pp. 36-42 of ref. [20]). 

It is well known that some functions can be approximated by polynomials only quite poorly 
but by rational functions they can be approximated very well. Consequently, it is likely that at 
least for some sequences (Is~D rational extrapolation will give better results than polynomial 
extrapolation. Let us therefore assume that the approximant Yk(x) can be written as the ratio of 
two polynomials of degrees 1 and m, respectively, 

%b> = 
a,+a,x+a2x2+ -** +a,x’ 

b, + b,x + b,x2 + . - - + bmx” ’ 
k, 1, mENo. (6.1-8) 

This rational function contains I+ m + 2 coefficients a,, . . . , a, and b,, . . . , b,. However, only 
1 + m + 1 coefficients are independent since they are determined only up to a common non- 
vanishing factor. Usually, one requires either b, = 1 or b, = 1. Consequently, the k + 1 interpola- 
tion conditions (6.1-2) will determine the coefficients a,, . . . , a, and b,, . . . , b, provided that 
k = 1+ m holds. 

The extrapolation point x = 0 is also the most obvious choice in the case of rational 
extrapolation. Extrapolation to x = 0 implies that the interpolation points jxnD have to satisfy 
eq. (6.1-4) and that the approximation to the limit is to be identified with the ratio a,/b, of the 
constant terms of the polynomials in eq. (6.1-8). 
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However, if in eq. (6.1-S) 1 = ppt holds, extrapolation to infinity is also possible. In that case the 
interpolation points (ixn/j would have to satisfy 

O<x,<x,<x,< **s (X,<X,+i< ***, 

lim x,= co. 
n-+03 

(6.1-9a) 

(6.1-9b) 

In the case of extrapolation to infinity only the coefficients a, and h, of the polynomials in eq. 
(6.1-Q which are proportional to highest power x’, contribute. Consequently, the approximation 
to the limit has to be identified with the ratio at/b,. 

As in the case of polynomial interpolation several different algorithms for the computation of 
rational interpolants are described in the literature. A discussion of the relative merits of these 
algorithms as well as a survey of the relevant literature can be found in chapter III of a book by 
Cuyt and Wuytack (541 which was recently published . 

6.2. Wynn’s rho algorithm 

Wynn’s p algorithm [25] is designed to compute even-order convergents of Thiele’s interpolat- 
ing continued fraction [55] and to extrapolate them to infinity. The even-order convergents are 
rational functions of the following type: 

&k(X) = 
UkXk + Qk__lX k-1 + . . * +a,x+a, 
b,xk + bk+xk--l + - - * -t- b,x + bO ’ 

kENo. (6.2-1) 

This means that the ratio a,/b, is to be identified with the approximation to the limit. 
According to Cuyt and Wuytack (see p. 214 of ref. [54]) Wynn’s p algorithm performs the 
imputation of the interpolating rational function (6.2-l) and its extrapolation to infinity with a 
smaller number of arithmetic operations than similar recursive algorithms. 

Wynn’s p algorithm [25] is the following nonlinear recursive scheme which is formally almost 
identical with Wynn’s E algorithm, eq. (4.2-l): 

pl_“{ =o, pP)=.sn, (6.2-2a) 

pk + * = pl”_tll) + (n) x,+F%+1- x, k, n f NO. 
Pk 

(n+U _ py’ ’ 

The only difference between Wynn’s t: and Wynn’s p algorithm is that the p algorithm also 
involves a sequence of inte~olation points (IxnD which have to satisfy eq. (6.1-9). As in the case 
of Wynn’s L: algorithm only the elements p’;;! with even orders serve as approximations to the 
limit. The elements p&)+X with odd orders are only auxiliary quantities which diverge if the 
whole process converges. 

Despite their formal similarity, the E and p ~go~t~ differ sig~ficantly in their ability of 
accelerating convergence. For instance, the e algorithm is exact for the model sequence (4.1-5), 
and is known to be a very efficient accelerator for linearly convergent sequences. In many cases 
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the E algorithm is also able to sum divergent series. However, the otherwise very powerful E 
algorithm fails to accelerate logarithmic convergence. 

The properties of Wynn’s E algorithm and Wynn’s p algorithm are in some sense complemen- 
tary. Wynn’s p algorithm fails to accelerate linear convergence and is not able to sum divergent 
series. However, it is very powerful for some logarithmically convergent sequences. This can 
easily be understood on the basis of the following model sequence for which the transform p$‘jj) is 
exact: 

sx,k+qp+ 0.. +a, 
s, = 

X,k+blx,k-l+ . . . +b, ’ kT nENoa (6.2-3) 

Since for fixed k E No the zeros of the numerator and denominator polynomials in eq. (6.2-3) 
are contained in a compact set and since the interpolation points {xnD diverge as n -+ co, at least 
for sufficiently large values of n a rational function of that kind will change only relatively 
slowly and monotoneously with increasing n. Certainly, such an expression will not oscillate or 
even diverge. This should explain why the p algorithm normally works well in the case of 
logarithmic convergence but fails in the case of oscillating or divergent sequences. 

The properties of Wynn’s p algorithm are discussed in books by Brezinski (see pp. 102-106 of 
ref. [19] and pp. 96-102 of ref. [20]) and Wimp (see pp. 168-169 of ref. [23]). In these books the 
connection of the p algorithm with interpolating continued fractions is emphasized and it is also 
shown that the transforms p&j can be represented as the ratio of two determinants. But 
otherwise, relatively little seems to be known about this sequence transformation. 

The most obvious interpolation points {xnD are x, = n + p with /3 > 0. With this choice, 
Wynn’s p algorithm assumes its standard form: 

py=o > pr,“‘=s n, (6.2-4a) 

ppJl = pl”_+l’) + 
k+l 

p(kn+l) - pp ’ 
k, CENT. 

Other possible sequences of interpolation points as for instance x, = (n + /3)’ with p > 0 are 
discussed in Brezinski’s second book [20]. 

As in Wynn’s e algorithm the approximation to the limit depends upon the index m of the last 
sequence element S, which was used in the recursion. If m is even, m = 2~~ our approximation 
to the limit of the sequence is the transformation 

{Q, x0; Sl, xl;-..;s2p, x2p) + PgL (6.2-5) 

and if m is odd, m = 2~ + 1, we use the transformation 

{Q, x1; 32, x2;...; S2p+l, x2p+l) --) PC. (6.2-6) 

With the help of the notation 1x1 for the integral part of X, i.e., the largest integer v satisfying 
v I X, these two relationships can be combined into a single equation yielding 

{%?z- 2[m/2], Xm--28m/2n; ~,-2[m/2n+l, %-2[m/2n+l; ... ; S??I? 4 
(m-2um/2n) 

+ PZbn/21 . (6.2-7) 
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The elements of the p table can be arranged in the same rectangular scheme as the elements of 
the c table in (4.3-l). Since the recurrence relationships for Wynn’s e algorithm and Wynn’s p 
algorithm are structurally identical, those elements of the p table which are connected by the 
4-term recurrence formula (6.2-2b), are also located in the p table at the vertices of a rhombus: 

PP 

Pln_+ll) Pk 
(n+l) 

(6.2-8) 

Consequently, Wynn’s p algorithm can be programmed in exactly the same way as Wynn’s e 
algorithm. For that purpose we rewrite the recursive scheme (6.2-2) in the following way: 

p$ks 
n, n 2 0, 

(n-1) = xn - xn-1 
Pl s n -s,_1 ’ 

n2 1, 

p!n-j) = p(l;j+l) + xn 

- Xn-j 

J J (n-j+l) _ p(l;j) ’ 
n22, 2IjIn. 

Pj-l 

(6.2-9a) 

(6.2-9b) 

(6.2-9~) 

As in the case of the E algorithm the modification (4.3-9) of Wynn’s moving lozenge technique 
(4.3-8) can be used. This means that only a single l-dimensional array R will be needed if the 
elements of the current counterdiagonal pj”-j) with HEN, and O<j<m are storedin R in 
such a way that the superscript of the element of the p table coincides with the index of the 
corresponding array element, 

pj(“-j) + R(m -j). (6.2-10) 

The only difference with Wynn’s E algorithm is that also a second l-dimensional array 5 will 
be needed in which the interpolation points x, are stored according to the rule 

x, + t(n). (6.2-11) 

With these two conventions the recursive scheme (6.2-9) can be reformulated in terms of the 
elements of the l-dimensional arrays R and 5, 

R(n) + s,, n > 0, (6.2-12a) 

-34 - t(n - 1) 
Rb - ‘) + R(n) _ R’(n _ 1) ’ n 2 1, 

R(n -j) +- R’(n -j + 1) + 5(n) - i(n -j) 
R(n-j+l)-R’(n-j)’ 

(6.2-12b) 

n 2 2, 2Ijrn. (6.2-12~) 

As in the case of Wynn’s e algorithm, the primed array elements R’( n -j) and R’( n -j + 1) 
have to be stored in auxiliary variables. The primes also indicate that the array elements 
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R’( n -j) and R’(n -j + 1) refer to the occupation of R after the previous run, i.e., after the 
computation of the counterdiagonal #-j-i with 0 <j I n - 1. The listings of some FORTRAN 
IV programs, which compute Wynn’s p algorithm, can be found in Brezinski’s second book (see 
pp. 361-365 of ref. [20]). 

6.3. The iteration of Wynn’s rho algorithm 

According to eq. (5.1-5), Aitken’s A2 process is identical with the transform ep’, 

&{“’ = s, - 

If Aitken’s A* 

P%l’ _ (n) 

-&7* ’ 
nENO. (6.3-l) 

process is iterated, a new sequence transformation M’,$~) results which has a 
similiar ability of accelerating convergence as Wynn’s e algorithm. However, in section 13 we 
shall encounter some examples in which Aitken’s iterated A2 process clearly outperforms Wynn’s 
c algorithm. This alone should justify an analysis of Aitken’s iterated A2 transformation &in). 

Since Wynn’s e algorithm (4.2-l) and Wynn’s p algorithm (6.2-2) are formally almost 
identical, one can construct a new sequence transformation by proceeding as in the case of 
Aitken’s iterated A2 process. This means that first the transform pp’ is expressed in terms of 
some sequence elements s, and interpolation points x, The resulting expression for py) will then 
be iterated. 

From eqs. (6.2-2a) and (6.2-2b) we obtain the following expression for the p analogue of 
Aitken’s A* process: 

pp = s,+1+ 
(X n+2 - X,)[A~n+ll P%l 

[ Ax,,,] [As,] - [Axn][Asn+~] ’ n E No’ 
(6.3-2) 

An iteration of this expression, which may be considered to be a kind of weighted A2 process, 
can be done in a variety of ways. The problem is that there is no unique way of choosing the 
indices of the interpolation points x,. However, if we take into account that in Wynn’s p 
algorithm, eq. (6.2-2), the differences of the indices of the interpolation points x, increase with 
increasing k, we see that the following nonlinear recursive scheme should be the most natural 
iteration of the transform (6.3-2): 

yjqn) = s 
n, HEN,, (6.3-3a) 

yjq;: = yfq”+l) + b n+2k+2 - xJ[ AYT-~~+')] [ A-wk'"'] 

(X n+2k+2 - x,+1 )[A-wk’“‘] - cXn+2k+l - X,)[A”Wk(n+l)] ’ 

k, n E No. (6.3-3b) 

As usual it is assumed that the difference operator A acts upon n and not upon k. The most 
obvious interpolation points are as in Wynn’s p algorithm x, = n + p with p > 0. With this 
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choice, the iterated p2 transformation assumes its standard form: 

Wo(“’ = s 
n, nEf+J,, (6.3-4a) 

_wg’, = _wp+u - (2k + 2)[A-w,‘“+“] [AWL”‘] , 

(2k + l)A2W’;“) 

k n E ~ 

’ ‘* 
(6.3-4b) 

The table of this transformation can be arranged in the same rectangular scheme as the Aitken 
table (5.2-l). Also, the recurrence formulas for Aitken’s iterated A2 process, eq. (5.1-14), and the 
recurrence formulas for the transforms -Wi”’ are structurally identical. This implies that the four 
elements, which are connected by the nonlinear recurrence formulas (4.3-2) or (4.3-3), also form 
a pattern in the W table which looks like the move of a knight on the chessboard: 

-wp %% 
$7-p+u (6.3-5) 

#/-Ln+2) 

Consequently, this iterated p2 process can be programmed in exactly the same way as Aitken’s 
iterated A2 process and only a few minor alterations have to be done in the subroutine AITKEN. 
In this context, it is advantageous to reformulate the recurrence scheme (6.3-4) in the following 
way: 

n 2 0, (6.3-6a) 

w,(n-2.j) = w(n--2j+l) + 
(xn - ~~_~~)[Aqi;-~j+l)] [AWj?c2"] 

J j-l 
(x, -x,_~~+~)[A~!!‘;‘~‘] - (x,_~ -~~_~~)[dWj?;‘j+~)] ’ 

n22, lIjIII:n/2]1. (6.3-6b) 

As usual, [n/21 stands for the integral part of n/2, i.e., the largest integer v satisfying 
v I n/2. If the sequence elements so, si, . . . , s, are used as starting values, the recursive scheme 
(6.3-6) is able to compute all elements qcPP2j) with 0 < p I m and 0 ~j I l[p/2]1. 

As in the case of Aitken’s iterated A2 process the approximation to the limit depends upon the 
index m of the last sequence element s, which was used in the recursion. If m is even, m = 2~., 
our approximations to the limit of the sequence are the transformations 

{so, x0; .Q, x1; . . . . fzp, x2p} +qO), (6.3-7) 

and if m is odd, m = 2~ + 1, the approximation to the limit will be 

($9 x1; $2, x2;*.., S2llf1, xzp+l) -q?). (6.3-8) 

These two relationships can be combined into a single equation, 

bm-2nm,2p7 ~,-2~,/21; 5n-2nm/21+1, ~,,-2[m/21+1; . . . . s,, xm} + wf:/$8m’21). (6.3-9) 
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Only two l-dimensional arrays w and 5 are needed if the interpolation points x, are stored in 
6 according to eq. (6.2-11) and if the elements win) are stored in w according to the following 
rule: 

-rcc,l;;;’ - w(n - v), n20, Olvln. (6.3-10) 

With this convention the recursive scheme (6.3-6) can be reformulated in terms of the elements 
of the l-dimensional arrays w and 5: 

n 20, (6.3-lla) 

w(l) + w(z+ 1) + [W - 5u + 1>1 PwU + I>1 PwU)l 

[E(n) - ((I + l)] [Aw(l)l - [t(n - 1) - <(/)I [Aw(l+ l)] ’ 

l=n-2j, n 2 2, 1 rjIBn/211. (6.3-llb) 

7. The Levin transformation 

7.1. The derivation of Levin’s sequence transformation 

Levin’s sequence transformation [28] is designed to be exact for model sequences of the 
following type: 

k-l 

s, = s + w, c cj/(n + p )‘, k, HEN,. (7.1-1) 
j=O 

Here, the remainder estimates w, are essentially arbitrary functions of n. It is only assumed 
that they are different from zero for all finite values of n. In addition, it would not make much 
sense to consider in convergence acceleration and summation processes remainder estimates 
which are constant. Consequently, we shall also assume that for all finite values of n the 
elements of the sequence (IanD are all distinct. Depending upon the behaviour of the remainder 
estimates {tin) as n + cc, the sequence {snD may either converge or diverge. In eq. (7.1-1) it has 
to be required that p + n must not be zero. This implies that the parameter /3 must not be zero 
or a negative integer. However, the elements of the model sequence (7.1-1) will serve as finite 
approximations to Poincare-type asymptotic expansions of the following kind: 

S n -S++w, 5 cj/(n+P)'T n-co. (7.1-2) 
j=O 

In expansions of that kind .negative values of p will lead to different signs of the terms if 
either n + p < 0 or n + /3 > 0 holds. Since model sequences of the type of eq. (7.1-1) will be used 
as approximations for asymptotic expansions of the above type and since these approximations 
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should be uniformly valid over a wide range of admissible values of n - preferably for all n 2 0 
- it is necessary to require that the sign pattern of the terms of the sum in eq. (7.1-l) must not 
depend upon n. This rules out p < 0 and we have to require p > 0. But otherwise, the parameter 
p is in principle completely arbitrary. In the literature on Levin’s sequence transformation, only 
the case p = 1, which is the most obvious choice, has been considered so far. 

In eq. (7.1-l) there occur k + 1 unknown quantities, the limit or antilimit s and the k linear 
coefficients cO, . . . , ck _ 1. Hence, k + 1 sequence elements s,, . . . , s, +k are needed for the de- 
termination of s, and according to Cramer’s rule the general Levin transformation Pi”‘(j3, s,, 
w”) can be defined by the following ratio of determinants: 

. . . 

. . . 

s n+k 

0 n+k 

_.,..\ I _ 
t.d,/(P + ny ‘G+k/(P + n + k)k-’ \ 

1 
% 

. . . 

. . . 
1 

w ntk 

o,/(~+ny . . . 0 n+k/(P+“+k)k-ll 

(7.1-3) 

If the sequence elements s,, s,+ 1,. . . , s,,+k satisfy eq. (7.1-1) then Levin’s general sequence 
transformation is exact by construction, i.e., 

9pyp, s,, WJ = s. (7.1-4) 

The representation of the general Levin transformation as the ratio of two determinants is not 
well suited for practical applications because the fast and reliable evaluation of large order 
determinants is a not yet satisfactorily solved problem of numerical analysis. Thus, alternative 
expressions for the general Levin transformation are highly desirable. Fortunately, they can be 
derived quite easily. 

Levin’s original derivation [28] of nondeterminantal expressions for his sequence transforma- 
tion was based upon the observation that the determinants in eq. (7.1-3) may be expressed in 
terms of Vandermonde determinants. However, for our purposes it is advantageous to follow 
Sidi’s approach [56] which exploits properties of the difference operator A, since this approach 
can easily be extended to other sequence transformations which will be treated later in this 
report. For that purpose, eq. (7.1-1) is rewritten in the following way: 

k-l 

(n + /qk-+, -s]/wn = c c,(n + p)k-j-1. 

j=O 

(7.1-5) 

The highest power of n, which occurs on the right-hand side of eq. (7.1-5), is n k- ‘. We now 
utilize the well-known fact that any polynomial of degree k - 1 in n will be annihilated by the 
difference operator A k. Since the difference operator Ak is linear, we may conclude from eqs. 
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(7.1-4) and (7.1-5) that the general Levin transformation @“)(p, s,, w,) is given by the 
following ratio: 

~fw, s,, %J = 
A”( (n +.P)k-l~,/~,) 
A“{(n + p)“-‘/tin) . 

(7.1-6) 

With the help of eq. (2.4-8) the action of the difference operators in eq. (7.1-6) can be 
expressed in closed form. This leads to a representation of the general Levin transformation as 
the ratio of two finite sums: 

k, n E No. (7.1-7) 

The common factor (/3 + n + Ic)~-’ in eq. (7.1-7) was introduced in order to decrease the 
magnitude of the terms of the numerator and denominator sums, because otherwise overflow 
may happen too easily for larger values of k. 

A mild extension of the general Levin transformation, eq. (7.1-7) will also be considered: 

k, 1, rz~R4~. (7.1-8) 

For 1= 0 this transformation reduces to the general Levin transformation, eq. (7.1-7). An 
alternative representation for this generalization of Levin’s sequence transformation can be 
derived with the help of eq. (2.4-8), 

~j$‘(P, s,, %J = 
A"( (n + j3)k-‘-*~,/~,J 

A”( (n + P)k-‘-‘/~n) . 
(7.1-9) 

This relationship implies that this generalization of Levin’s sequence transformation is exact 
for sequences of the following type: 

k-l 

s,=s+ (P+n) tan C cj/(P + n>j, k, 1, n E No. 

j=O 

(7.1-10) 



E.J. Weniger / Nonlinear sequence transformations 239 

7.2. Recursive computation of the Levin transformation 

Another advantage of Sidi’s approach [56] for the derivation of nondeterminantal expressions 
for Levin’s sequence transformation is that starting from eq. (7.1-6) Fessler, Ford, and Smith [57] 
could derive a recursive scheme which allows a convenient computation of both the numerator 
and the denominator of the general Levin transformation, eq. (7.1-7). In eq. (7.1-6) both 
numerator and denominator are of the general form 

Pi”‘(p) = A"Xjn)( ,8), k, n E N,,. (7.2-l) 

As usual, it is assumed here that the difference operator A as well as the shift operator E, 
which is defined in eq. (2.4-4), act only upon n and not upon k. Comparison with eq. (7.1-6) 
shows that the quantities Xi”‘(p) satisfy the following 2-term recursion in k: 

ew = (P + ~>Xp,(p), k>l, n>o. (7.2-2) 

The following commutator relationship can be proved by complete induction with respect to k 

[571, 

A”(p+n) - (p+n)Ak=kEAk-I. (7.2-3) 

Combination of eqs. (2.4-4), (7.2-l), (7.2-2), and (7.2-3) yields: 

P,‘“‘(p) = { kE + (j3 + n)A}A”-‘X~?&3) (7.2-4) 

= { kE + (p + n)A}P,!!)i(p) 

= (p + n + k)Pi”fl’(p) - (p + 

With the help of the 3-term recurrence 

(7.2-5) 

+Pi(P>. (7.2-6) 

formula (7.2-6) the numerator as well as the I \ 
denominator of the general Levin transformation P,JnJ( p, s,, wn) can be computed for k 2 1. 

However, for the sake of numerical stability and in order to make overflow less likely it is 
preferable to scale the quantities Pi”)(p) by defining 

L~‘(j3)=P~“‘(B)/(P+n+k)? (7.2-7) 

Inserting this into eq. (7.2-6) yields the following 3-term recurrence formula for the scaled 
quantities Lp)( p) : 

Ly(p) = @+1’(p) _ (P + 43 + n + @-’ Lp(p), 

(/?+n+k+l)k 
k, HEN,. 

If we use the starting values 

(7.2-8) 

4?(P) = S,/% > nENO> (7.2-9) 
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the recurrence formula (7.2-8) produces the numerator of the general Levin transformation, eq. 
(7.1-7) and if we use the starting values 

we obtain the denominator of the general Levin transformation. 
With the help of the 3-term recurrence formula (7.2-8) it is also possible to compute both the 

numerator and the denominator of the generalized Levin transformation, eq. (7.1-8). If the 
starting values 

(7.241) 

are used, eq. (7.2-8) produces the numerator of the transformation (7.1-g), and the starting values 

(7.2-12) 

produce the denominator of the transformation (7.1-8). 
The 3-term recurrence formula (7.2-6) was according to the knowledge of the author first 

published by Longman [58]. However, Longman’s derivation of the recurrence formula (7.2-6) is 
based upon Sister Celine’s technique [59] and not on properties of the difference operator A as 
the derivation by Fessler, Ford, and Smith [57]. 

7.3. Remainder estimates for the Levin transformation 

Until now, we have completely ignored the sequence awn) of remainder estimates and its r61e 
in the process of convergence acceleration or summation. In order to deal with this question we 
take into account that the elements of the model sequence (7.1-l), for which the general Levin 
transformation is exact, can be obtained from the elements of the sequence (7.1-2) by truncating 
the asymptotic power series in l/( j3 + n) after the first k terms. 

This indicates that the Levin transformation (7.1-7) should work very well for a given sequence 
(1,~~ 1 if the sequence jjw, 1 of remainder estimates is chosen in such a way that o, is proportional 
to the dominant term of an asymptotic expansion of the remainder rn, 

r,=s,-s==w,[C+O(n-‘)], n -+ 00. (7.3-l) 

Now, one is confronted with the practical problem of finding such a sequence awn) of 
remainder estimates for a given sequence $s,,D. Here, it must be emphasized that a sequence awnI 
of remainder estimates is not determined uniquely by the asymptotic condition (7.3-l). Conse- 
quently, it should at least in principle always be possible to find a variety of different sequences 
of remainder estimates which all satisfy eq. (7.3-l). 

In some exceptional cases it is possible to derive explicit analytical expressions for the 
remainder estimates o, which satisfy eq. (7.3-l) - for instance if the s, are partial sums of a 
series and if the series terms ak have a sufficiently simple analytical structure. If such an explicit 
expression for w, is used in eq. (7.1-7), the general Levin transformation is a linear sequence 
transformation. 
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However, in most practical applications no information about the analytical structure of the 
sequence of remainders {rnD will be available and only the numerical values of a relatively small 
number of sequence elements s,, s,+~, . . . , s,+, will be known. Consequently, it is necessary to 

find a way of obtaining the sequence of remainder estimates 4~~1 directly from the numerical 
values of the elements of the sequence &rnD. If such a sequence of remainder estimates is used in 
eq. (7.1-7), the Levin transformation is a nonlinear sequence transformation because each 
remainder estimate U, depends explicitly upon at least one element of &s,D. 

On the basis of purely heuristic arguments Levin [28] suggested for sequences of partial sums 

n 

s,= C a,, nENo, 
e=O 

(7.3-2) 

some simple remainder estimates which according to experience nevertheless work remarkably 
well. In the case of logarithmic convergence, i.e., if the elements of the sequence of par 

s, satisfy 

s 
lim n+l 

--s 
= 1, 

n+oO s,-s 

Levin [28] suggested the remainder estimate 

a,= (P+n)a,, TZEN(,. 

The use of this remainder estimate in eq. (7.1-7) yields Levin’s u transformation: 

In the case of alternating series Levin [28] suggested the remainder estimate 

This gives Levin’s t transformation: 

,tial sums 

(7.3-3) 

(7.3-4) 

(7.3-5) 

(7.3-6) 

(7.3-7) 
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However, Smith and Ford [29] rightly remarked that the best simple remainder estimate for a 
convergent series with strictly alternating terms a, would be 

% = a,+,, rzEN(). (7.3-8) 

Using this in eq. (7.1-7) gives Smith and Ford’s [29] modification of Levin’s t transformation: 

@‘(A 4 = 

As a third simple remainder estimate Levin [28] suggested 

anan+ 
cd” = 

a, - a,+1 ’ 
nEN(,. 

(7.3-9) 

(7.3-10) 

Comparison with eq. (5.1-6) shows that this remainder estimate is based upon Aitken’s A2 
process. It gives Levin’s u transformation: 

(7.3-11) 

The remainder estimates (7.3-4), (7.3-6), (7.3-8), and (7.3-10) can also be used if the sequence 
4.~~1, which is to be transformed, is not a sequence of partial sums. It is only necessary to replace 
in eqs. (7.3-5), (7.3-7), (7.3-g), and (7.3-11) a, by s0 and a, with n 2 1 by As,_i. 

Levin’s remainder estimates (7.3-4), (7.3-6), and (7.3-10) as well as Smith and Ford’s modifica- 
tion (7.3-8) were derived using simple heuristic arguments. However, experience indicates that 
these remainder estimates nevertheless give rise to very powerful sequence transformations 
[29,30,57,60-641. 

In some cases a more rigorous derivation of the remainder estimates mentioned above can be 
given. For instance, in Wimp’s book (see p. 19 of ref. [23]) it is shown that if the terms a, of a 
series satisfy 

a,-X”n Q 1 ao+a,+?+ . . . i ) n+co, 
n 

(7.3-12) 

with (Ye # 0, then there exist constants pi and yj such that the remainders r, of the partial sums 
of this series satisfy 

(7.3-13) 
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if IXI<l, and 

(7.3-14) 

if X = 1 and Re( 0) < 1. 
A comparison of eqs. (7.3-12) and (7.3-13) gives us essentially the remainder estimate (7.3-6) 

which leads to the t transformation, eq. (7.3-7), and a comparison of eqs. (7.3-12) and (7.3-14) 
gives us essentially the remainder estimate (7.3-4) which leads to the u transformation, eq. 

(7.3-5). 
If we replace in the model sequence (6.1-6), for which the Richardson extrapolation scheme, 

eq. (6.1-5), is exact, x, by l/(n + p), we obtain the model sequence 

k-l 

s, = s + c Cj/( n + B)j+l, k, n E No. (7.3-15) 
j=O 

This model sequence can be obtained from the model sequence (7.1-2), for which Levin’s 
sequence transformation, eq. (7.1-7) is exact, by choosing w, = l/( n + /3). Hence, if we define 

$yp, SJ ==qy’(P, s,, l/b +P)>, k, n E No, (7.3-16) 

we see that that the sequence transformation A(,“‘(fi, sn) is obviously exact for the model 
sequence (7.3-15). If we now use eq. (7.1-6), we see that the transformation A(,“)(/3, s,) satisfies 

pl)(p,s ) - Ak((n + p)“4 
k n 

Ak(n+P)k ’ 
k, n E No. (7.3-17) 

The denominator in eq. (7.3-17) can be expressed in closed form. If we use (see p. 4 of ref. 

[651) 

i w( g(P +.+j)k=(-l)kk!, k, n E No, (7.3-18) 
j=O 

together with eq. (2.4-S), we find: 

Ak(n + /3)k = k!. (7.3-19) 

Combination of eqs. (7.3-17) and (7.3-19) with eq. (2.4-8) gives us an explicit expression for 
this sequence transformation: 

A’,“‘(/% 4 = (-I)~; (-l)i(~,;k”-:;jks”+j, k, n EN,. 
j=O 

(7.3-20) 



244 E.J. Weniger / Nonlinear sequence transformations 

If we combine eq. (7.2-6) with eqs. (7.3-17) and (7.3-19), we can derive the following recursive 
scheme for the sequence transformation Ay)( p, s,): 

&w, SJ = s,, nENo, (7.3-21a) 

(7.3-21b) 

This recursive scheme for the sequence transformation Ay)(P, s,) corresponds to the special 
case x, = l/( j3 + n) in the recursive scheme (6.1-5) which computes the Richardson extrapola- 
tion scheme with arbitrary interpolation points 4~~1. 

A more complete discussion of the properties of the linear but nonregular sequence transfor- 
mation A(,“‘(P, sn) can be found in articles by Salzer [66, 671, Salzer and Kimbro [68], and Wimp 
[69] as well as in Wimp’s book (see pp. 35-38 of ref. [23]). 

The sequence transformations up’(p, So), eq. (7.3-5), and tp’(P, s,), eq. (7.3-7), require the 
sequence elements se-l, s,,, s,+1,. . ., s,+k for their computation, whereas dp’( p, sn), eq. (7.3-9), 
requires the sequence elements s,, s, + 1,. . . , s, +k+ 1. Hence, they are all transformations of order 

k + 1. The sequence transformation ur’( p, s,,), eq. (7.3-ll), requires the sequence elements s,_~, 
s s n+l>“‘, sn+k+l which implies that it is a transformation of order k + 2. The linear sequence 

tiinsformation A’,“‘( fi, s,), eq. (7.3-20), requires the sequence elements s,, s,+~, . . . , s,+~, i.e., it 
is a transformation of order k. 

The situation is somewhat different if the transforms with superscript n = 0 are computed 
because then ui”(p, so) and ti”(P, so) are transformations of order k, whereas dL’)( p, so) and 
u$( p, so) are transformations of order k + 1. 

7.4. Sidi’s generalization of Levin’s sequence transformation 

As discussed in section 6.1, the Richardson extrapolation scheme, eq. (6.1-5), is exact for 
model sequences of the following type: 

k-l 

s, = s + c ,.x;+1, 

j=O 

k, n E No. (7.4-1) 

The interpolation points {xnD have to satisfy eq. (6.1-4). Very natural interpolation points for 
the Richardson extrapolation scheme are x, = l/( n + p) with j3 > 0. If this set of extrapolation 
points is used in eq. (7.4-l) we obtain the model sequence (7.3-15) for which the sequence 
transformation A(,“‘(P, s,), eq. (7.3-17), is exact. This implies that the Richardson extrapolation 
scheme (6.1-5) with the interpolation points x, = l/( n + p) is a special case of Levin’s sequence 

transformation with w, = l/( n + p). 
However, the Richardson extrapolation scheme is also in some sense more general than 

Levin’s sequence transformation since the interpolation points QxnD only have to satisfy eq. 
(6.1-4) but otherwise they are completely arbitrary. In Levin’s sequence transformation it is 
tacitly assumed that the interpolation points jxnD always satisfy x, = l/( n + /3) with p > 0. 

Now, one can try to construct a sequence transformation which combines the advantageous 
features of the Levin transformation and the Richardson extrapolation scheme. This was 
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accomplished by Sidi [70] who constructed a sequence transformation, which he called gener- 
alized Richardson extrapolation process, on the basis of the following model sequence: 

k-l 

s,=s+w, c cjx;, k, n E IV,. (7.4-2) 
j=O 

This model sequence combines the features of the model sequence (7.4-l) for the Richardson 
extrapolation scheme, eq. (&l-5), since it contains arbitrary interpolation points {xnD, and of the 
model sequence (7.1-1) for the Levin transformation, eq. (7.1-7), since it contains arbitrary 
remainder estimates awn D. 

For the construction of such a sequence transformation, which is exact for the above model 
sequence, eq. (7.4-2) is rewritten in the following way: 

k-l 

[sn - s]/w, = c c,xi. (7.4-3) 
j=O 

Obviously, the right-hand side of eq. (7.4-3) is a polynomial of degree k - 1 in the variable x,. 
Hence, the limit or antilimit s of this sequence can be determined if a linear operator can be 
found which annihilates the polynomial on the right-hand side of eq. (7.4-3). 

This annihilation of a polynomial can be accomplished with the help of divided differences 
which for instance occur in Newton’s interpolation formula. A discussion of divided differences 
and their properties can be found in any book on numerical analysis or also in books on finite 
differences such as Norlund [71] or Milne-Thomson [72]. 

Let {x,1 with n E fW, be a set of distinct interpolation points. Then the divided differences of 
ordersO,l,..., k, k+l,... of a given function f are defined recursively by the relations 

f [xJ =f (x,), (7.4-4a) 

k, n E N,. (7.4-4b) 

The divided differences f [ x, , . . . , x, + k] can also be expressed in closed form: 

f[x n,“‘, x,+/c] = Cf(xn+j)lfiO ,,+,‘, 3 k, n E NO. 
j=O / n+i 

i#j 

(7.4-5) 

It follows either from this expression or from the recursive scheme (7.4-4) that the divided 
differences f [x,, . . . , x,+~] are linear functions of the initial values f(x,), . . . , f (x,+k). In 
addition, it can be shown that if p,(x) is a polynomial of degree m in x, 

p,(x) = CO + clx + c2x2 + . * - +c,xm, (7.4-6) 

then all its divided differences with k > m satisfy 

&[X,,,--0, x,+k] =o, k>m. (7.4-7) 
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The divided differences f[x,, . . . , x,+~ ] with k, n E N, can be identified with the elements 
At)(f) of a 2-dimensional rectangular array. With this convention, the recursive scheme (7.4-4) 
for the computation of the divided differences of a given function f can be rewritten in the 
following way: 

4?(f) =fb,), nEf+-J,, (7.4-8a) 

A%(f) = 
At+‘)(f) -At)(f) 

7 x k, n E N,. 
n+k+l - xn 

(7.4-8b) 

If we assume that two functions Y(x) and a(x) of a continuous variable x exist, which 
coincide at the interpolation points x, with s, and w,, respectively, 

+4 = s,, wx,> = a,, (7.4-9) 

and which satisfy 

k-l 

(7.4-10) 

we see that we only have to compute the divided difference of order k for the left-hand side of 
eq. (7.4-10) at the interpolation points x,, . . . , xntk in order to obtain the limit or antilimit s. 
Hence, Sidi’s generalized Richardson extrapolation process Bj”‘(s,, w,, xn) can be defined in 
terms of divided differences in the following way: 

9pc%, a,, xn> = { ~“(x)/~2(x))[x,~-~ xn+k] 

{l/n(x))[xn~*--~ xn+k] ’ 
k, n E IA,. (7.4-11) 

It follows from eq. (7.4-8) that both numerator and denominator of this transformation can be 
computed with the help of the same 3-term recurrence formula: 

(7.4-12) 

If we use in eq. (7.4-12) the starting values 

Rb"' = s,/w,, nEN(,, (7.4-13) 

we obtain the numerator of Sidi’s generalized Richardson extrapolation process, eq. (7.4-11) and 
if we use the starting values 

Rb”’ = l/w,, , nEN,, (7.4-14) 

we obtain the denominator in eq. (7.4-11). 
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Obviously, the Richardson extrapolation scheme (6.1-5) is a special case of Sidi’s generalized 
Richardson extrapolation process .%‘i”)( s,, w,, x,,). To see this one only has to specialize 
a(x) = x in eq. (7.4-11) which also implies w, = x,. 

With this specialization, the Richardson extrapolation scheme (6.1-5) follows from eqs. 
(7.4-11) and (7.4-12). It is only necessary to compute the divided differences for l/x at the 
interpolation points which can be done quite easily. The result is (see p. 8 of ref. [72]): 

n,---, x,+k] = x (-Qk . . . . 
n 

x 
n+k 

This implies that for w, = x, the denominator of the 
process 9~“‘(s w n, n, x,) can be expressed in closed form. 

Rb")=s,/x,, 

(7.4-15) 

generalized Richardson extrapolation 
If we now set 

(7.4-16) 

and 

N;“‘=(- l)kX, --* X,+kR(kn), k, n~Nc,, (7.4-17) 

we immediately obtain from eqs. (7.4-11) and (7.4-12) the Richardson extrapolation scheme, eq. 
(6.1-5). 

Further generalizations of Sidi’s generalized Richardson extrapolation are possible. For 
instance, let us consider the following model sequence: 

m, n, k,E N,. (7.4-18) 
p=o j=O 

This model sequence contains m + 1 different sets of remainder estimates {u~~‘~, . . . , @A”)D. If 
we set m = 0 in eq. (7.4-18), we obtain the model sequence (7.4-2) as a special case. 

Sidi [73] constructed a sequence transformation which is exact for the above model sequence. 
Originally, this sequence transformation was defined as the ratio of determinants, which is 
computationally quite unattractive. But recently, Ford and Sidi [74] could derive an algorithm 
which permits a recursive computation of Sidi’s sequence transformation. 

From Sidi’s very general sequence transformation [73], which is exact for the model sequence 
(7.4-18), other sequence transformations can be obtained by specializing the interpolation points 
ax,,D. For instance, in earlier articles Levin and Sidi [75,76] had chosen the interpolation points 
according to the rule x, = l/( n + 1) and had obtained a generalization of Levin’s sequence 
transformation with several sets of remainder estimates. 

The typical feature of these sequence transformations is that they involve several sets of 
remainder estimates {u~~)~ , . . . ,@o~~‘). Consequently, it is to be expected that these sequence 
transformations should be particularly powerful if sequences are to be accelerated which are 
superpositions of sequences with different convergence types. The numerical examples presented 
in the literature [74-761 confirm this opinion and it seems that the sequence transformations, 
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which are based upon variants of the model sequence (7.4-18), are able to accelerate convergence 
even in cases in which other transformations fail. 

The power of these transformations stems from the occurrence of several different sets of 
remainder estimates. This is at the same time also the major disadvantage of these transforma- 
tions. This may sound paradoxical. However, one should take into consideration that the 
popularity and the success of Levin’s sequence transformation, eq. (7.1-7), is largely due to the 
fact that the simple remainder estimates (7.3-4) (7.3-6) (7.3-8), and (7.3-10) work remarkably 
well even in situations in which only the numerical values of a relatively small number of 
sequence elements sm, . . . , s,+! are known. If we would try to use in such a situation a sequence 
transformation, which is based upon a variant of the model sequence (7.4-18), we would first 
have to find a way of determining numerically more than a single set of remainder estimates. 
Unfortunately, no simple and manageable theory is in sight which would yield more than a single 
set of remainder estimates if only the numerical values of a few sequence elements are known. 

Consequently, if little or no information about the analytical behaviour of the remainders {rnD 
is available and if only a relatively small number of sequence elements s, , . . . , s, + I are known, it 
is normally not possible to use sequence transformations, which are based upon a variant of the 
model sequence (7.4-l@, although they are potentially very powerful. The reason is that such a 
sequence transformation has too many degrees of freedom since it requires the input of m + 1 
different sets of remainder estimates {wp)b,. . . ,{wim)) as well as a set of interpolation points 

&J* 
In such a situation, one is more or less forced to use a simpler and probably also less efficient 

sequence transformation which, however, does not require such a detailed knowledge about the 
sequence to be transformed. 

7.5. Programming the Levin transformation 

In this section it will be discussed how the general Levin transformation (7.1-7) and its 
variants (7.1-8), (7.3-5), (7.3-7), (7.3-9), and (7.3-11) can be programmed efficiently. It is a typical 
feature of the general Levin transformation Z$“‘( p, s,, an) and its variants that they can all be 
expressed as the ratio of two finite sums and that both the numerator and the denominator sum 
can be computed by the same 3-term recursion (7.2-8). 

Consequently, a program for the general Levin transformation or any of its variants has to 
compute simultaneously the numerator and denominator sums of the transformation. In the case 
of the general Levin transformation a program requires not only the input of the sequence 
elements s,, but also the remainder estimates w,. But otherwise, such a program should have 
essentially the same features as the subroutines EPSAL and AITKEN, which were described in 
sections 4.3 and 5.2, respectively. 

This means that such a program for the general Levin transformation should read in the 
sequence elements so, si,. . . , s,, . . . and remainder estimates wo, wi,. . . , a,, . . . successively, 
starting with so and wo. After the input of each new pair s, and w, as many new numerator and 
denominator sums of the Levin transformation (7.1-7) or its variants should be computed as 
possible. 

The elements L’,“)( /3) which either represent numerators or denominators of the general 
Levin transformation and which are computed with the help of the 3-term recurrence formula 
(7.2-8) can be arranged in a rectangular scheme in such a way that the superscript n indicates 
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the row and the subscript k the column of the 2-dimensional array: 
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@‘(/3) L$O’(P) L’,O’(P) . . . LLO’(P) . . . 

L!‘(P) L’,“(P) Q’(P) . . . LLl’(P) . . . 

Lb2’( p) L’:‘(P) L$*‘(p) . . . L:*‘(p) . . . 

Lay p> lq3’( p) L4’( p) . . . lQ3’(P) . . . (7.5-l) 

. . 
. . 

Lp(p) q)(p) i:“‘@) . . . Q)(p) ..: 

. . 
. . 

The entries in the first column of the array are the starting values of the recursion. If the 
starting values Lg’( p) are chosen according to eq. (7.2-9), the 3-term recurrence formula (7.2-S) 
will produce a table Lp’(p) of numerators of the general Levin transformation, and if the 
starting values are chosen according to eq. (7.2-lo), a table of denominators will be computed. 
The 3 elements, which are connected by the linear 3-term recursion (7.2-S), form a triangle in the 
Levin table: 

LP(P) Q%(P) 

Lp+"(p) 
(7.5-2) 

This pattern implies that the recursion (7.2-8) has to proceed along counterdiagonals in the 
Levin table. Consequently, it 
following way: 

q-“(p) = L;.?,‘+“(p) 

is advantageous to rewrite the recurrence formula (7.2-8) in the 

_ (~-l-~-j)(/3+n-l)i-2 

(p+?z)j-' 
Lyyyp), 

(7.5-3) 

It also follows from the triangular structure of this recursion that the sequence elements so, 

Sl,...,S, and the remainder estimates wo, wr, . . . , o, have to be known for the computation of 

all elements Lp-") with 0 I n I m and 0 I Y I n of the numerator and denominator tables. 
Since the transforms with the highest values of the subscript normally give the best results, our 
approximation to the limit s of the sequence @,I to be transformed will be: 

{so, “0; Sl, q;. . .; s,, a,> +~$“‘(A so, q), PZEN,. (7-5.4) 

Essentially this means that we shall use the following sequence of Levin transforms with 
minimal superscripts and maximal subscripts as approximations to the limit s: 

=zJO’(P, so, wo), ~JO’(P, so, a&.., z;O’(P, so, wg), a.* . (7.5-5) 



250 E.J. Weniger / Nonlinear sequence transformations 

Because of the triangular structure (7.5-2) of the recurrence formula (7.5-3) and since the 
computation proceeds along a counterdiagonal of the Levin table, a single l-dimensional array 
will be sufficient for the computation of the L:."-j'( /3) which are either numerator or denomina- 
tor sums of the general Levin transformation. For that purpose the Lj.'-i)(j3) are stored in a 
l-dimensional array 1 in such a way that the superscript coincides with the index of the 
corresponding array element: 

L!"-"'(p) --) r(n - v), n20, Olvln. (7 S-6) 

With this convention the recurrence formula (7.5-3) can be reformulated in terms of the 
elements of the array 1: 

r(n -j) + l(n -j+ 1) - 
(p + n -j)( p + n - 1y2 

(p+n)j-l 
l(n -j), 

n 2 1, 1rjIn. (7.5-7) 

This computational scheme is simpler than the corresponding scheme for Wynn’s e algorithm, 
eq. (4.3-lo), since no auxiliary variables are needed here. 

Essentially the same approach works also in the case of the Richardson extrapolation scheme, 
eq. (6.1-5), or in the case of Sidi’s generalized Richardson extrapolation process, eq. (7.4-11). For 
instance, the recurrence formula (7.4-12) for Sidi’s generalized Richardson extrapolation process 
can be rewritten in the following way: 

RI”-” = RS”=i’+ l) - RS”=i” 

x?l -X,-j ’ 
n 2 1, 1Ijln. (7.5-8) 

If the elements R'-'-j) and the interpolation points x, 
and 4 according to the rules 

are stored in l-dimensional arrays Y 

R;“-j) 4 y(n -j), n20, OIjIn, (7.5-9) 

x, 4 t(n), n 20, (7.5-10) 

the recurrence formula (7.5-8) can be reformulated in terms of the elements of the arrays Y and 

E: 

r(n -j) + 
r(n-j+l)-r(n-j) 

t(n) - Un -j) ’ 
n21, 1Ijrn. (7.5-11) 
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Similarly, the Richardson extrapolation scheme, eq. (&l-5), can be rewritten in the following 
way: 

JG%,, x, > ===s,, n 2 0, 

x _ .SJ;y+*yS,_j+l, 
Jyj(“-j’(S,_j, Xn_j) = n ’ x,_j+t) - x,dq!y)(%-jJI_j) 

9 

X,-j-xfl 

t221, lcjln. 

(7.5-12a) 

(7.5-12b) 

If the elements 4C”-i)(,,_j, x,_~) and the inte~olation points x, are stored in l-dimen- 
sional arrays N and $ according to the rules 

.Ay-qsn_j, X,-j) + N(n -j), n20, O_IjIn, (7.5-13a) 

x, -+ E(n)* n 20, (7.5-13b) 

the recurrence formula (7.5-12) can be reformulated in terms of the elements of the arrays iV and 

5: 

N(n) +--Sn, n 2 0, (7.5-14a) 

N(n -j) + 
~(+v(n -j+ 1) - Eb -.CNn -3 

b(n)--5(=-j) ’ 
n 2 1, 1 cjsn. (7.5-14b) 

Obviously, the computations scheme (7.5-11) for Sidi’s generalized Richardson extrapolation 
process and the computational scheme (7.5-14) for the Richardson extrapolation process are 
st~~t~ally identical with the computations scheme (7.5-7) for Levin’s general sequence trans- 
formation. This implies that programs for the Richardson extrapolation process and Sidi’s 
generalization of the Richardson extrapolation process would have the same features as a 
program for Levin’s general sequence transformation. 

A program which computes the general Levin transformation (7.1-7) or any of its variants has 
to take precautions against an exact or approximate vanishing of the denominator sum. Again, 
this can be accomplished by introducing two variables HUGE and TINY which have values that 
are close to but not identical with the largest and smallest floating point number representable 
on the computer. If the denominator sum of the transform 9$‘)(/3, sO, wO) is smaller in 
magnitude than TINY, then 94’)( p, so, wo) will be set equal to HUGE. This check is only 
necessary if the approximation to the limit according to eq. (7.5-5) is computed. 

The following FORTRAN 77 subroutine GLEVIN computes the numerator and denominator 
sum of the general Levin tr~sfo~ation Zh”)( ,8, so, mo) with the help of the recurrence formula 
(7.5-3) in two l-dimensional arrays ARUP and ARLO. It is safeguarded against an exact or 
approximate vanishing of the deno~nator sum by using the variables HUGE and TINY 
described above. The sequence elements s, and the remainder estimates w, with n = 0, 1, 2, . . . 
have to be computed in a DO loop in the calling program. Whenever a new pair .sn and w, is 
computed in the outer DO loop this subroutine GLEVIN has to be called again and a new string 
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of transforms qJnei) (P, s,_j, tin-j) with 0 _ . _ <J < n is computed. The new sequence element s, is 
read in via the variable SOFN, and the new remainder estimate o, is read in via the variable 
ROFN. The approximation to the limit, which is given by the ratio ARUP(O)/ARLO(O), is 
returned via the variable ESTLIM. 

Again, it should be noted that GLEVIN only calculates the approximation to the limit 
according to eq. (7.5-4). The convergence of the whole process has to be analyzed in the calling 
program. 

Finally, it should be noted that the description of a FORTRAN IV program, which computes 
Levin’s u transformation, eq. (7.3-5), with /? = 1, can be found in ref. [57]. 

SUBROUTINE GLEVINCSOFN,ROFN,BETA,N,ARUP,ARLO,LARRAY,ESTLIM) 

DIMENSION ARUPCO:LARRAY),ARLOCO:LARRAY) 

PARAMETER C HUGE q 1 .E+60 , TINY = 1 .E-60 1 

ARLOCN) = 1.0 / CCFLOATCN)+BETA)*ROFN) 

ARUPCN) = SOFN * ARLOCN) 

IF CN.GT.0) THEN 

BNl = BETA + FLOATCN-I) 

BN2 = BETA + FLOAT(N) 

DO 10 J = l,N 

FACT = CBETA+FLOATCN-J))*BNl**CJ-l)/BNZ**J 

ARUPCN-J) = ARUPCN-J+l 1 - FACT*ARUPCN-J 1 

ARLOC N-J 1 = ARLOCN-J+l ) - FACT*ARLOCN-J > 

10 CONTINUE 

END IF 
IF CABSCARLOCO)).LT.TINY) THEN 

ESTLIM = HUGE 

ELSE 

ESTLIM = ARUPCO)/ARLOCO) 

END IF 
RETURN 

END 

8. Sequence transformations based upon factorial series 

8. I. Factorial series 

In extensive numerical studies performed by Smith and Ford [29,30] and also in other articles 
[57, 60-641 it was demonstrated that the general Levin transformation (7.1-7) and its variants 
(7.3-5), (7.3-7), (7.3-9), and (7.3-11) are remarkably powerful sequence transformations. Conse- 
quently, if one tries to derive alternative sequence transformations it should definitely be 
worthwhile to try to retain as many of the advantageous features of the Levin transformation as 
possible. 

It is the conviction of the author that the power of the Levin transformation is due to the fact 
that a sequence @,,I of remainder estimates is explicitly included in the transformation. This is 
not necessarily an advantage because if the remainder estimates w,, which are used, are poor 
approximants of the actual remainders r,, the Levin transformation will lose much of its 
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efficiency. However, if the remainder estimates are good approximants, it is likely that the Levin 
transformation will produce excellent results. 

In section 7.4, it was shown that Sidi’s generalized Richardson extrapolation process (7.4-11) - 
which is also a generalization of Levin’s sequence transformation - is by construction exact if the 
remainders m of the sequence to be transformed can be written as an remainder estimate w, 
multiplied by a polynomial of degree k - 1 in x,, 

k-l 

rn = 0, c cjx;, 

j=o 
k, n E tY,. (8.1-l) 

The interpolation points x, have to satisfy eq. (6.1-4) which means that they have to approach 
zero as n + co. If we choose in eq. (8.1-1) x, = l/( n + p) we obtain the remainder of the model 
sequence (7.1-1) which is the basis for the construction of Levin’s sequence transformation. 
Model sequences with remainders of the above type can be viewed to be finite approximations of 
sequence elements s, which can be written as Poincare-type asymptotic expansions with respect 
to the asymptotic sequence @,+xiD with n, j E No, 

co 

s- 
” 

s+w, c cjx;, n+cm. (8.1-2) 
j=o 

Essentially this means that the sequence of remainder estimates awn) should be chosen in such 
a way that the ratio (s, - s)/o, can be written as an asymptotic power series in the interpolation 
points (Ixn D, 

n-,co. (8.1-3) 

If one tries to construct alternative sequence transformations, which also incorporate explicit 
remainder estimates via the auxiliary sequence jonI, the simplest approach would be to replace 
the asymptotic power series on the right-hand side of eq. (8.1-3) by some other kind of 
expansion. This means that in eq. (8.1-3) instead of the powers axi) some other asymptotic 
sequence j(pj( n) D with n, j E No would have to be used. Consequently, it would be necessary to 
construct a transformation which is exact for the following class of model sequences: 

k-l 

‘, =s + w, C cjcpi(n>> 

j=o 
k, n E N,. (8.1-4) 

Such a transformation would also be a special case of the general extrapolation algorithm 

&(%), eq. (3.3-2), which was introduced by Brezinski [31] and Havie [32]. This follows 
immediately if h(n) in eq. (3.3-l) is replaced by o,,qj( n). 

In principle, every set {(pi(n)Q of functions of n could be used in eq. (8.1-4) which satisfies 

VOW = 1, nEN,, (8.1-5a) 

Tj+ltn) ="(Vj(n)>9 jEN,, n--co. (8.1~5b) 
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However, such a minimal requirement on the set a(Pi( n)D would not suffice to make a new 
transformation practically useful, let alone to give it any advantage over already existing 
transformations. 

In order to be practically useful, a new sequence transformation should produce excellent 
numerical results in convergence’acceleration and summation processes. Preferably, it should be 
as good as the Levin transformation or maybe even better. However, this would not be enough. 
Since the evaluation of large order determinants, as they for instance occur in eq. (3.3-2), is 
computationally very unattractive, a comparatively simple recursive scheme, which allows a fast 
and reliable computation of the transformation, would also be of considerable importance. The 
derivation of an explicit expression of the type of eq. (7.1-7) for the new transformation would 
also be desirable since this would give us a better chance of understanding the mechanism as well 
as the shortcomings of the new transformation. 

It is not a simple task to find an alternative asymptotic sequence other than powers axiD with 
n, j E N, which leads to a sequence transformation satisfying the requirements mentioned 
above. However, it will become clear later that a new class of sequence transformations with 
most of the advantageous features of the Levin transformation and some new ones can be 
derived quite easily if it is assumed that the ratio (s, - s)/w, is expressed as a factorial series and 
not as an asymptotic power series as in eq. (8.1-3). 

Let In(z) be a function which vanishes as ( z 1 + 00. Then, a factorial series for s2( z) is an 
expansion of the following type, 

P(z)=?+ c1 + c2 

z(z + 1) z(z+ 1)(z+2) + --* = “CO 65. 
(8.1-6) 

Here, (z) ,,+ 1 is a Pochhammer symbol which is commonly defined as the ratio of two gamma 
functions (see p. 3 of ref. [34]), 

(&+1 =~(z+V+1)/~(z)=z(z+l)...(z+V), VEfYO. (8.1-7) 

Factorial series have a long tradition in mathematics. For instance, a large part of Stirling’s 
book [5], which was published in 1730, deals with factorial series. In the nineteenth century the 
theory of factorial series was developed and refined by a variety of authors. A fairly complete 
survey of the older literature on this subject can be found in books by Nielsen [77] and NSrlund 
[71]. In these two books good treatments of the fundamental properties of factorial series can be 
found. 

Factorial series have a remarkable property which will also be utilized quite profitably in this 
report: it is extremely simple to apply higher powers of the difference operator A to a factorial 
series. Consequently, factorial series play a similar rale in the theory of difference equations as 
power series in the theory of differential equations. This explains why factorial series were often 
treated in the classical literature on finite differences, e.g., in books by Norlund [71,78] and 
Milne-Thomson [72]. 

Quite interesting in the context of convergence acceleration and summation is also Borel’s 
book on divergent series [79] in which the connection between factorial series and summability is 
emphasized. 
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However, it seems that in recent years mathematicians have lost interest in factorial series. 
This can be concluded from the fact that only quite rarely references dealing with factorial series 
can be found in the more modern mathematical literature. Notable exceptions are a book by 
Wasow [80], which contains a chapter on factorial series, and an article by Iseki and Iseki [81] on 
remainder estimates of truncated factorial series. In the opinion of the author this declining 
interest in factorial series is quite deplorable because the numerical potential of factorial series 
has not yet been fully exploited. 

The fact, that the argument z of a factorial series occurs in PO&hammer symbols and not in 
the form of inverse powers as in asymptotic power series, has some far-reaching consequences for 
the convergence properties of factorial series. 
A power series converges in the interior of a circle which may coincide with the whole complex 

plane @ or which may shrink to a single point as in the case of divergent asymptotic series. 
However, if a factorial series converges then according to Landau [82] it converges in a 
half-plane. This means that if a factorial series converges for some z,, E @ it also converges with 
the possible exception of the points z = 0, - 1, -2, . . . for all z E C with Re(z) > Re(z,). 

The different convergence properties of power series and factorial series are demonstrated 
quite drastically by the following two infinite series which both have the same numerical 
coefficients c, = ( - l)"m ! : 

1 1 +1-A+ . . . = % w (-l)“m! --- 
x x2 x3 x4 m=O x 

m+l ’ 

1 1 O” (-l)“m! __ 

x-(x),+ (x’), - (x”), + *** = ,;, (x),+1 . 

(8.1-8) 

(8.1-9) 

The power series diverges for all finite values of x E Iw, whereas the factorial series converges 
for all x > 0. 

Because of the different convergence properties of factorial and power series it may happen 
that a given function a(z), which possesses a representation as a divergent asymptotic power 
series, 

a(Z) _ $! + $ + $ + . . . ) Z-+00, (8.140) 

possesses also a representation as a convergent factorial series according to eq. (8.1-6). 
The algebraic processes, by means of which the two series expansions (8.1-6) and (8.1-10) can 

be transformed into each other, were already described by Stirling [5] in 1730. A more modern 
description of Stirling’s method can be found in Nielsen’s book (see pp. 272-282 of ref. [77]). A 
detailed investigation of the problems associated with the transformation of an asymptotic series 
into a convergent factorial series can be found in a long article by Watson [83]. 

8.2. A factorial series analogue of Levin’s transformation 

The following model sequence will be the basis for the new class of sequence transformations 
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which will be discussed in this section: 

k-l 

s, = s + w, C cj/( I2 + P) j, k, n E IV,. (8.2-l) 
j=O 

This sequence is formally almost identical with the model sequence (7.1-l) which is the basis 
of the Levin transformation. The only difference is that the powers (n + /3)j in eq. (7.1-1) are 
replaced by Pochhammer symbols (n + p) j. Concerning the sequence &.+D of remainder esti- 
mates it is again assumed that the w, are known functions of n which are different from zero 
and distinct for all finite values of n. But otherwise, the w, are in principle completely arbitrary. 

The parameter p in eq. (8.2-l) is subject to the restriction that the PO&hammer symbols 
(n + fl)j must not be zero for all n, j E N,. This is certainly guaranteed if p is not a negative 
integer or zero. However, the elements of the model sequence (8.2-l) will serve as finite 
approximations to factorial series of the following kind: 

s,-s+O,f C,/(n+P)j, n+oo. (8.2-2) 
j=O 

In expansions of that kind negative values of p will lead to different signs of the terms of this 
factorial series if either n + p < 0 or n + p > 0 holds. Since the sign pattern of the terms of such 
a factorial series should not change as n increases, we see that as in the case of the Levin 
transformation the additional restriction p > 0 is necessary. But otherwise, fl is in principle 
completely arbitrary. 

In eq. (8.2-l) there occur k + 1 unknown quantities, the limit or antilimit s and the k linear 
coefficients co, . . . , ck _ 1. Hence, if k + 1 sequence elements s,, . . . , s,,+~ are known, the sequence 
transformation 9’;“)( p, s,, on) can be defined according to Cramer’s rule by the following ratio 
of determinants: 

. . . s n+k 

. . . w nfk 

wn/(b+n)k-l . . . %+k/@ +n + k)k--l 

6wA s,, an> = 
1 . . . 1 
% . . . w n+k 

wn/(b+n)k-l . . . %+k/(b+n+k)k-l 

- (8.2-3) 

If the sequence elements s, , . . . , s, + k satisfy eq. (8.2-l), then obviously the sequence transfor- 
mation YJn)(/3 2 s n, o,) is exact by construction, i.e., 

(8.2-4) 
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As in the case of the Levin transformation it would be desirable to find some alternative 
re~r~nta~on fur the tr~sfo~at~o~ YJ”“f& s, T a,). ~Qr~~~~~e~~~ this can be ac~om~~shed as 
easily as in the case of the Levin tr~sf~rmat~on. For that purpose eq, @.2-1) is rewritten in the 
following way: 

The highest power of n, which OCCURS on the right-hand side of eq, (8.2-51, is IZ~-‘. Hence, if 
we apply the difference operator Ak to eq, (8.2-5), the sum on the right-hand side, which is a 
polynomiaX of degree k -- 1 in n, will be annihilated and we may conclude from eqs. (8.2-4) and 
(8.2-5) that the sequence transformation spk’“)(/?, s,, u#) is given by the following ratio: 

(8.2-6) 

With the help of eq. (2-4-8) we obtain a representation of this t~~~sfo~ati~~ as the ratio of 
two finite sums: 

k, n E No. (8.2-7) 

The common factor (B i- n + k),,, in eq. (8.2-7) was introduced in order to decrease the 
magnitude of the terms of the numerator and denominator sums, because otherwise overflow 
may happen too easily for larger values of k. 

The tra~sformat~un (8.2-7) had akeady been treated by Sidi (see eq. (1.9) of ref. f84]) who used 
this as well as some other transformations for the derivation of explicit expressions for fad6 
approximants of some special hypergeometric series. However, it seems that Sidi did not consider 
the transformation (8.2-7) to be a sequence transformation in its own right. This is certainly an 
undeserved neglect. ft ~321 become clear later that the transformation (X.2-7) is very powerful. We 
shall see in section 13 &at for divergent Stidtjes series, as they for instance occur in the 
~~u~at~on expansion of the quark anharmonic oscillator I3,85-8x], it is certainly one of the 
most efficient summation methods which is currently known. 

As in the case of the Levin transformation, we also consider the following mild extension of 
the sequence transformation Yi”)(/?, s,? w,): 

k, I, NE No. (8.2-g) 
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For I = 0 this transformation reduces to the transformation 9”“)( /S, s,, o,), eq. (8.2-7). An 
alternative representation for the generalized transformation (8.2-8) can be derived with the help 
of eq. (2.4~8), 

(8.2-9) 

From this relationship we may deduce immediately that the transformation (8.2-8) is exact for 
model sequences of the following type: 

k-l 

s,=s+@+n) 1% c c,/(P + 4jT k, 1, n E N,. (8.2-10) 
j=O 

8.3. Recurrence formulas 

Next, it will be shown how the numerator and denominator of the transformation (8.2-7) can 
be computed recursively. It will turn out that virtually the same technique can be used as in the 
case of the Levin transformation. In eq. (8.2-7) both numerator and denominator are of the 
general form 

Q?'(P) = AkY,c”)(P), k, n E No. (8.3-l) 

As usual, it is assumed that the difference operator A as well as the shift operator E, which is 
defined in eq. (2.4-4), act only upon n and not upon k. The quantities Yin)(P) satisfy the 
following 2-term recursion in k: 

Y,‘“‘(p) = (/3 + n + k - 2)Y,‘?‘,(p), k>l, n>O. (8.3-2) 

Combination of eqs. (2.4-4), (7.2-3), (8.3-l) and (8.3-2) yields: 

Qp’(p)= {kE+ (j?+n+k-2)A}Ak-‘Y,(l),(fi) (8.3-3) 

= {kE+(P+n+k-2)A}Q~T,(j3) (8.3-4) 

= (p + n + 2k - 2)QE>‘)(p) - (p + n + k - 2)Qp,(j3). (8.3-5) 

With the help of the 3-term recurrence formula (8.3-5) both the numerator as well as the 
denominator of 92”)( fi, s n, w,) can be computed for k 2 1. However, as in the case of the Levin 
transformation it is preferable to compute instead the scaled quantities 

&?‘(P> = Qp'(P)/(P + n + k)k-l. (8.3-6) 
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If we insert this into eq. (8.3-9, we obtain the following recurrence formula for the scaled 
quantities SL”‘( /3): 

If 

$“?1( p) = sp+y p) - 
(/3+n+k)(j3+n+k-l) 

(j?+n+2k)(P+n+2k-1) 
$wL k, n 2 0. (8.3-7) 

we use the starting values 

S,‘“‘(P) = %/(3,, nEl+J,, (8.3-8) 

the 3-term recursion (8.3-7) produces the numerator of the transformation (8.2-7), and if we use 
the starting values 

S,‘“‘(P) = l/%3 nEt+JO, (8.3-9) 

we obtain the denominator of the transformation (8.2-7). 
With the help of the 3-term recursion (8.3-7) it is also possible to compute both the numerator 

and the denominator of the generalized transformation (8.2-8). If the starting values 

S,‘“‘(P) = &/[(P + &%I > 1, n E No, (8.3-10) 

are used, eq. (8.3-7) produces the numerator of the generalized transformation (8.2-8), and the 
starting values 

S,‘“‘(P) = l&P + +&I 7 1, 12 E No, (8.3-11) 

give the denominator of the transformation (8.2-8). 
Since the transforms with the highest values of the subscript normally give the best results, our 

approximation to the limit s of the sequence 4~~1 to be transformed will be the same as in the 
case of the Levin transformation, 

{so, wo; Sl, +;...; s,, %J -+y?,‘“‘(P, so, wo), TTZEN,. (8.3-12) 

Essentially this means that we shall use the following sequence of transforms with minimal 
superscripts and maximal subscripts as approximations to the limit s: 

tiOYP, so, Qo), %(“vP, so, %),..., y;“‘(p, so, o,), . . . . (8.3-13) 

The recursive computation of the sequence transformation P”‘“)(p, s,, wn) can be done in 
virtually the same way as in the case of the Levin transformation. For that purpose it is 
recommendable to reformulate the 3-term recursion (8.3-7) in the following way: 

sjfl-j)(p) = sj!;j+*)(p) - @+n-1)(/3+n-2) 

(p+n+j-2)(P+n+j-3) 
si’r;“‘( p>, 

(8.3-14) 
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As in the case of the Levin transformation, only a single l-dimensional array will be needed 
for the computation of the Sj’“-j’(p) w ‘c are either numerator or denominator sums of the m h 
transformation (8.2-7). For that purpose the ,Si’“-j)(p) are stored in a l-dimensional array s in 
such a way that the superscript coincides with the index of the corresponding array element: 

S’“-“‘(p) + s(n - V), Y n20, Olvln. (8.3-15) 

With this convention the recursive scheme (8.3-14) can be reformulated in terms of the 
elements of the array S: 

s(n -j) + s(n -j + 1) - 
(P+n-1)(/3+n-2) 

(p+n+j-2)(p+n+j-3) 
s(n -j), 

n 2 1, 1IjIn. (8.3-16) 

8.4. Explicit remainder estimates 

It still has to be discussed how the auxiliary sequence 4~~) in eq. (8.2-7) should be chosen. The 
simplest approach would be to proceed as in the case of the Levin transformation. There, it was 
argued that the auxiliary sequence {w,D should be chosen in such a way that w, is proportional 
to the dominant term of the asymptotic expansion of the remainder r,,, 

r,=s,-s=w,[c+O(n_‘)], n + cc. (8.4-l) 

Since the dominant term will not be affected if an asymptotic expansion is transformed into a 
factorial series or vice versa, it should be possible to use the same simple remainder estimates for 
sequences of partial sums as in the case of the Levin transformation. 

Hence, the remainder estimate (7.3-4) will be used in eq. (8.2-7). This gives an analogue of 
Levin’s u transformation, eq. (7.3-5): 

(8.4-2) 

In the same way, the remainder estimate (7.3-6) can be used in eq. (8.2-7). This gives an 
analogue of Levin’s t transformation, eq. (7.3-7): 

(8.4-3) 
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The use of the remaider estimate (7.3-8) in eq. (8.2-7) gives an analogue of Levin’s d 

transformation, eq. (7.3-9): 

(8.4-4) 

Finally, the remainder estimate (7.3-10) gives an analogue of Levin’s u transformation, eq. 
(7.3-11): 

(8.4-5) 

If one of the remainder estimates (7.3-4), (7.3-6), (7.3-8), and (7.3-10) is used in eq. (8.2-7), 
spk’“‘(P, s n, w,) is a nonlinear sequence transformation. If, however, remainder estimates @+D 
are used that do not depend explicitly upon the elements of the sequence 4~~1, Yi”)( j3, s,, w,) is 
a linear sequence transformation. 

Next, a factorial series analogue of the linear sequence transformation A’,“)( fi, s,), eq. 
(7.3-20), will be constructed. A factorial series analogue of the model sequence (7.3-15), for which 
the sequence transformation A’,“)( j3, s,) is exact, would be 

k-l 

S, =S + C Cj/(n + a)j+l7 k, n E No. (8.4-6) 
j=O 

This model sequence can be obtained from the model sequence (8.2-l), for which the sequence 
transformation (8.2-7) is exact, by choosing p = ar + 1 and w, = l/(n + a). Hence, if we define 

2FLn)(a, s,) =&!‘“)(a + 1, s,, l/(n + a)), k, n E No, (8.4-7) 

we see that that the sequence transformation S(‘)(CX, sn) is obviously exact for the model 
sequence (8.4-6). If we now use eq. (8.2-6), we see that the transformation FLn)(~, s,) satisfies 

3qnya, s,) = Ak{(n + dk%> 

Ak(n+a), ’ 
k, n E No. 

The denominator in eq. (8.4-8) can be expressed in closed form. We only have to use 

(8.4-8) 

Ak(n i- a)k = k!. (8.4-9) 
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This is a special case of the following general relationship which can be proved by complete 
induction in k, 

Combining eqs. (8.4-8) and ( 8.4-9) with eq. (2.4-8) gives us 

k, n E IV,,. 

(8.4-10) 

(8.4-U) 

If we combine eq. (8.3-5) with eqs. (8.4-8) and (8.4-g) we obtain the following recursive 
scheme for the sequence transformation S$“)( CX, s,): 

3g”‘(a, s,) = s,, nEf+J.o, (8.4-12a) 

&Q)1((11, SJ =._%Qn+l+, S,+J + (y ;;; kAP~“)(a, sJ, k, n E N,. (8.4-12b) 

The transformation S$‘)(a, s,) can be computed in essentially the same way as the 
Richardson extrapolation process. For that purpose it is recommendable to rewrite the above 
recursive scheme in the following way: 

‘!9p’(a, s,) =s,, n 20, (8.4-13a) 

q(n-+Y, S,_j) =$yi-j+i)((Y, s,_j+l) + 
a+n-1 

j 
A9$T-j)(a, s,_~), 

n21, 1IjIn. (8.4-13b) 

If the .%$‘“‘( (Y, s,) are stored in a l-dimensional array f according to the rule 

qcn-j)(a, s,_~) +f(n -j), n20, OIjIn, (8.4-14) 

we see that the recursive scheme (8.4-13) can be reformulated in terms of the elements of the 
array f: 

f(n) =&I, n 2 0, (8.4-15a) 

f(n-j)=f(n-j+l)+ a+Tw1.4f(~-i), n 2 1, 1Ijln. (8.4-15b) 

A discussion of the linear but nonregular sequence transformation Fin)( LX, sn) can be found 
in Wimp’s book (see pp. 38-40 of ref. [23]). However, the recursive scheme (8.4-12) for the 
computation of this transformation seems to be new. 
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The sequence transformations yi”‘( j3, s,,), eq. (8.4-2), and ~j”)( /I, s,), eq. (8.4-3), require the 
sequence elements s,_i, sn, s,+i,. . . , s,+~ for their computation, whereas 6p)(& sn), eq. (8.4-4), 
requires the sequence elements s,, s,+ i, . . . , s,+~+ 1. Hence, they are all transformations of order 
k + 1. The sequence transformation VP)< j3, sJ, eq. (8.4-5), requires the sequence elements s,_i, 

s Sn+l~**‘, %+k+l which implies that it is a transformation of order k + 2. The linear sequence 
Gmsformation Fj”‘( cy, s,), eq. (8.4-ll), requires the sequence elements s,, s,+i, . . . , s,+k, i.e., it 
is a transformation of order k. 

The situation is somewhat different if the transforms with superscript n = 0 are computed 
because then yj”( & so) and ~i”‘( p, so) are transformations of order k, whereas Sk’)< /3, so) and 
cp$‘)( /3 , so) are transformations of order k + 1. 

9. Other generalizations of Levin’s sequence transformation 

9.1. Asymptotic approximations based upon Pochhammer symbols 

In the last section it was demonstrated how a new class of sequence transfo~ations can be 
derived in exactly the same way as the Levin transformation which is generally accepted to be a 
very powerful convergence acceleration and summation method [29,30,57,60-641. 

The only difference between the Levin transformation and the new transformation discussed 
in the last section is that the Levin transformation assumes that the ratio r,Jo, can be expressed 
as an asymptotic power series whereas the new transformation assumes that m/w, can be 
expressed as a factorial series. Consequently, the analytical expressions for the various Levin 
transformations and those for the analogous variants of the new transformation can easily be 
transformed into each other. For instance, one only has to replace the powers (8 + n +j)k-’ in 
the expression for the general Levin transformation Z$“‘( p, s, , co,), eq. (7-l-7), by PO&hammer 
symbols (p + n +j)k_i in order to obtain the analogous new tr~sfo~ation Y”*)( fi, s,, w,), 
eq. (8.2-7). 

However, these new transformations, which were discussed in the last section, do not yet 
exhaust all possibilities of constructing other simple generalizations of the Levin transformation, 
which nevertheless retain most of the advantages of the Levin transformation. For instance, in 
recent articles on large order perturbation theory asymptotic approximations of the following 
general type were considered 189-911: 

f(+:+ &) + Z(Z-l7(Z-2) + *** +z(I-l)(T’;) . . . (z-n) 

(9 s-1) 

Superficially, such an expression looks very much like a truncated factorial series since the 
argument z occurs also in Pochhammer symbols. However, the fact that the Pochhammer 
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symbols in eq. (9.1-1) are of the type 

(-4,+1= (-z)(-z+l)...(-z+y) 

(9.1-2) 

has some far-reaching consequences. For instance, if z is a positive real number, eq. (9.1-l) 
makes sense only if z > n holds. For n > z, either the later terms in the sum will show irregular 
sign patterns, or, if z happens to be a positive integer, some PO&hammer symbols will then be 
zero. Consequently, for a fixed value of z the summation limit n in eq. (9.1-l) cannot be 
extended to infinity, and such an expression cannot be considered to be the truncation of an 
asymtotic series after a finite number of terms. Instead, an expression such as eq. (9.1-l) has to 
be interpreted to be some kind of asymptotic approximation involving only a finite number of 
terms. 

The author is not aware of any reference in the mathematical literature, in which expressions 
like the one in eq. (9.1-1) are treated and their properties are analyzed. Consequently, the 
material in this section is somewhat experimental and its mathematical basis is not as solid as in 
the other sections. 

However, it must be emphasized that these objections do not exclude the possibility that finite 
sums of the type of eq. (9.1-l) may yield excellent approximations if suitable restrictions on z 
and n are made. We shall see later in section 13 that sequence transformations which are based 
upon asymptotic approximations of the type of eq. (9.1-1) are indeed able to produce excellent 
results in convergence acceleration and summation processes. 

9.2. New sequence transformations based upon Pochhammer symbols 

The following model sequence will be the basis for the new class of sequence transformations 
which will be derived in this section: 

k-l 

S,=S+W, C Cj/(-Y-n)j, k, n E IV,. (9.2-l) 
j=O 

This sequence is formally almost identical with the model sequence (8.2-l). The only 
difference is that the PO&hammer symbols (n + /3)j in eq. (8.2-l) are replaced by Pochhammer 
symbols (- y - n)j. Concerning the sequence {a,,) of remainder estimates it is again assumed 
that the w, are known functions of n which have to be different from zero and distinct for all 
finite values of n. But otherwise, the LO, are in principle completely arbitrary. 

The parameter y in eq. (9.2-l) is not only subject to the restriction that the PO&hammer 
symbols ( - y - n) j must not be zero for all admissible values of n and j. Also, the regular sign 
pattern of the PO&hammer symbols in eq. (9.2-l) must not be destroyed. These two restrictions 
suggest that y should be a positive number satisfying y 2 k - 1. 

In eq. (9.2-l) there occur k + 1 unknown quantities, the limit or antilimit s and the k linear 
coefficients co,. . . , c~_~. Hence, if k + 1 sequence elements s,, . . . , s,+~ are known, the sequence 
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transformation Mg)( y v 7 *nt a,) can be defined according to Cramer’s rule by the following ratio 
of determinants: 

% . . . %+k 

. 

%/I--Y - @)&--I --* 

(3.2-2) 

If the sequence elements snr . . . ) s,_+_~ satisfy eq. (9.2-l), then obviously the sequence transfor- 
mation JYp’(y , s n, a,,) is exact by construction, i.e., 

d#@yy, s,, f3J =s. (9.2-3) 

Again it would be desirable to have some alternative representation for the transformation 
JYp’( y, s, , a,). Fortunately, this can be accomplished quite easily. For that purpose eq. (9.2-l) 
is rewritten in the following way: 

k-l 

C-Y - L,[% - s]/w, = c Cj( -y - n +j)k_j-1. (9.2-4) 
j=o 

The highest power of n, which occurs on the right-hand side of eq. (9.2-41, is nkW1_ Hence? if 
we apply the difference operator Ak to eq. (9.2-41, the sum on the right-hand side, which is a 
polynomial of degree k - 1 in n, will be annihilated and we may conclude from eqs. (9.2-3) and 
(9.2-4) that the sequence transformation Mp’(p, s,, 0,) is given by the following ratio: 

(9.24) 

If we use eq. (2.4-8), we see that this transformation can be represented as the ratio of two 
finite sums: 

k, n E IV,, (9.2-6) 
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The common factor (- y - n - k),_, in eq. (9.2-6) was introduced in order to decrease the 
magnitude of the terms of the numerator and denominator sums, because otherwise overflow 
may happen too easily for larger values of k. 

As in the previous sections, we also consider a mild extension of 
JHP’(y S > w )* n, tl’ 

the sequence transformation 

7 k, 1, n EN,. (9.2-7) 

For 1= 0 this transformation reduces to the transformation ~Xp’(y, s,, wn), eq. (9.2-6). An 
alternative representation for the generalized transformation (9.2-7) can be derived with the help 
of eq. (2.4-8), 

&qy s w ) = Ak{(-Y - n + Ok-I-A/%) 
, >n,n 

Ak{(-Y - n + ~)/+-&J,) * 
(9.2-8) 

From this relationship we may deduce immediately that the transformation (9.2-7) is exact for 
model sequences of the following type: 

k-l 

Sn=S+(-Y-n),on C Cj/(-Y-n)j, k, 1, n E IN,. (9.2-9) 
j=O 

9.3. Recurrence formulas 

Next, it will be shown how the numerator and denominator of the transformation (9.2-6) can 
be computed recursively. It will turn out that virtually the same technique can be used as in 
sections 7.2 and 8.,3. In eq. (9.2-6) both numerator and denominator are of the general form 

RF)(y) = A”Z/$“‘(y), k, n EN,. (9.3-l) 

As usual, it is assumed that the difference operator A as well as the shift operator E, which is 
defined in eq. (2.4-4), act only upon n and not upon k. The quantities Z?)(y) satisfy the 
following 2-term recursion in k: 

Zp)(y) = (-y - n + k - 2)Zp,(y), k>l, nr0. (9.3-2) 

Combination of eqs. (2.4-4), (7.2-3), (9.3-l) and (9.3-2) yields: 

R(kn)(y)= {(-y-n+k-2)A-kE}Ak-1Z,$?,(y) 

= {(-y-n+k-2)A-kE}R(,“l,(y) 

= (y + n - k + 2)R(knll(y) - (y + n + 2)R’,“_+,l’(y). 

(9.3-3) 

(9.3-4) 

(9.3-5) 
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With the help of the 3-term recurrence formula (9.3-5) both the numerator as well as the 
deno~nator of the transfo~ation Ap’( y, s,, w,) can be computed for k 2 1. However, it is 
again preferable to compute instead the scaled quantities 

My(y) = R',")(y)/( -y - n - k)&l. (9.3-6) 

If we insert this into eq. (9.3-5), we obtain the following recurrence formula for the scaled 
quantities MJ”‘( y): 

(9.3-7) 

If we use the starting values 

My(Y) = S,/%, n=N,, (9.3-8) 

the 3-term recursion (9.3-7) produces the numerator of the transformation (9.2-6), and if we use 
the starting values 

M,(“)(Y) = l/a,, nEWI,, (9.3-9) 

we obtain the denominator of the transformation (9.2-7). 
With the help of the 3-term recursion (9.3-7) it is also possible to compute both the numerator 

and the denominator of the generalized transformation (9.2-7). If the starting values 

MmY) = s,/[(-Y - 4t%l? 1, nEN0, (9.340) 

are used, the 3-term recursion (9.3-7) produces the numerator of the generalized transformation 
(9.2-7), and the starting values 

%p(Y) = v[(-Y - 4l%lT I, nE%, (9.341) 

produce the denominator of the transformation (9.2-7). 
Since the transforms with the highest values of the subscript normally give the best results, our 

approximation to the limit s of the sequence @SD to be transformed will be the same as in the 
previous two sections, i.e., 

h wo; Sl, a,;...; Sm, %2> -+=Je'(Y, so, oo), mENo. (9.342) 

Essentially this means that we shall use the following sequence of transforms with minimal 
superscripts and maximal subscripts as appro~mations to the limit S: 

J@rp’(Y, so, qJ,“+$“YY, so, qJ,...,4’(Y, so, ao), 0-e. (9.343) 

The recursive computation of the sequence transformations JZ~)( y, sat tin) can be done in 
virtually the same way as in the previous two sections. For that purpose it is recommendable to 
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reformulate the 3-term recursion (9.3-7) in the following way: 

jqn-j)(y) = M,(r;j+l)(y) _ Y + “,;‘,j + 2 jyCr;j)(y), n21, lljln. (9.3-14) 

Again, only a single l-dimensional array will be needed for the computation of the M,‘“-“(y) 
which are either numerator or denominator sums of the transformation (9.2-6). For that purpose 
the M!“-“(y) are stored in a l-dimensional array m in such a way that the superscript coincides 
with the index of the corresponding array element: 

M’“-“‘(y) + m(n - v), 
Y 

n20, Olvln. (9.3-15) 

With this convention the recursive scheme (9.3-14) can be reformulated in terms of the 
elements of the array m: 

m(n-j)+m(n-j+l)- 
y+n-2j+2 

y+n 
m(n -j>, n 2 1, 1Ijrn. (9.3-16) 

9.4, Explicit remainder estimates 

It still must be discussed how the auxiliary sequence aanD in eq. (9.2-6) should be chosen. The 
simplest approach would again consist of using the same simple remainder estimates for 
sequences of partial sums as in the case of the Levin transformation. 

Hence, if we use in eq. (9.2-6) the remainder estimate 

a,=(-_y--n)a,, (9.4-l) 

we obtain an analogue of Levin’s u transformation, eq. (7.3-5): 

Y,‘“)(Y, %> = (9.4-2) 

In the same way, the remainder estimate (7.3-6) can be used in eq. (9.2-6). This gives an 
analogue of Levin’s t transformation, eq. (7.3-7): 

(9.4-3) 
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The use of the remainder estimate (7.3-8) in eq. (9.2-6) gives 
transformation, eq. (7.3-9): 

an analogue of Levin’s d 

A$%, sn> = (9.4-4) 

Finally, the remainder estimate (7.3-10) gives an analogue of Levin’s u transformation, eq. 
(7.3-11): 

(9.4-5) 

; (-1)‘j ;) (y;:;;;;: u;y+,“;;;;lsn+j 

@/y’(y, s,) = j=Ok 

c (-l)‘( ;) i_yy;;-lk,,:._: u;;:;+;aI;;;:’ 
j=O 

If one of the remainder estimates (7.3-6) (7.3-8), (7.3-lo), and (9.4-l) is used in eq. (9.2-6), 
_A!p)(y, s,, w,) is a nonlinear sequence transformation. If, however, remainder estimates @,,I 
are used that do not depend explicitly upon the elements of the sequence {sn 1, J#P’( y, s,,, w,) is 
a linear sequence transformation. 

Next, an analogue of the Richardson extrapolation scheme (6.1-5) will be introduced which is 
based upon asymptotic approximations involving Pochhammer symbols of the type of eq. (9.1-1). 
For that purpose we consider the following model sequence: 

k-l 

s,=s+ c cj/4-s-&+I, k, n~bJ,,. (9.4-6) 
j=O 

This model sequence can be obtained from the model sequence (9.2-l), for which the sequence 
transformation (9.2-6) is exact, by choosing S = y + 1 and c.+ = - l/(5 + n). Hence, if we define 

P/XC, SJ =Aj$‘(C- 1, s,, -l/(n + 3)), k, n E N,, (9.4-7) 

we see that that the sequence transformation 91in)({, sn) is obviously exact for the model 
sequence (9.4-6). If we now use eq. (9.2-5), we see that the transformation gi”)(c, s,) satisfies 

gp’(~, s 
n 

) = Ak((-s - nhJ 
dk(-l-& ’ 

k, n E NO. (9.4-8) 

The denominator in eq. (9.4-8) can be expressed in closed form. We only have to use 

(9.4-9) 
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This is a special case of the following general relationship which can be proved by complete 
induction in k, 

Ak~(~-n) q_) e-n-k) 
T(b-n) k T(b-n) ’ 

Combination of eqs. (9.4-8) and (9.4-9) with eq. (2.4-8) yields 

k, n EN,. 

(9.4-10) 

(9.4-11) 

If we combine eq. (9.3-5) with eqs. (9.4-8) and (9.4-9) we obtain the following recursive 
scheme for the sequence transformation .Pi”‘(<, s,): 

The transformation Slin)([, sn) can be computed in essentially the same way as the Richard- 
son extrapolation process. For that purpose it is recommendable to rewrite the above recursive 
scheme in the following way: 

n 20, (9.4-13a) 

qJn-‘)({, S,_,) =sl,l_“,j+l)(l, sn-j+l) + l+ n ,‘j + ’ A_$3$‘;“([, s~_~), 

n 2 1, lrjln. 

If the gj”‘({, sn) are stored in a l-dimensional array p according to the rule 

P/n-j’(c, Sn_j) *p(n -j>, n 2 0, 0 Ij I n, 

(9.4-1313) 

(9.4-14) 

we see that the recursive scheme (9.4-14) can be reformulated in terms of the elements of the 
array p: 

p(n) + s?l, n 20, (9.4-15a) 

p(n-j)tp(n-j+l)+ i+ni2i+1Ap(n-j), n21, lljln. (9.4-15b) 

The sequence transformations Y,‘“‘(y, sn), eq. (9.4-2), and Tjn)(y, se), eq. (9.4-3), require the 
sequence elements s,_r, s,, s,+r ,..., s,,+k for their computation, whereas A(,“‘(y, s,), eq. (9.4-4), 
requires the sequence elements s,, s,+r, . . . , s,+k+l. Hence, they are all transformations of order 
k + 1. The sequence transformation @p’(y, So), eq. (9.4-5) requires the sequence elements s,,_r, 



E.J. Weniger / Nonlinear sequence transformations 271 

s Sn+l~-.-? sn+k+l which implies that it is a transformation of order k + 2. The linear sequence 
tkksformation &“‘(c, s,), eq. (9.4-ll), requires the sequence elements s,, s,+r, . . . , s,+~, i.e., it 
is a transformation of order k. 

The situation is somewhat different if the transforms with superscript n = 0 are computed 
because then Y,‘“‘( y, so) and T,“‘( y, so) are transformations of order k, whereas A’,)( y, so) and 
@Lo’< y, so) are transformations of order k + 1. 

9.5. Drummond’s sequence transformation 

Let us assume that pk_r( n) is a polynomial of degree k - 1 in n. We want to derive a 
sequence transformation @“)( s n, w,,), which is by construction exact for the following model 
sequence: 

s,=s + tinPk-r(n), k, nEN,. (9.5-l) 

Concerning the sequence {w,,D of remainder estimates it is again assumed that the w, are 
different from zero for all finite values of n, but otherwise they are in principle completely 
arbitrary. For the derivation of a sequence transformation, which is exact for the above model 
sequence, we rewrite eq. (9.5-l) in the following way: 

[S,-s]/ti,=Pk-r(n), k, n E No. (9.5-2) 

Since Pk_*( n) is by assumption a polynomial of degree k - 1 in n, the right-hand side of eq. 
(9.5-2) will be annihilated by the difference operator Ak. Hence, we can define the sequence 
transformation @“‘(s n, wn) by the following ratio: 

With the help of eq. (2.4-8) we obtain a representation of this transformation as the ratio of 

(9.5-3) 

two finite sums: 

&“)(% > 

5 (_1)‘( p 
OJ = j;;O Pl+j 

,r,(-l,j(;)$-’ ky nENo- 

(9.5-4) 

“+J 

The special case w, = a,, of this sequence transformation was originally derived by Drummond 
[92]. Later, it was rederived by Sidi [84]. 

Both numerator and denominator of the sequence transformation (9.5-4) can be computed 
with the help of the following 3-term recurrence formula, which is an immediate consequence of 
eq. (9.5-3): 

&“?r = D!n+r) _ Di”’ > k, n 2 0. (9.5-5) 
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If we use the starting values 

D,j”) = s,/w,, nENo, (9.5-6) 

the recurrence formula (9.5-5) produces the numerator of Drummond’s transformation (9.5-4) 
and if we use the starting values 

DA”’ = l/w,, nEN,> (9.5-7) 

we obtain the denominator of Drummond’s transformation (9.5-4). 
Essentially the same computational algorithm, which was used for the other sequence 

transformations of sections 7, 8, and 9 can also be used in the case of Drummond’s sequence 
transformation &“)( s,, w,). Consequently, ou T approximation to the limit s of the sequence 
@,,I to be transformed will be 

{SO> a,; Sl, w1;...; s,, am} +@yso, wo), mENo. (9.5-8) 

This means that we shall again use a sequence of transforms with minimal superscripts and 
maximal subscripts as approximations to the limit s: 

@j”‘bo > oo), 9;“yso, ido),. . .) @yso, wo), . . . . (9.5-9) 

Since the recursive computation of the sequence transformation $“)( s,, on) can be done in 
virtually the same way as in the case of the Levin transformation, it is recommendable to 
reformulate the recursive scheme (9.5-5) in the following way: 

Djn-j) = D$J+l) _ D,@;J) > n21, 1IjIn. (9.5-10) 

Again, a single l-dimensional array will be sufficient for the computation of the quantities 
D!“-“, which are either numerator or denominator sums of the sequence transformation (9.5-4), 
if/the D!“-j) 

J 
are stored in a l-dimensional array d according to the following rule: 

D’“-“’ + d(n - v), ” n20, Olvln. (9.5-11) 

With this convention the recurrence formula (9.5-10) can be reformulated in terms of the 
elements of the array d: 

d(n-j)+d(n-j+l)-d(n-j), n 2 1, 1Ijln. (9.5-12) 

If we compare Drummond’s sequence transformation Bin)(s,, tin), eq. (9.5-4), with the 
analogous sequence transformations Zi”)(p, s,, w ) eq. (7.1-7), Yi’“)(p, s,, w,), eq. (8.2-7), 
and &‘p)(y s w,), eq. (9.2-6), we see that the Numerator and denominator sums of these 
transformatibns”‘contain additional n-dependent coefficients such as (p + n + j)k-l, (P+n+ 
j)k_-l, or (-y - n - j),_i, which are all of order O(nk-‘). 
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Similarly, in the difference operator representation (9.5-3) for Drummond’s sequence transfor- 
mation Ak acts only upon s,/L+ and l/o, whereas in the analogous difference operator 
representations (7.1-6), (8.2-5), and (9.2-5) for the other transformations mentioned above 
weighted differences of s,,/w, and l/w, are formed. 

This implies that in the case of Drummond’s sequence transformation, eq. (9.5-4), the 
sequence elements s,, . . . , s, +k and the remainder estimates w,, . . . , w, +k, which are needed for 
the computation of &“‘(s a,,), all contribute equally in the numerator and denominator sums. 

This is not true in the &e of the other sequence transformations mentioned above since they 
contain additional weights. Essentially, this means that the information contained in the 
sequence elements and remainder estimates with larger indices will be emphasized more strongly 
in the computation of these sequence transformations. 

Since the later elements of a convergent sequence {s,D are usually closer to the limit s than the 
earlier elements, it seems plausible to expect that Drummond’s sequence transformation, eq. 
(9.5-4), which does not give special weight to the sequence elements and remainder estimates 
with higher indices, should normally be somewhat less powerful than the transformations 

-Epk’“‘(P, s,, w,,), Y”“‘( p, s,, w,), and &p’( y, s,, a,,). We shall see later that this assumption is 

indeed normally true. 

10. Brezinski’s theta algorithm and related topics 

10.1. The derivation of Brezinski’s theta algorithm 

It is well known that Wynn’s E algorithm accelerates linear convergence quite efficiently and 
that it is also able to sum even wildly divergent series. However, the c algorithm is not able to 
accelerate logarithmic convergence. In the same way, Wynn’s p algorithm is certainly one of the 
better accelerators for logarithmic convergence but fails to accelerate linear convergence and to 
sum divergent series. It would certainly be desirable to modify either the c or the p algorithm in 
such a way that the advantageous features of the c and the p algorithm could be combined. For 
that purpose, let us consider a recursive scheme of the following type: 

TI”,’ = 0, T;“’ = s i?, 

T,‘:‘, = Tk’“;” + wkDin), k, HEN,,. 

(lO.l-la) 

(lO.l-lb) 

Di”’ is a quantity which depends upon one or several other elements T,‘“’ of the table of this 
transformation. It is assumed that the functional form of Di”’ is known. The quantity wk is for 
the moment unspecified. Later, we will try to derive an expression for wk which will guarantee 
that the above recursive scheme will lead to an acceleration of convergence. 

The recursive scheme (10.1-l) contains the c and the p algorithm as special cases. If we choose 
W k = 1 together with 

Din’ = 
1 

Tk(n+l) _ T’n) ’ k, n E No, (10.1-2) 
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the recursive scheme (10.1-l) corresponds to Wynn’s E algorithm, eq. (4.2-l), and if we choose 
wk = 1 together with 

Din’ = Xn+k+l - xn 

Tk(“+l) _ Tk’“’ ’ 
k, n EN,, (10.1-3) 

the recursive scheme (10.1-l) corresponds to Wynn’s p algorithm, eq. (6.2-2). 
We now want to analyze how the quantity wk has to be chosen in order to guarantee that the 

sequence transformation Tk(“) will lead to an acceleration of convergence. 
In Wynn’s z or p algorithm, only the transforms with even subscripts are used as approxima- 

tions to the limit. The transforms with odd subscripts are only auxiliary quantities which diverge 
if the whole process converges. Since either the e or the p algorithm will be our starting point for 
the construction of a new sequence transformation, we assume that Tin) behaves in the same 
way. This means that only the transforms with even subscripts will be used as approximations to 
the limit whereas the transforms with odd subscripts are only auxiliary quantities which diverge 
if the transforms with even subscripts converge. 

Brezinski [26] argued that the exact numerical values of the transforms with odd subscripts do 
not really matter as long as they diverge if the whole process converges. Consequently, the most 
convenient choice for w 2k in eq. (lO.l-lb) would be to proceed as in Wynn’s E or p algorithm, 

i.e., 

W2k = 1, kEbd,,. (10.1-4) 

The parameters w 2k+r can be determined by requiring that for fixed k E NO the sequence 
(1 T2(kni2 1 should converge more rapidly than the sequence 4 T$i+ “) in the following sense: 

kEhJ,. (10.1-5) 

If we form in eq. (lO.l-lb) the first difference with respect to n, we see that condition (10.1-5) 
is automatically fulfilled if we choose 

W2k+l = kEt+d,. (10.1-6) 

Unfortunately, in situations of practical interest it will normally not be possible to compute 
this limit n + co. As a manageable alternative, Brezinski [26] suggested to use instead: 

w:nd+l = - 
AT$;+‘) 

AD&?+, ’ 
k, n E IV,. (10.1-7) 
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This choice together with eq. (10.1-4) leads to the following recursive scheme for the sequence 
transformation Tk(“): 

T!") = 0, T’“’ = s 
n, 

T$j12i1 = T,‘,“f;’ + D’“’ 2k ) 

T&“i2 = T$(kn+i) - 
AT$(kn+i) 

f%L 

D@+,, k, n E IV,. 

If we choose in this recursive scheme Din) according to eq. (10.1-2) 
Wynn’s c algorithm - we obtain Brezinski’s 9 algorithm [26]: 

which corresponds to 

(lO.l-9a) 

(lO.l-9b) 

(lO.l-9c) 

As usual it is assumed that the difference operator A acts only upon the superscript n and not 
upon the subscript k. 

Brezinski’s derivation of his 9 algorithm, which is based upon the the somewhat arbitrary 
choice (lO.l-6), was purely experimental. However, it was certainly a very successful experiment. 
In numerical studies performed by Smith and Ford [29,30] it was demonstrated that Brezinski’s 9 
algorithm is a very powerful as well as a very versatile sequence transformation since it is able to 
accelerate both linear and logarithmic convergence quite efficiently and to sum even wildly 
divergent series. 

Unlike most of the other sequence transformations in this report, Brezinski’s 9 algorithm was 
not derived via a model sequence. In addition, the recursive scheme (10.1-9) is significantly more 
complicated than the recursive schemes of most other nonlinear sequence transformations. This 
should explain why only relatively little is known about the theoretical properties of Brezinski’s 9 
algorithm. In his second book, Brezinski showed that the 9 algorithm is invariant under 
translation according to eq. (3.1-4) (see p. 106 of ref. [20]). Also, Smith and Ford could prove 
that 91”’ accelerates linear convergence (see pp. 225-226 of ref. [29]). Short discussions of the 
properties of the 9 algorithm can be found in books by Brezinski [19,20] and Wimp [23]. 

Inspired by the success of his 9 algorithm, Brezinski [27] suggested to use the approach, which 
led to the derivation of the 6 algorithm, also in the case of other sequence transformations. Since 
Wynn’s 6 algorithm - which is the starting point for Brezinski’s 9 algorithm - and Wynn’s p 
algorithm are structurally almost identical, it is a relatively obvious idea to try to use Brezinski’s 
concept for the construction of a new sequence transformation which would be based upon 
Wynn’s p algorithm. This can be accomplished quite easily. One only has to insert eq. (10.1-3) 
instead of eq. (10.1-2) into eqs. (10.1~8b) and (10.18~) to obtain the following recursive scheme: 

@(_n,,=O ? @$“’ = s n, (lO.l-10a) 
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(10.1-lob) 

@g2 = @;+l) - [X n+2k+2 - xn] [A@&+ “I[ A@$::'] 

b n+2k+2 - xn+1 ][A@;\,] - [x~+2k+l-Xn][A0:“k=:)l ’ 

k, n E IV,. (lO.l-1oc) 

Numerical tests showed that this sequence transformation Or) is more versatile than Wynn’s 
p algorithm, from which it was derived, since it is able to accelerate linear convergence and to 
sum some divergent series. However, it is unfortunately much less efficient than Wynn’s p 
algorithm in the case of logarithmic convergence, and it is also not particularly powerful in the 
case of linear convergence or divergence. This shows that in the case of Wynn’s p algorithm 
Brezinski’s experimental choice (10.1-6) does not lead to the same spectacular success as in the 
case of Wynn’s c algorithm since the resulting sequence transformation OF) - although clearly 
more versatile than Wynn’s p algorithm - is not able to compete with other, more specialized 
sequence transformations. 

10.2. Programming Brezinski’s theta algorithm 

A program for Brezinski’s 9 algorithm should have the same features as the other programs 
described in this report. This means it should read in the sequence elements sO, sr, . . . , s,, . . . 

successively starting with so. After the input of each new sequence element S, as many new 
elements IY~) should be computed as is permitted by the recursive scheme (10.1-9). That new 
element 9r’, which has the largest even subskript k, should be used as the new approximation 
to the limit of the sequence (1~~ 1. 

Let us arrange the elements of the 9 table in a rectangular scheme in such a way that the 
superscript n indicates the row and the subscript k the column of the 2-dimensional array: 

(10.2-l) 

The entries in the first column of the array are the starting values 136”’ = S, of the recursion 
according to eq. (lO.l-9a). The remaining elements of the 9 table can be computed with the help 
of the recurrence formulas (lO.l-9b) and (10.1-9~). The 4 elements, which are connected by the 
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nonlinear recursion (lO.l-9b), form the same pattern in the 9 table as the 4 elements of the c 
table which are connected by eq. (4.2-lb): 

(10.2-2) 

The 6 elements, which are connected by the nonlinear recursion (lO.l-9c), form the following 
pattern in the 8 table: 

These two patterns show that the recursions (lO.l-9b) and (10.1-9~) have to proceed along a 
relatively complicated path in the 9 table. Let us assume that the sequence elements s,,, 

Sl,..., s,_l had been read in and as many elements of the 9 table had been computed as it is 
permitted by the recursive scheme (10.1-9). After the input of the next sequence element S, the 
string gd3i121) with 0 ~j I 1[(2m + 1)/3] can be computed. Again, [x] stands for the integral 
part of’x, i.e., the largest integer v satisfying v I X. In this context, it is recommendable to 
rewrite the recursive scheme (10.1-9) in the following way: 

$6”’ = s 
n, n 20, (10.2-4a) 

n 2 1, (10.2-4b) 

a(y-3j) = g(-3j+l) + 
A$$;Fp+l’] [ Aa;;F:‘+“] 

2J 2j-2 429’173” 9 n23,1SJ%I[n/3n, (10.2-4~) 
2J 1 

@;:j-1’ = @n-@’ 2j_1J) + l/[ A@;-“-“], n 2 4, j I [(n - 1)/311. (10.2-4d) 

It follows either from this recursive scheme or equivalently from the two geometric patterns 
(10.2-2) and (10.2-3) that for the computation of the transform 84:) the sequence elements s,, 
s n+l,“‘Y s ,,+ 3k have to be known. Thus, 91;) is a transformation of order I = 3k. 

The approximation to the limit will depend upon the index m of the last sequence element s, 
which was used in the recursive scheme (10.2-4). If m is a multiple of 3, m = 3~, our 
approximation to the limit will be the transformation 

bO> Sl,. . . , s3p} + cq, (10.2-5) 

if we have m = 3~ + 1, our approximation to the limit will be 

{s19 ~2,...,~3p+l} +q, (10.2-6) 
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and if we have m = 3~ + 2, our approximation to the limit will be 

{.%, s3,.. ., s3p+2} + q. (10.2-7) 

These three relationships can be combined into a single equation yielding 

Because of the complicated structure of the nonlinear recursive scheme (10.2-4) a single 
l-dimensional array will not suffice for the computation of the new string IY~‘-~~~/*~) with 
0 ~j I [(2n + 1)/3] after the input of the last sequence element s,. Two l-dimensional arrays A 
and B together with three auxiliary variables will be needed. 

We shall use the convention that if the index n of the last sequence element s,, which was 
read in, is even, n = 2m, the new string will be stored in the array A according to the rule 

~<*m-I3j/*l) + I, 
J 

0 Ij I [(4m + 1)/3B) (10.2-9) 

and if the index y1 of the last sequence element s, is odd, IZ = 2m + 1, the new string will be 
stored in the array B according to the rule 

g<*m-i3j/*n+l) --) B(j), 
J 0 Ij I 1[(4m + 3)/3]. (10.2-10) 

Let us now assume that the index n of the last sequence element s,, which was read in, is 
even, i.e., n = 2~. Before the computation of the new string (10.2-9), which is to be stored in A, 
the array B contains the elements 8~m-t3i’2n-1) with 0 <j I 1[(4m - 1)/3], whereas in A the 
elements ++-[3j/*l-*) with 0 ~j I [(4m - 3)/3]1 are stored. The recursive scheme (10.2-4) can 
then be exiressed in terms of the elements of the arrays A and B in the following way: 

A(O) + S*m, WEN),, 

A(L) + L&(O) - B(O)] 3 

(10.2-lla) 

(10.2-llb) 

A(2j) %4’(2j - 2) + 
[B(2j-2)-A’(2j-2)][A(2j-l)-B(2j-l)] 

A(2j-1)-2B(2j-l)+A’(2j-l) ’ 

j I uw3n, 
A(2 j + 1) + A’(2 j - 1) + l/[ B(2 j) - A(2 j)], j 5 C(2m - 1)/3n. 

(10.2~llc) 

(10.2-lld) 

The primed array elements A’(2 j - 2) and A’(2 j - 1) refer to the occupation of A after the 
computation of the string 8~m--[3j/2n-2) with 0 I j s [(4m - 3)/3]. Since these elements are 
overwritten during the computation of the new string, they have to be stored in auxiliary 
variables. 

Let us now assume that the index n of the last sequence element s,, which was read in, is odd, 
i.e., n = 2m + 1. This implies that the rSle of the two arrays A and B has to be interchanged. 
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Before the computation of the new string (10.2-lo), which is to be stored in B, the array A 
contains the elements @~*-u3~‘*11) with 0 ~j I [(4pn + 1)/31f, and in B the elements 
,p--13j/a- 1) with 0 <j 2 [(4m - 1)/3B are stored. The recursive scheme (10.2-4) can then be 
&pressed in terms of the elements of the arrays A and B in the following way: 

(10.2-12a) 

(10.2-12b) 

B(2j) + B’(2j - 2) + 
[ A(2j - 2) - B’(2j - 2)] [ B(2j - 1) - A(2j - l)] 

B(2j-1)-2A(2j-l)+B’(2j-l) ’ 

j 5: lU2m + 1),‘3B, 

B(2 j + 1) + B’(2j - 1) + l/[ A(2 j) - B(2j)], j I [2m,‘31. 

(10.2-12c) 

(10.2-12d) 

The primed array elements B”(2 j - 2) and B’(2j - 1) refer to the occupation of B after the 
computation of the string i):2mP13~‘211-1) with 0 2 j < [(4m - 1)/31/. Since these elements are 
overwritten during the computation of the new string, they have to be stored in auxiliary 
variables. 

The following FORTRAN 77 subroutine THETA performs the recursive computation of 
Brezinski’s 9 algorithm in two l-dimensional arrays A and B using the two recursive schemes 
(10.2-11) and (10.2-12). It is safeguarded against an exact or approximate vanishing of the 
deno~nators A29”X 3i) 2, 1 and AC+$~:~+“) in eqs. (10.2-4~) and (10.2-4d) by using two variables 
HUGE and TINY. The elements s, with n = 0, 1, 2, . , . of the sequence to be transformed have 
to be computed in a DO loop in the calling program. Whenever a new sequence element s, is 
computed in the outer DO loop, this subroutine THETA has to be called again and a new string 
8~~Pu3~/2D) with 0 ~j I [(2n + 1)/31) will be calculated. The new sequence element s, is read in 
via the variable SOFN and the appro~mation to the limit is returned via the variable ESTLIM. 

It is important to note that this subroutine THETA only calculates the approximations to the 
limit according to eqs. (10.2-5)-(10.2-7). The convergence of the whole process has to be 
analyzed in the calling program. 

On pp, 368-370 of Brezinski’s second book [20] the listing of a FORTRAN IV program, 
which computes Brezinski’s 9 algorithm using three l-dimensional arrays, can be found. 

SUBROUTINE THETA(SOFN,N,A,B,LENGA,LENGB,ESTLIM) 
DIMENSION A(O:LENGA), B(O:LENGB) 
PARAMETER ( HUGE = l.E+60 , TINY = l.E-60 1 
PARAMETER ( ZERO = O.EO , ONE = l.EO , TWO = 2.E0 1 
JNAX =<2*N+1)/3 
NM002 = BODCN,il) 
IF (N.EQ.0) THEN 

A(O) = SOFN 
ESTLIM = SOFN 
RETURN 

END IF 
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IF ( NMOD2 .EQ. 0) THEN 

AUX2 = ZERO 

AUXl = A(O) 

A(O) = SOFN 

DO 10 J = 1, JMAX 

AUX3 = AUX2 

AUX2 = AUXI 

IF ( J .LT. JMAX 1 THEN 

AUXl = A(J) 

END IF 
IF ( MODCJ,Z) .EQ. 0 1 THEN 

DENOM = ACJ-1) - TWO * BCJ-I) + AUX2 

IF ( ABSCDENOM) .LT. TINY 1 THEN 

A(J) = HUGE 

ELSE 

A(J) = AUX3 + CBCJ-2) - AUX3 > * C ACJ-1) - BCJ-I) 1 

1 / DENOM 

END IF 
ELSE 

DIFF = ACJ-I) - BCJ-1) 

IF ( ABSCDIFF) .LT. TINY ) THEN 

A(J) = HUGE 

ELSE 

A(J) = AUX3 + ONE / DIFF 
END IF 

END IF 
10 CONTINUE 

IF ( MODCJMAX,Z) .EQ. 0 1 THEN 

ESTLIM = ACJMAX) 

ELSE 

ESTLIM = ACJMAX-1) 

END IF 
ELSE 

AUX2 = ZERO 

AUXI = B(O) 

B(O) = SOFN 

DO 20 J = 1, JMAX 

AUX3 = AUX2 

AUX2 = AUXI 

IF ( J .LT. JMAX 1 THEN 

AUXI = B(J) 

END IF 
IF ( MODCJ,2) .EQ. 0 1 THEN 

DENOM = BCJ-1) - TWO * ACJ-I) + AUX2 

IF ( ABSCDENOM) .LT. TINY 1 THEN 

B(J) = HUGE 

ELSE 

B(J) = AUX3 + C ACJ-2) - AUX3 ) * C BCJ-I) - ACJ-1) 1 

1 / DENOM 

END IF 
ELSE 

DIFF = BCJ-I) - ACJ-I) 
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IF ( ABS(DIFF) .LT. TINY 1 THEN 

B(J) = HUGE 

ELSE 

B(J) = AUX3 + ONE / DIFF 

END IF 
END IF 

20 CONTINUE 

IF ( MOD(JMAX,2) .EQ. 0 1 THEN 

ESTLIM = B(JMAX) 

ELSE 

ESTLIM = B(JMAX-I) 

END IF 
END IF 
RETURN 

END 

10.3. The iteration of @” 

In section 5 it was shown how Aitken’s A2 algorithm, which according to eq. (5.1-5) is 
identical with cp’, can be iterated to give the sequence transformation s&“‘. In the same way, it 
was shown in section 6.3 that pp’ can be iterated to give the sequence transformation Wj”). In 
this section, we want to analyze how the transform 88”’ can be iterated. From the recursive 
scheme (10.1-9) we obtain the following expression: 

fip = s 
[As,] [As,+,] [A2sn+1] 

n+l - [As,,,][A's,] - [As,][A2s,+l] ’ ’ E “’ (10.3-Q 

It follows from this relationship that a$“), which is a kind of weighted A3 process, is identical 
with Lubkin’s W transformation [40]. Many other representations for 94”) can be derived by 
suitable manipulations of eq. (10.3-l). Examples are: 

@“‘= sn+l [As,+21 [A’s,] - sn+2 [A4 [A2sn+1] 

[As,+21 [A24 - [&I [A’sn+l] 

(10.3-2) 

= A2 bn+l/ASnl 
A2 [l/As,] . 

Comparison of eq. (10.3-3) with eqs. 
special case of Levin’s 24 transformation 
AS,: 

(10.3-3) 

(2.4-Q, (7.3-5), and (9.5-4) shows that 81”’ is also a 
or Drummonds sequence transformation with o,,+i = 

(10.3-4) 

(10.3-5) 

In addition, a comparison of eqs. (5.1-12) and (10.3-3) shows that 84”) may also be considered 
to be a generalization of Aitken’s A2 process. 
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If we want to iterate eq. (10.3-l), we have to use the following recursive scheme: 

J?p = s 
n, nEN,, (10.3-6a) 

y’:‘, = 3 ,(n+l) _ 
[A#'] [Ay,c’+‘)] [Ayi’+‘)] 

[ Afk(n+2)] [ A2&“‘] - [ Ay$“‘] [ A2fi”+i)] ’ 
k, n E N,. (10.3-6b) 

As usual, the difference operator A acts only upon the superscript n and not upon the 
subscript k. It follows from this recursive scheme that for the computation of #in) the sequence 
elements s,, s,+~, . . . , s,+~~ have to be known. Consequently, yin) is a transformation of order 
3k. In that respect, yin) is equivalent to $4:) which needs the same set s,, s,+i, . . . , s,+~~ of 
sequence elements for its computation. 

In sections 13 and 14, we shall see that y$“) is a powerful sequence transformation which has’ 
similiar properties as IY$L), i.e., it is able to accelerate linear and logarithmic convergence and is 
also able to sum even wildly divergent series. This may be considered to be an indirect 
confirmation of the validity of Brezinski’s choice (10.1-4) which is based upon the assumption 
that the exact numerical values of the transforms #$!+i do not really matter as long as they 
diverge if the transforms ~Yjz) converge. If we would replace the 4-term recursion (lO.l-9b) by the 
3-term recursion 

then 

10.4. 

A 

19& = l/[ A@;‘], k, n E N,,, 

with this modified 9 algorithm we would obtain 

8;;) =$$n). 

(10.3-7) 

(10.3-8) 

Programming the iterated theta algorithm 

program, which computes the sequence transformation xk (n), should have the same features 
as the other programs in this report. This means it should read in the sequence elements sO, 
s1 )...) s,, . . . successively starting with s,,. After the input of each new sequence element s, as 

(n) many new elements fk should be computed as is permitted by the recursive scheme (10.3-6). 
That new element fin), which has the largest subskript k, should be used as the new 
approximation to the limit of the sequence {sn!j. 

Let us arrange the elements $j”) in a rectangular scheme in such a way that the superscript n 
indicates the row and the subscript k the column of the 2-dimensional array: 

,J?p $1’0’ yp . . . go) . . . 

J?p yp $2’1’ . . . Jp . . . 

dab’2) yp J?p . . . yp . . . 

yp $y’ jp . . . $;1’3’ . . . (10.4-l) 
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The entries in the first column of the array are the starting values $b’“) = s, of the recursion 
according to eq. (10.3-6a). The remaining elements of the 3 table can be computed with the help 
of the recurrence formula (10.3-6b). The 5 elements, which are connected by the nonlinear 
recursion (10.3-6b), form the following pattern: 

A?) owl 
$qn+l) 

,gn+2) 

yk(n+3) 

(10.4-2) 

It was remarked earlier that 194”’ may be considered to be a generalization of Aitken’s A2 
process. In the same way, the computational algorithm for the sequence transformation fin) is 
essentially a generalization of the computational scheme for Aitken’s iterated A2 process .&in) 
which was discussed in section 5.2. For that purpose, the recursive scheme (10.3-6) is rewritten in 
the following way: 

n 2 0, (10.4-3a) 

n23 1515 [n/3]. (10.4-3b) 

As usual, I[x] denotes the integral part of x, i.e., the largest integer v satisfying v 5 X. It 
follows either from the geometric pattern (10.4-2) or from this recursive scheme that after the 
input of a new sequence element S, the string ,$$m-3P) with 0 5 p I [m/3] can be computed. 

Again, the approximation to the limit of the sequence to be transformed depends upon the 
index 1y1 of the last sequence element S, which was read in. If YM is a multiple of 3, m = 3~., our 
approximation to the limit will be the transformation 

{.%, +.,s3p} +,aEcO’, (10.4-4) 

if we have m = 3~ + 1, our approximation to the limit will be 

h s2, ...,~3p+l} %p> (10.4-5) 

and if we have m = 3~ + 2, our approximation to the limit will be 

{s2, s3,--,~3p+2} -+Ac2). (10.4-6) 

With the help of the notation [x1 for the integral part of x these three relationships can be 
combined into a single equation yielding 

L 3nm/3n9 S,-3frn/31+17~*~~ 
(m--3lLm/3B) 

sm > -+o%n,3n . (10.4-7) 
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The recursive scheme (10.4-3) - or equivalently the geometric pattern (10.4-2) - looks 
relatively complicated. But nevertheless, it is possible to perform the computation of the string 

JJl(n-30 with 0 I 1 I [n/311 in a single l-dimensional array J if the elements of the table of this 
sequence transformation are stored according to the following rule: 

&:,;Dy) -+ J( n - v>, n20, Olv<n. (10.4-8) 

With this convention, the recursive scheme (10.4-3) can be reformulated in terms of the 
elements of the array J: 

J(n) +-in, n 2 0, ~10.4-9a~ 

J(m) c- J(m + 1) - 
[AJ(wz)][AJ(wz+~)][A~J(wz+~)] 

[AJ(~+~)][~~J(wz)] - [AJ(m)][A2J(m+1)] ’ 

m = n - 31, n 2 3, (10.4-9b) 

The following FORTRAN 77 subroutine THETIT performs the recursive computation of the 
iterated 6, algorithm in a l-dimensional array J using the recursive scheme (10.4-3). THETIT is 
safeguarded against an exact or approximate vanishing of the denominator in eq. (10.4-3~) by 
using two variables HUGE and TINY. The elements s, with n = 0, 1, 2, . . . of the sequence to 
be transformed have to be computed in a DO loop in the calling program. Whenever a new 
sequence element s, is computed in the outer DO loop this subroutine THETIT has to be called 
again and a new string $/n-31) with 0 < 1 I [n/3] will be calculated. The new sequence element 
s, is read in via the variable SOFN and the approximation to the limit is returned via the 
variable ESTLIM. 

It is important to note that THETIT only calculates the appro~mations to the limit according 
to eqs. (10.4-4)-(10.4-6). The convergence of the whole acceleration or summation process has to 
be analyzed in the calling program. 

SUBROUTINE THETIT(SOFN,N,ARJ,LARRAY,ESTLIM) 

DIMENSION ARJ(O:LARRAY) 

PARARETER ( HUGE = 1 .E+60 , TINY = l-E-60 ) 

ARJ(N) = SOFN 

IF (N.LT.3) THEN 

ESTLIM = SOFN 

ELSE 

LMAX = N/3 

M =N 

DO 10 L = l,LMAX 

M =M - 3 
DIFFO = ARJ(H+l) - ARJCM) 

DIFFI = ARJ(M+;Z) - ARJ(M+l) 

DIFF2 = ARJIMt3) - ARJtH+Z) 

DENOM = DIFFZ * (DIFFl - DIFFO) - DIFFO * lDIFF2 - DIFFI) 

IF ( ABS(DENOH).LT.TINY ) THEN 

ARJ(M) = HUGE 
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ELSE 

ARJ CM) = ARJ(M+l) - DIFFO * DIFFI * (DIFFZ - DIFFl) / DENOM 

END IF 
10 CONTINUE 

ESTLIM = ARJ(MOD(N,3)) 

END IF 

RETURN 

END 

11. On the derivation of theta-type algorithms 

11.1. New sequence transformations based upon Aitken’s iterated A2 process 

In section 10.1 it was discussed how Brezinski’s 9 algorithm, eq. (lO.l-9), can be derived by 
modifying Wynn’s e algorithm, eq. (4.2-l). The 9 algorithm is a very powerful sequence 
transformation. It accelerates linear convergence and sums divergent series approximately as 
efficiently as the E algorithm. However, unlike the e algorithm the 9 algorithm is also able to 
accelerate many logarithmically convergent sequences. Consequently, it is frequently emphasized 
in the literature that Brezinski’s 9 algorithm combines the advantageous features of both Wynn’s 
e and Wynn’s p algorithm. 

Brezinski [27] suggested to use his approach, which led to the 9 algorithm, also in the case of 
other sequence transformations. This will be done in this section. However, one should not 
expect that Brezinski’s approach will automatically lead to new sequence transformations that 
are more useful than the transformations from which they were derived. For instance, in the case 
of Wynn’s p algorithm, eq. (6.2-2), which is formally almost identical with the c algorithm, 
Brezinski’s approach led to the sequence transformation Or’, eq. (lO.l-lo), which is much less 
efficient than Wynn’s p algorithm in the case of logarithmic convergence and which is also not 
very powerful in the case of linear convergence or divergence. Consequently, the sequence 
transformation Op) is practically useless although it is certainly more versatile than the p 
algorithm from which it was derived. 

But even if Brezinski’s 9 concept does not automatically lead to practically useful new 
sequence transformations, it should nevertheless be worthwhile to investigate in which cases new 
sequence transformations can be obtained that are at least in some sense better than the 
transformations from which they were derived. 

It follows from eqs. (10.1-l) and (10.1-8) that the essential step in the derivation of the 9 
algorithm consists in replacing a recursion of the general type 

fn=a,+b, (11 J-1) 

by a more complicated modified recursion 

fn=a,--sb,,. 
n 

(11 l-2) 
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Thus, a new sequence transformation can be constructed by replacing a recursion of the type 
of eq. (11.1-l) by a recursion of the type of eq. (11.1-2) in the recursive scheme which defines a 
given sequence transformation. The new sequence transformation will have a more nonlinear 
structure than the original transformation. In addition, such a modification will normally 
increase the order of the transformation by one. 

The probably closest relative of Wynn’s z algorithm is Aitken’s iterated A2 process, eq. 
(5.1-15). This follows from the fact that because of eq. (5.1-5) the e algorithm may also be 
considered to be a generalization of Aitken’s A2 process, eq. (5.1-4). Aitken’s iterated A2 process 
and Wynn’s 6 algorithm have similar properties since they are both able to accelerate linear 
convergence and to sum many divergent series but are unable to accelerate logarithmic conver- 
gence. Consequently, it would be interesting to see how Brezinski’s 6 concept works in the case 
of Aitken’s iterated A2 process. 

Let us now assume that a sequence transformation is defined by the following recursive 
scheme: 

T;“’ = s 
n, nEN),, (11 .l-3a) 

T,‘:‘, = Tk(“) + Din’, k, n E IV,,. (11 .l-3b) 

As in section 10.1 it is assumed that D,$“’ is a quantity which depends upon one or several 
elements of the table of this transformation. If this recursive scheme is to be modified along the 
lines of Brezinski’s 9 algorithm, a comparison with eqs. (11.1-l) and (11.1-2) shows that it must 
be changed in the following way: 

T$” = s 
fly nEN,, (11 S-4a) 

T,‘:\ = T$=) - 
AT;*) --0:“’ 
A@” ’ 

k, n E IV,,. (11 .l-4b) 

Aitken’s iterated A2 process, eq. (5.1-E+, is of the form of eq. (11.1-3). Thus, if Aitken’s 
iterated A2 process is modified according to eq. (11.1-4), a new sequence transformation .G%‘i”’ 
results which is defined by the following nonlinear recursive scheme: 

[ A.QY~)]'[ 42 97p+l)] 
[A~~~‘]‘[A’O@+“] _ [A@“+“]2[A2@“)] ’ k’ n E No- 

(11 .l-5a) 

(11 .l-5b) 

Again, it is assumed that the difference operator A acts only upon the superscript n and not 
upon the subscript k. 

However, this is not the only possibility of modifying Aitken’s iterated A2 process. It follows 
from eq. (5.1-6) that the recursive scheme for Aitken’s iterated A2 process can also be written in 
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the following way: 

-0zo’“’ = 3 
n, nEN,, (ll.l-6a) 

&gj:‘, =&gp+l) - 
[Aszz'~"'] [A.B?-$~+')] 

A2&$“) ’ 
k, n E N,. (11 .l-6b) 

This version of Aitken’s iterated A2 process is a recursive scheme of the following type: 

T,“’ = s 
“7 nEN,, (ill-7a) 

T,‘:‘, = T”J+l) + @“’ 3 k, n E l’VO. (11.L7b) 

If we compare this recursive scheme with eqs. (11.1-l) and (11.1-2) we see that it has to be 
modified in the following way: 

T;“’ = s 
n, nEt+J,, (11 .l-8a) 

T,‘:‘, = Tk(“+l) _ 
AT’“+i) 

0:“’ 
ADF’ ’ 

k, n E N,. (Xl-8b) 

However, a modification of the second version of Aitken’s iterated A2 process, eq. (ill-6), 
according to eq. (11.1-8) does not produce a new sequence transformation since we obtain the 
recursive scheme for the sequence transformation $Jn), eq. (10.3-6), which was derived by 

iterating the expression for al”‘, eq. (10.3-l). 
It follows from eq. (5.1-7) that there is another possibility of rewriting the recursive scheme for 

Aitken’s A2 process in a way which would be suited for our purposes: 

&+“’ = s 
n, nEN(O, (ll.l-9a) 

(1l.L9b) 

This version of Aitken’s iterated A2 process is a recursive scheme with the following general 
structure, 

T;“’ = s 
n, nEN,, (11 .l-10a) 

T,‘:‘, = Tk(n+2) + D i”’ 3 k, n E N,, (11 .l-lob) 

which according to eqs. (11.1-1) and (11.1-2) has to be modified in the following way: 

(ll.l-lla) 
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If the third version of Aitken’s iterated A* process, eq. (11.1-9) is modified according to eq. 
(11.1-11) we obtain a new sequence transformation Vi”’ which is defined by the following 
nonlinear recursive scheme: 

$fb’“’ = 3 
n, nEN,, (11 .l-12a) 

The recursive schemes (11.1-5) and (11.1-12) for the two new sequence transformations .G?i”) 
and Vi”’ have the same structure as the recursive scheme (10.3-6) for xi”) since these 
transformations are all weighted A3 methods. Consequently, the two new sequence transforma- 
tions can be computed in the same way as ,$rk (n) In this context it is recommendable to rewrite . 

the recursive scheme (11.1-5) in the following way: 

n 2 0, (ll.l-13a) 

g@-3i) -@n-3/) + 

[ Ac$~;3~‘]3[ &$$3’+1)] 

J - j-l 
[ A~J”;3,‘]*[A*~~r73,+1)] _ [ &f$3j+l)]*[ &$“;3j’] ’ 

n 2 3, 1 Ij I lIn/3B. (11 .l-13b) 

As usual, 1x1 denotes the integral part of x, i.e., the largest integer Y satisfying v I x. The 
recursive scheme (11.1-12) should also be rewritten in the same way: 

n 2 0, (ll.l-14a) 

@n-3/) = @n-3/+*) + 

AC&:_.;31+l)]*[A~~11;3j+*)] [&y;3j+lq 

J J-1 
A~j~;3j+1)]2[ A*$$‘;:;??‘+‘)] _ [ dceJ(l;?l+2)12[A*~~~~3~)] ’ 

n 2 3, 1 Ij < iIn/3B. (11 .l-14b) 

It follows from eqs. (11.1-13) and (11.1-14) that after the input of a new sequence element s, 
the strings .@~m-3~) and %‘Jm-3W) with 0 I p I [m/31 can be computed. 

The approximations to the limit of the sequence to be transformed depend upon the index m 

of the last sequence element S, which was read in. Let .%Ln) stand for either S?$‘) or %‘A”). Then, 
if m is a multiple of 3, m = 3 p, our approximation to the limit will be the transformation 

{.%J, ~1,..43J +q!@, (11 .l-15) 

if we have m = 3~ + 1, our approximation to the limit will be 

(‘1, s2,~~~,s3p+l} +s;l), (11 .l-16) 
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and if we have m = 3~ + 2, our approximation to the limit will be 

{s*, s3,...,s3p+2) +.fp. (11 l-17) 

These three relationships can be combined into a single equation yielding 

(11.1-18) 

As in the case of the iterated 9, algorithm J$~), eq. (10.3-6), the recursive computation of the 
strings _$?!n-3j) and @n-3j) with 0 rj I [n/31 can be done in l-dimensional arrays B and C, 
respectiv;ly, if the elements of the tables of these sequence transformations are stored according 
to the following rule: 

.3-&J,) + x( n - v), n20, Olvln. (11 .l-19) 

Again .Fi”) stands for either .%J’i”’ or %$“‘, 
sional ar;ay B or C. 

and X stands for the corresponding l-dimen- 

With this convention, the recursive scheme (11.1-13) can be reformulated in terms of the 
elements of the array B: 

B(n) es,, n 2 0, (11 .l-20a) 

[AB(m)13[A2B(m + 1)] 

B(m) t B(m) + [AB(m)]‘[A’B(m + l)] - [AB(m + l)]2[A2B(m)] ’ 

m=n-3j, n 2 3, lIjIl[n/3ll. (ll.l-20b) 

Similarly, the recursive scheme (11.1-14) can be reformulated in terms of the elements of the 
array C: 

c(n) + s,, n 20, (11 .l-21a) 

C(m) + C(m + 2) + 
[AC(m + l)]‘[AC(m + 2)] [A2C(m + 1)] 

[AC(m + l)]‘[A2C(m + 1)] - [AC(m + 2)]*[A*C(m)] ’ 

m = n - 3j, n 2 3, lIjl[n/31. (11 .l-21b) 

It follows from their recursive schemes that fin), eq. (10.3-6), Z@“‘, eq. (ll.l-5), and %?A”‘, eq. 
(ll.l-12), are all transformations of order I = 3k. In that respect, they are equivalent to tijz), eq. 
(lO.l-9), which needs the same set s,, . . . , s,+~~ of sequence elements for its computation. 

Numerical tests showed that the sequence transformations $-J”‘, eq. (10.3-6), a,$“), eq 
(ll.l-5), and %,$“), eq. ( ll.l-12), are clearly more versatile than Aitken’s iterated A2 process from 
which they were derived since they are also able to accelerate logarithmic convergence. The 
sequence transformation .GJ?p’ is in general less powerful than the other two transformations, 



and yin) is normally the most powerful transformation, being roughly comparable with 
Brezinski’s 9 algorithm. 

In this section we want to construct new sequence transformations by modifying the recursive 
schemes of the linear transformations Av)(/3, s,), eq. (7.3-20), Fjn)(~, s,), eq. (8.4-ll), and 
g$“)([, s,,), eq. (9.4-ll), according to eqs, (11.1-1) and (11.1-2). 

The recursive schemes (7.3-211, f8.4-12), and (9.4-12) for the linear sequence transformations 
A~~(~~ s,), P,,“‘(tu, s*), and @p’(S, s,) are all uf the form of eq. (11.1-7). ~unseq~ent~y, these 
recursive schemes will be modified according to eq. (11.1-8). Hence, in the case of the recursive 
scheme (7.3-21) for the sequence transformation A?)( j3, s,) we obtain a new nonlinear sequence 
transformation X2) which is defined by the following recursive scheme: 

As usual, it is assumed here that the difference operator A acts only upon 
and not upon the subscript k. 

The nonlinear sequence transformation ok(“) is obtained by modifying the 
(8.4-12) for .&@)(a, s,) : 

fn) = @-w - (a + n + k)[A@)f [A@+‘,] 
@k-k1 

(a t n + k + I)[ Ac$‘+~)] - (a + n + k)[A@,l ’ 
k,n E 

(11.2-la) 

(11.2-lb) 

the superscript n 

recursive scheme 

(11.2-2a) 

N,. (11.2-2b) 

Finally, a modification of the recursive scheme (9.4-12) for Pin)({, s,) yields the nonlinear 
sequence transformation p(kn+ 

pS”f=S it? nE&, f11.2-3a) 

&GI = Eil(kn+u _ (Y+n-k)[A~1S;n)][A~(k”+‘)] 

(l + n - k + l)[A&+‘)] - (I+ n - k)[Ap’$)f ’ 
k, n E N,. (11.2-3b) 

These new sequence tr~sformations A$?‘, ain), and jlbp) are all weighted A2 methods, i.e., 
modifications of Aitken’s iterated A2 process, eq. (5.1-35). In this context it may be of interest 
that Aitken’s iterated A2 process can also be derived by modifying a linear sequence transforma- 
tion along the lines of Brezinski’s 6 algorithm. Let us consider the following recursive scheme: 



E.J. Weniger / Nonlinear sequence transformations 291 

Obviously, the sequence transformation Jin), which is defined by a recursive scheme of the 
type of eq. (ill-3), can also be written in the following way: 

(11.2-5) 

Here, E denotes the shift operator which is defined by eq. (2.2-4). If the recursive scheme 
(11.2-4) is changed according to eq. (ll.l-4), we obtain Aitken’s iterated A* process, eq. (5.1-15). 

The similarity of hJlf), a,$“), and p.(kn) with Aitken’s iterated A* process implies that these 
sequence transformations can be computed in the same way as Aitken’s iterated 
that purpose, it is recommendable to rewrite the recursive scheme (11.2-1) 
following way: 

A* process. For 
for h(kn) in the 

x6”’ = s n, n 2 0, (11.2-6a) 

A(n-*j) = Ay_-;i+l) _ 
(p + n - 2j)[ Ax(:_2j)] [ A$?-;j+l)] 

J (p+n - 2j+ l)[AX’;_;*‘+“] - (p+n - 2j)[AXy_-iz”] ’ 

n 2 2, 1 Ijl [n/21. (11.2-6b) 

The recursive schemes (11.2-2) and (11.2-3) should also be rewritten in the same way: 

*0 
(n) = $ 

n, n 2 0, (11.2-7a) 

a(n-*j) = o,(:;*i+l) _ 
(a+n -j)[A~~~~*"][~o,'_"~*'+"] 

J (a+n -j+ l)[Aa,(T;*j+‘)] - (a+n -j)[Aojf;*j)] ’ 

n 2 2, 1 IjIUn/2JJ. (11.2-7b) 

/$)CS n, n 2 0, (11.2-8a) 

py-*j) = py_;*j+l) _ 
({ + n - 3j)[Ap1"_;*"] [dp$'_;*j+')] 

(l+ n - 3j + I)[ Apy_<*j+')] - ([ + n - 3j)[ Apy_;*j)] ’ 

n 2 2, 1 IjII[n/2D. (11.2-8b) 

As in the case of Aitken’s iterated A* process, the approximations to the limit of these 
transformations depend upon the index m of the last sequence element S, which was used in 
these recursions. Let .S?i’) now stand for any of the sequence transformations X(kn), ai”), or pp). 
Then, if m is even, m = 2~, our approximations to the limit of the sequence are the transforma- 
tions 

{&I, Sl,..., szp} +.%p, (11.2-9) 
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and if m is odd, m = 2~ + 1, our approximations to the limit will be 

These two relationships can be combined into a single equation yielding 

(11.2-10) 

(11.2-11) 

Only l-dimensional arrays ii, a”, and jZ will be needed for the computation of the sequence 
transformations A($), ai”’ and &‘) if the elements of the tables of these transformations are 
stored in the same way as’the elements of the Aitken table according to eq. (5.2-6) i.e., 

?J-&;;) + x( n - V), n20, OSVln. (11.2-12) 

Here, xi”) stands for any of the three sequence transformations _x’k”‘, ain), and I, and X 
stands for the corresponding l-dimensional array, i.e., either for X, o”, or for fi. With this 
convention, the recursive scheme (11.2-6) for h(/) can be reformulated in terms of the elements of 
the l-dimensional array i: 

X(n) = S,, n 2 0, (11.2-13a) 

X(M) =X(, + 1) - 
(P + m)[AX(m)] [A&r + I)] 

(p + m + l)[A+ + l)] - (p + m)[AX(m)] ’ 

m = n - 2j, n 2 2, 1 Ijl [n/21. (11.2-13b) 

With the help of convention (11.2-12) the recursive schemes (11.2-7) for ai”’ and (11.2-8) for 
&‘I can also be reformulated in terms of the elements of the arrays a” and F yielding similiar 
expressions. 

It follows from their recursive schemes that X(L), eq. (11.2-l), uLn), eq. (11.2-2), and pt), eq. 
(11.2-3), are all transformations of order I= 2k. In that respect, they are equivalent to &in), eq. 
(5.1-15), and c&), eq. (4.2-l), which need the same set s,, . . . , s,+~~ of sequence elements for their 
computation. 

We shall see later that the nonlinear sequence transformations A(z), ein), and &‘) are more 
versatile than the linear sequence transformations A(,“)(P, s,), eq. (7.3-20), FJn)(~, .sn), eq. 
(8.4-ll), and .G@in)([, s,), eq. (9.4-12), from which they were derived, since they are not only able 
to accelerate logarithmic convergence but also linear convergence. In addition, they can also sum 
many divergent series. Numerical tests showed that A([), eq. (11.2-l), is normally a more 
powerful sequence transformation than ain), eq. (11.2-2), or pp), eq. (11.2-3). 

12. A theoretical analysis of sequence transformations 

12.1. Germain-Bonne’s formal theory of convergence acceleration 

The properties of linear and nonlinear sequence transformations are in some sense comple- 
mentary. Theoretically, linear sequence transformations are now very well understood (see for 
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instance refs. [4] and [7-111) but their power as well as their practical usefulness is very limited. 
Nonlinear sequence transformations are often able to achieve spectacular results, but theoreti- 
cally, only relatively little is known. 

Any theory of nonlinear sequence transformations has to say something about the two 
fundamental questions which arise in connection with acceleration of convergence. Firstly, is the 
transformation under consideration regular, i.e., will the transformed sequence jjs~~ converge to 
the same limit as the original sequence 4~~1. Secondly, will the transformed sequence converge 
more rapidly than the original sequence. 

The first attempt to develop a general theory of the regularity and the acceleration properties 
of nonlinear sequence transformations is due to Germain-Bonne [33] who considered sequence 
transformations G, with k E N, that are functions defined on vectors x = (xi, x2,. . . , x~+~), 

i.e., functions of the type G,: Rk+’ -+ R. Germain-Bonne postulated that these sequence 
transformations G, possess some very general properties such as continuity, homogeneity and 
translativity. On the basis of these postulates Germain-Bonne could formulate some conditions 
which guarantee the regularity of such a sequence transformation. In addition, Germain-Bonne 
succeeded in formulating a general criterion which decides whether a sequence transformation G, 
accelerates linear convergence or not. A good treatment of Germain-Bonne’s formal theory of 
convergence acceleration [33] can also be found in Wimp’s book (see pp. 101-105 of ref. [23]). 

The applicability of Germain-Borme’s theory in its original version is quite limited. The reason 
is that Germain-Bonne treats sequence transformations which depend upon n only implicitly via 
the k + 1 sequence elements s,, s,+i,_. . , s,+~, on which they act, but not explicitly. Conse- 
quently, Germain-Bonne’s theory is limited to sequence transformations as for instance Wynn’s E 
algorithm, eq. (4.2-l), Aitken’s iterated A* process, eq. (5.1-15), or Brezinski’s 9 algorithm, eq. 
(lO.l-9), which are all defined by recursive schemes that do not depend explicitly upon n. It 
cannot be applied in the case of a sequence transformation such as X(kn), eq. (11.2-l), although it 
is a close relative of Aitken’s iterated A* process, since its recursive scheme depends explicitly on 
n. Consequently, in this section Germain-Bonne’s theory will be modified in such a way that it 
can be applied to the sequence transformations of this report which mostly depend explicitly 
upon n. 

Let us therefore assume that for fixed k E N, a sequence transformation Gp) is a function 
which is defined on vectors x = (xi, x2,. . . , x~+~) E IWk+’ and which may depend explicitly on 
n E N,. In addition, we assume that such a sequence transformation Gp): R ‘+’ + R possesses 
for fixed k E N, and for all n E RJ, the following properties: 

(H-O): Gp’ is defined and continuous on a subset X’“’ of R k+l. 

(H-l): Gp’ is a homogeneous function of degree one. This means that G!“’ satisfies for arbitrary 
vectors x E X’“’ and for all X E R such that Xx is still an element of Xc”’ 

Gi’+(% AX, ,..., AX,,,) =hGp'(X,, x2 ,..., xk+l ). (12.1-l) 

(H-2): Gp’ is invariant under translation in the sense of eq. (3.1-4). Consequently, for arbitrary 
t E R and for arbitrary vectors x E X’“’ we have 

GF’(x, + t, X2 + t,.. ., Xk+l + t) = Gp’(x,, X2,. . ., Xk+l) + t. (12.1-2) 
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(H-3): A subset XC”) of R k+l exists such that for every vector x = (x1, x2,. . . , x~+~) belonging 
to this subset the limiting transformation 

(12.1-3) 

is uniquely defined and continuous. In addition, it is assumed that the limiting transforma- 
tion Gi”’ is also homogeneous and invariant under translation according to (H-l) and 
(H-2). 

The first three postulates (H-O)-(H-2) are essentially identical with the analogous postulates 
made by Germain-Bonne [33]. The main difference is that here a sequence transformation Gp) 
may depend explicitly upon n and not only implicitly via the k + 1 sequence elements s,, s,, i, 
. ..) S n+k on which it acts. Some of Germain-Bonne’s results are based on the limiting behaviour 
of a sequence transformation G,Js,, s,+i, . . . , s,+~) as n + CO. If we want to formulate 
analogous results for a sequence transformation Gp), which may depend explicitly on n, we have 
to require that the limit n --, 00 can be performed in the expression defining Gp’ and that a 
unique limiting transformation GLw) exists which is defined and continuous on a suitable subset 
X’“’ of Rk+’ and which is also homogeneous and translative according to (H-l) and (H-2). 

Conditions for the existence of the limiting transformation Giw) were discussed by Smith and 
Ford (see p. 226 of ref. [29]). Their analysis was based upon that version of the Moore-Smith 
theorem [93] which can be found in Gleason’s book (see p. 256 of ref. [94]). However, for our 
purposes it is probably simpler to postulate the validity of (H-3), since in all cases, in which we 
shall have to do such a limit n + CO, the existence of a limiting transformation GiwP”’ with the 
required properties will always be quite obvious. 

In (H-l) the restriction, that Xx has to be an element of X’“), is necessary. The reason is that 
nonlinear sequence transformations are frequently not defined for constant sequences. In such a 
case, X = 0 has to be excluded because Gp’ would not be defined for the vector x = (0, 0,. . . ,O). 

Concerning (H-3) it should be noted that Gp’ with n being finite and its limiting transforma- 
tion Giw) are not necessarily defined and continuous on the same subset of lR k+l, i.e., in general 
X’“) # Xcm). For instance, if in the recursive scheme (11.2-1) for Xt) the limit n + CO is 
performed according to eq. (12.1-3), we obtain the second version of Aitken’s iterated A2 process, 
eq. (11.1-6). If we compare the subsets of iR3, for which the explicit expressions for &‘$“’ and 
XC;) are continuous, we find that Aitken’s A2 process is defined for vectors x = (xi, x2, xj) 
which satisfy xi - 2x, + xj # 0. A different restriction is necessary in the case of X’;’ as long as 
n is finite. 

It was remarked above that a given sequence transformation G:“’ will normally not be 
continuous for arbitrary vectors x E Iw k+l. If, however, a sequence transformation G!“’ is 
defined and continuous for all vectors x E iRk+‘, then the regularity of this transformation can 
be proved quite easily. 

Theorem 12-1: If a sequence transformation Gp’ is a continuous function on lRk+’ for all n E NO 
and if its limiting transformation GiW) is also continuous on Iw k+l and satisfies (H-l) and (H-2), 
then Gp’ is regular, i.e., it preserves the limit s of every convergent sequence {snD. 
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Proofi Since G!“’ is continuous on lR ‘+ ’ for all n E N, and since @,I converges to some limit s, 
we have by continuity 

lim Gp)(s,, s,+i ,..., s,,~) = G,$“‘(.s, s ,..., s). (12.1-4) 
n+* 

Since (H-2) remains valid as n + cc, we may conclude that for all constant sequences 
s, s, s, . . . we have 

Gi=‘“‘(s, s,..., s) =s+ Gi=‘“‘(O, 0 ,..., 0). 

In the same way, (H-l) remains valid as n + cc. Thus, we may conclude 

(12.1-5) 

G$“‘(O, O,, . . ,0) = 0. (12.1-6) 

Hence, it follows from eqs. (12.1-4)-(12.1-6) that a sequence transformation Gp’, which 
satisfies the above assumptions, is regular. 

Unfortunately, theorem 12-l will be of little use in the case of nonlinear sequence transforma- 
tions which are in general nonregular. A nonlinear sequence transformation G!“’ is normally a 
rational function of the k + 1 sequence elements s,, s,,+i, . . . , s,+~ which are used for its 
computation. Since rational functions have poles, we cannot expect that nonlinear sequence 
transformations will be continuous on lRk+‘. Consequently, in the case of a nonlinear sequence 
transformation the convergence of an arbitrary sequence {snD to some limit s does not imply that 
the transformed sequence converges at all, let alone to the same limit. In addition, eqs. (12.1-5) 
and (12.1-6) need not be valid since nonlinear sequence transformations are not necessarily 
defined for constant sequences. 

Theorem 12-2: Let IIPk+’ be the set of vectors x E lRk+’ with distinct components. Every sequence 

transformation Gp’, which is a continuous function for all vectors x E KDk+’ and which also satisfies 

(H-I) and (H-2), can be expressed in the following way: 

G:"'(x,, x2,. . . , ++I) = X1 + (X2 - Xl)&+ z,. . . , x”,“” ikyl ). (12.1-7) 

The associated transformation gk (‘) which is defined and continuous on a subset of IF k-1, the set of 
vectors y E Iw k-1 with nonzero components, is given by 

Xk+l - xk 
k-lj-1 

,***, 
0, 1, 1 + xj,_ .., c n xi+3 - Xi+2 . 

xk-xk-l x2 - Xl j=O i=O xi+2 - xi+l 

(12.1-8) 

Proof: According to (H-2) we can subtract xi from Gp’, and according to (H-l) we can divide 
the k + 1 arguments of Gp’ by x2 - xi. This yields: 

G:“‘(x,, x2,._. , Xk+l) = Xl + (X2 - xl)Gp’ 0, x3 - Xl 1, ~ xk+l - x1 

x2 - Xl 
9 -**, 

x2 - Xl 

(12.1-9) 
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We now need the following relationship which can be proved quite easily: 

X Vfl -x1 = ‘S I! xi+3 -xi+* 

X2 - Xl j=O i=O xi+2 - xi+l ’ 
VEN,. (12.1-10) 

If we insert eq. (12.1-10) into eq. (12.1-9) we obtain eqs. (12.1-7) and (12.1-8). The continuity 
of gt”) on the subset of vectors y = (y,, y2,. . . , Y~_~) E lFk-‘, which are generated from vectors 

x = (xi, x2,.*., xk+i) E D k+l via the relationship 

Y/J = (Xp+2 - Xp+MXp+1- XI*)’ l<p.lk-1, (12.1-11) 

follows via eq. (12.1-7) from the continuity of Gp’ on Dk+‘. However, an associated transforma- 
tion gp) in the sense of eqs. (12.1-7) and (12.1-8) is not defined for all vectors y E Eke’. For 
instance, if we choose y = (1, - 1, 1, - 1, . . .), which clearly belongs to IFkP1, we are not able to 
find a VeCtOr x = (Xl, X2,. . . , Xk+l) E Dk+’ which satisfies eq. (12.1-11). 

With the help of theorem 12-2 it can be analyzed for which convergent sequences Qs,D a 
sequence transformation Gp) satisfying (H-O)-(H-3) will be regular. 

Theorem 12-3: Let Gp) be a sequence transformation which satisfies theorem 12-2. This means that 
according to eqs. (12.1-7) and (12.1-8) an associated transformation gp’ exists which is defined and 

continuous on that subset Of UectOrS y = (y,, y,, . . . , y&l) E Ek-’ which is generated by all vectors 

x = (xl, x2, * * -> xk+l) E IID kfl according to eq. (12.1-11). If the limiting associated transformation, 

which is defined by 

&yYl, Y27.*.9 Yk-I) = nl\mmg!n)(Yly Y2?..? Yk-l)? (12.1-12) 

is also defined and continuous on the same subset of 5 k-1 as g,$“), then Gp’ will preserve the limit s - ._ 
of every convergent sequence as,, 1 having the following properties: 
(i): For sufficiently large values of n E N, the sequence elements 

(ii): For sufficiently large values of n E IV, the ratios As,+~/As, 

c I ) As,+~/As,, ( I c’, O~C<C’~oc. 

s, are all distinct. 
all satisfy the inequality 

(12.1-13) 

Proof: It follows from (i) that As, # 0 for sufficiently large values of n. Consequently, G!“) can 
be rewritten for sufficiently large values of n according to eq. (12.1-7) yielding 

Gp)(s,, s,+~,.. ., s,+~) = s, + As,g!“’ 
As 

+,. .., Asn+k-l . 
n n+k-2 

According to eq. (12.1-8) the associated transformation is given by 

(12.1-14) 
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Gp) will preserve the limit of 1~~) if the second term on the right-hand side of eq. (12.1-14) 
vanishes as n + cc. Since {snD converges, As, vanishes as n + cc and we only have to show that 
the associated transformation gp) remains bounded as n -+ co. The limiting associated transfor- 
mation gi”’ is by assumption defined and continuous on that subset of lFk-’ which is generated 
from vectors x E ED k+l according to eq. (12.1-11). Continuity of a given function on a certain 
subset implies the boundedness of this function for all bounded elements belonging to this 
subset. It follows from (i) that for Sufficiently large values of n every string s,, s,+ i, . . . , s,+k 

belongs to lDk+‘, and it follows from (ii) that for sufficiently large values of n the k - 1 
arguments of gp) in eq. (12.1-15) are all nonzero and bounded. This implies that gi”’ will 
remain bounded as n -+ 00. This concludes the proof of theorem 12-3. 

Next, a criterion will be formulated which decides whether a sequence transformation Gp’, 
which may depend explicitly upon n, is able to accelerate linear convergence or not. This is 
probably the most important result of our adaptation of Germain-Bonne’s formal theory of 
convergence acceleration [33]. 

Theorem 12-4: Let us assume that a sequence $s,,) converges linearly to some limit s, i.e., 

lim -‘=p, 
S,+1 

n-+oo s,-s 
O<]p]<l. (12.1-16) 

Then, a necessary and sufficient condition that a sequence transformation Gp’: 88 k+l + R accel- 
erates the convergence of $s,,Q is that its associated transformation g,$“’ satisfies: 

Here, {pn) is an arbitrary sequence which converges to p. The above statement can also be 
formulated in terms of the limiting transformation Gi”‘: 

O<]p]<l. (12.1-18) 

Proof: Since #rnD converges linearly, it follows from eqs. (2.6-3) and (2.6-4) that As, - p” as 
n + 00. Thus, Gp’ can for sufficiently large values of n be rewritten according to eq. (12.1-14). If 
we subtract s from both sides of eq. (12.1-14) and divide the resulting expression by s, - s we 
obtain: 

G~‘(s,, s,+l~---d,+k)-s =1+ As,, 
s -s n 

(12.1-19) 
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According to eq. (2.6-6) the convergence of a sequence $rnD to its limit s is accelerated by a 
sequence transformation Gp’ if 

(12.1-20) 

Hence, if we perform the limit n + cc in eq. (12.1-19), the left-hand side has to vanish if Gp’ 
accelerates convergence. Thus, we only have to investigate under which conditions the right-hand 
side of eq. (12.1-19) also vanishes as n + 00. With the help of 

,?I s 
AS L= lim s’+l-s-l=p_l. 
n -S n-+m s, - s 

Next, we observe that because of the equivalence of eqs. 
satisfying eq. (12.1-16) the arguments 

eq. (12.1-16) we find: 

(12.1-21) 

(2.6-3) and (2.6-4) for sequences 

P,, = ~~,+~/~~,> nEN,, (12.1-22) 

of the associated transformation gp’ in eq. (12.1-19) converge to p as n + cc. Now, the 
right-hand side of eq. (12.1-19) can only vanish as n --, cc if the limiting associated transforma- 
tion g!“’ satisfies eq. (12.1-17). In the same way, if eq. (12.1-17) is satisfied, then because of eq. 
(12.1-21) the right-hand side of eq. (12.1-19) vanishes. Consequently, the validity of eq. (12.1-17) 
is equivalent to the statement that Gp) accelerates linear convergence. 

The sequence 0, 1, 1 + p, . . . , on which the limiting transformation GL*) acts in eq. (12.1-18), 
is apart from its first element and apart from a shift of the indices identical with the sequence of 
partial sums of the geometric series, eq. (2.6-2). This is best seen by rewriting the elements of this 
sequence in the following way: 

n-1 

u,(p) = 1- = c pv, 
1-P 

O<lPl<l, nEN,. 
v=Cl 

(12.1-23) 

Obviously, this shifted sequence also converges to l/(1 - p) as n + cc. Hence, we see that 
theorem 12-4, which decides whether a given sequence transformation Gp’ accelerates linear 
convergence or not, requires that the limiting transformation GLw) is exact for the shifted 
sequence {a,(p) D of partial sums of the geometric series. This fact indicates that there is a close 
connection between the exactness of a sequence transformation for the partial sums of the 
geometric series and its ability of accelerating linear convergence. 

12.2. Applications of Germain-Bonne’s theory 

In this section, the properties of certain sequence transformations will be analyzed with the 
help of Germain-Bonne’s formal theory of convergence acceleration. The most interesting feature 
of Germain-Bonne’s theory is its treatment of the acceleration of linear convergence. Conse- 
quently, theorem 12-4 and related questions such as the exactness of a sequence transformation 
for the geometric series will be emphasized in this section. 
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First, we want to investigate the sequence transformations X(kn), eq. (11.2-l), uin), eq. (11_2-2), 
and &“, eq_ (11.2-31, which are close relatives of Aitken’s iterated 4’ process, eq. (5.1-15). 
However, it follows from their recursive schemes (11.2-I) -(11.2-3) that unlike Aitken’s A2 
process sda;‘), eq. (5.1-4), which is by construction exact for the geometric series, A’;“), ujn), and 
PI”) are not exact for the geometric series. Consequently, it is not obvious whether A$“), crin), and 
pp), accelerate Iinear convergence. 

Theorem 12-S The sequence ~~~~for~~~~~ns Ayf, eq. (11.2-l), 6in), eq. (11.2-2), and pp’, eq. 
(11.2-3), accelerate linear convergence if and only ifAitken’s iterated A2 process .E@““, eq. (5.1-15), 
accelerates linear convergence. 

Proofi According to theorem 124 a sequence tr~sf~~ation Gpf accelerates linear convergence 
if it possesses a Iimiting t~~sfurmatio~ G, cca) which satisfies eq. (12.1-18). If we perform the limit 
n + cc in the recursive scheme (11.2-l) for h(z) according to eq, (12.1-3), we find that the 
limiting transformation of h(kn) is defined by a recursive scheme which is identical with the 
second version of Aitken’s iterated A2 process, eq. (1.1.1-6). 

Hence, it follows from eq. (12.1-18) that 7~2~ accelerates Iinear convergence if the elements of 
the sequence Q~~(p)i, eq. (12.1-23) are transformed into l/(1 - p) by the recursive scheme 
(11.1-6). 

However, since Aitken’s iterated A2 process does not depend explicitly upon n, this is at the 
same time the condition which determines whether Aitken’s iterated A2 process is able to 
accelerate linear convergence. 

If we perform the limit n + co in the recursive schemes (11.2-2) for a$“’ and (11.2-3) for pv’ 
in the sense of eq. (12.1-31, we find that they have the same limiting transformation which is 
again defined by the recursive scheme for Aitken’s iterated A2 process, eq. (11.1-6). This 
concludes the proof of theorem 12-5. 

Aitken’s iterated A2 process is defined by a recursive scheme and no explicit expression is 
known. Consequently, a general proof, that &in) accelerates linear convergence for all k 2 1, 
dues not seem possible, Instead, one can only construct an explicit rational expression for some 
special &,C ‘) with k, n being fixed integers. It can then be checked whether this explicit 
expression produces l/(1 - p) if it is applied to the elements of the sequence {un( p)D, eq. 
(12.1-23). Unfortunately, these rational expressions become very complicated for larger values of 
the subscript k. Therefore, it is recommendable to consider only the simplest case. 

Theorem X2-6: Aitken’s A2 process Jzpl’“), eq. (5.1-4), acceierates linear convergence for all n E NO. 

Proofi According to theorem 12-4 we have to show that Aitken’s A’ process z$$@)~ eq. (5.1-41, 
produces l/(1 - p) if it acts upon the sequence elements eO(p), crifp), and a,(p) which are 
defined by eq. (12.1-23)” ~tr~~tfu~ard computation shows: 

(12.2-l) 
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It follows from theorems 12-5 and 12-6 that AT), al(‘), and py) also accelerate linear conver- 
gence for all IZ E fV 0. 

Here, it must be emphasized that theorem 12-6 does not imply that &‘Ln) with k > 1 will also 
accelerate linear convergence. This has to be checked separately and independently for every 
k > 1. For instance, it follows from eq. (5.1-5) and theorem 12-6 that ~9) also accelerates linear 
convergence. However, in Wimp’s book it is shown that in the case ~(41) the limited associated 
transformation according to eqs. (12.1-7) and (12.1-8) cannot satisfy eq. (12.1-17) since it is 
unbounded in the vicinty of any (p, p, p) E R3 (see pp. 127-128 of ref. [23]). 

Next, the sequence transformations &“‘, eq. (10.3-6) G$“), eq. (11.1-5) and %‘i”), eq. 
(ll.l-12), will be analyzed. Again, no explicit expressions are known for these transformations 
which are all defined by recursive schemes. Hence, as in the case of Aitken’s iterated A2 process, 
eq. (5.1-15), only special cases can be considered and it is again recommendable to consider only 
the simplest case. 

A simple calculation shows that &“), LB’:“‘, and %‘$“’ are exact for the partial sums (2.6-2) of 
the geometric series. Consequently, it is not surprising that these transformations accelerate 
linear convergence. 

Theorem 12-7: The sequence transformations f:*), eq. (10.3-6), LB’{“), eq. (ll.l-5), and @“), eq. 
(ll.l-12), accelerate linear convergence for all n E N,. 

Proof: The recursive schemes, which define these sequence transformations, do not depend 
explicitly on n. Consequently, one only has to show that the explicit expressions for ,#{O), L%?{“), 
and .@“’ produce l/(1 - p) if they are applied to the first four elements of the sequence 
{cr,(p)D, eq. (12.1-23). Straightforward computation shows that this and consequently theorem 
12-7 is indeed true. 

Since fl[“’ is identical with 9 in), theorem 12-7 also implies that 91”’ accelerates linear 
convergence. 

Next, we shall analyze those variants of the sequence transformations Zjn)(P, s,, an), eq. 
(7.1-7), P’i’“‘( p, s,, w ) eq. (8.2-7) JZ%!?‘(~, s,, a,,), eq. (9.2-6), and &“)(s,, w,), eq. (9.5-4), 
which are based upon”ievin’s [28] explicit remainder estimates (7.3-4), (7.3-6) and (7.3-10) as 
well as Smith and Ford’s [29] modified remainder estimate (7.3-8). First, it will be shown that 
these sequence transformations are exact for the geometric series. For that purpose it is 
recommendable to modify a theorem, which was originally used by Smith and Ford (see p. 227 of 
ref. [29]) to prove that up’(p, s,), eq. (7.3-5), dp’(fi, s,), eq. (7.3-9), and vp’(/3, s*), eq. 
(7.3-ll), are exact for the geometric series, in such a way that it can also be applied in the case of 
the analogous variants of Y$“‘(j3, s,, tin), ~%‘p’(y, s,, o,), and @“)(s,, w,). 

Theorem 12-8: Assume that a sequence transformation Tk(“)(s,, w,) is defined in the following way: 

Tin+,, wn) = 
Ak[P,-,(n)s&,l 

A”[Pk-,(n)/%] ’ 
k, n E No. (12.2-2) 

Here, Pk _ 1( n) is a polynomial of degree I k - 1 in n. The sequence transformation Tin) is defined 
if the elements of Qs,,D are bounded in magnitude and if the sequence &.+,D of remainder estimates is 
chosen in such a way that the denominator in eq. (12.2-2) does not vanish. 
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Let us assume that the sequence as,, 1 converges to some limit s. Then, for k 2 1 and for n 2 0 this 
sequence transformation T,‘“‘( s wn) is exact for the sequence &snD if the sequence QtinD of 
remainder estimate can be chosei’in such a way that the denominator in eq. (12.2-2) does not vanish 
and that w, is proportional to s, - s, i.e., 

0, = c(s, -s), c + 0, nENO. (12.2-3) 

Proof: Since this sequence transformation T,““( s,, a,,) is obviously invariant under translation in 

the sense of eq. (3.1-4), we can write 

T?+,, n 

w ) = s + AkPk-l(4bn - a41 

qLd4/%1 ’ 
k, n EN,. (12.2-4) 

If 0, is proportional to s, - s according to eq. (12.2-3), the difference operator Ak in the 
numerator on the right-hand side acts only on Pk _ 1 (n) which is a annihilated because it is a 
polynomial of degree I k - 1 in n. Since the denominator on the right-hand side of eq. (12.2-4) 
does not vanish by assumption, we see that Tk(“) is exact for 4~~). 

It is immediately obvious that the sequence transformations A$“)(/?, s,, wn), eq. (7.1-7), 

y;,‘“‘( A s,, w,), eq. (8.2-7), A’p’(y, s,, an), eq. (9.2-6), and gi”‘(s,, w,,), eq. (9.5-4), are all of 
the form of eq. (12.2-2). Hence, according to theorem 12-8 these sequence transformations are 
exact for the partial sums (2.6-2) of the geometric series if the remainder estimates w, satisfy 

Z 
ilfl 

%=C1_z~ c # 0, nElV,. (12.2-5) 

Since z*/(l - z) is for fixed z and (Y also a constant, an equivalent condition for the exactness 
would be: 

(3, = C’Zn-a+*, c’ # 0, nENo, aER. (12.2-6) 

Theorem 1%!k The sequence transformations up’< /3, s,), eq. (7.3-5), yi”)( p, sn), eq. (8.4-2), and 

Y,“(Y, ~1, eq. (9.4-9, are all exact for the geometric series for k 2 2 and n 2 0, whereas 

t:“‘(P, s,,), eq. (7.3-7), d$“‘(P, s,), eq. (7.3% vp’(fi, s,), eq. (7.3-11) 7in)(P, s,), eq. (8.4-3), 
ap’(p, s,), eq. (8.4-4), rpg’(P, sn), eq. (8.4-Q T’,“‘(y, sn), eq. (9.4-3), A’,n)(y, s,,), eq. (9.4-4), 
and @i”‘( y s ) eq (9 4-5) . . are all exact for the geometric series for k 2 1 and n 2 0. Lhwnmond ‘s 

sequence transjd;mation gix)( s “, w”), eq. (9.5-4), is also exact for k 2 1 and n 2 0 if the remainder 
estimates (7.3-6), (7.3-g), and (7.3-10) are used. 

Proof: We only have to prove that in the case of the partial sums (2.6-2) of the geometric series 
the remainder estimates, which define these variants of the sequence transformations 

@“)(P, s n, w ) eq. (7.1-7) Yjn)(p, s w,), eq. (8.2-7) A’p’(y, s,, tin), eq. (9.2-6), and 
.@‘)(s,,, w,), “eq. (9.5-4), lead to sequeice transformations of the type of eq. (12.2-2) with 
remainder estimates w, that satisfy either eq. (12.2-5) or (12.2-6). 

The remainder estimate (7.3-4) leads to w, = (fl + n)z”. In the case of up)(p, sn), eq. (7.3-5) 
and yi”‘(P, s,), eq. (8.4-2), the factor j3 + n can be absorbed in eqs. (7.1-6) and (8.2-6) 
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respectively, leading for k 2 2 to new sequence transformations which are of the type of eq. 
(12.2-2). This proves the exactness of UP’< p, sn) and y,$“)( /3, s,). The exactness of Y,‘“)( y, s,), 
eq. (9.4-2), can be proved in the same way because the remainder estimate (9.4-l) yields 
w, = -(y + n)z” and because - y - n can for k 2 2 be absorbed in eq. (9.2-5) yielding a new 
sequence transformation satisfying eq. (12.2-2). However, in the case of Drummond’s sequence 
transformation $“)( s wn), eq. (9.5-4), we would not obtain a sequence transformation of the 
type of eq. (12.2-2) if Gk absorb either p + n or - y - n. Thus, with neither of the two remainder 
estimates (7.3-4) or (9.4-l) Drummond’s sequence transformation is exact for the geometric 
series. 

The remainder estimate (7.3-6) leads to w, = zn. Because of eq. (12.2-6) this proves the 
exactness of tp’( fi, So), eq. (7.3-7), r,$“)( p, s,), eq. (8.4-3), and T,‘“)(y, So), eq. (9.4-3), for k r 1. 
With this remainder estimate gin)(s,, tin) is also exact for k 2 1. 

The remainder estimate (7.3-8) leads to w, = z”+l. Because of eq. (12.2-6) this proves the 
exactness of di”‘( p, So), eq. (7.3-9), Sp’( p, So), eq. (8.4-4), and A’,“)( y, So), eq. (9.4-4), for k 2 1. 
With this remainder estimate &“)( s,, w,) is also exact for k 2 1. 

The remainder estimate (7.3-10) leads to w, = zn+t /(l - z). Because of eq. (12.2-5) this proves 
the exactness of vp’(p, So), eq. (7.3-ll), cp$“‘(p, So), eq. (8.4-5), and @p)(y, s,), eq. (9.4-5), for 
k 2 1. With this remainder estimate L$$“‘(s,, w,) is also exact for k 2 1. 

Since the sequence transformations, which are listed in theorem 12-9, are all exact for the 
geometric series, it is not surprising that they are also able to accelerate linear convergence. 

Theorem 12-10: The sequence transformations uk ‘“‘(B, sn), eq. (7.3-5), tp’(j3, s,), eq. (7.3-7), 
vi”‘< fi s ) eq (8.4-2), T,$“‘( p, s ) eq (8 4-3) Yin)(y, 
(9.4-3): PI ’ . 

n, . . 3 s,,), eq. (9.4-2), and Ti”)(y, s,,), eq. 
accelerate linear convergence if and only if Drummond’s sequence transformation 

@?(s n, a,), eq. (9.5-4), with w, = a,, accelerates linear convergence. 

The sequence transformations dp’( p, s,), eq. (7.3-9), Si”)( p, sn), eq. (8.4-4), and A’,n)(y, s,), 

eq. (9.4-4), accelerate linear convergence if and only if Drummond’s sequence transformation 
@“‘(s nr o,), eq. (9.5-4), with o, = a,,, accelerates linear convergence. 

The sequence transformations vk ‘“‘(b, s,), eq. (7.3-ll), cp(kn)(p, s,), eq. (8.4-5), and @p)(y, s,), 
eq. (9.4-5), accelerate linear convergence if and only if Drummond’s sequence transformation 

Bin)(s,, an), eq. (9.5-4), with w, = a,a,+,/(a, - a,,,) accelerates linear convergence. 

Proof: According to theorem 12-4 the sequence transformations mentioned above accelerate 
linear convergence if they possess limiting transformations which satisfy eq. (12.1-18). If we 
perform the limit n * 00 in the explicit expressions for these sequence transformations according 
to eq. (12.1-3), we find that their limiting transformations Gi”’ are Drummond’s sequence 
transformation with o, = a,, w, = a,,,, or ~3, = a,, a,+,/(a, - a,,,), respectively. 

Since Drummond’s sequence transformation does not explicitly depend on n, this is at the 
same time the condition which determines whether $“I( s,, w,) with either w, = a,, w, = a,, 1, 

or 0, = a, a,+,/(a, - a,+,) accelerates linear convergence or not. 

Theorem 12-11: Drummond’s sequence transformation S?l”)(s,, w,,), eq. (9.5-4), with either 

(3, = a,, w, = a,,,, or w, = a,a,+,/(a, - a,,,) accelerates linear convergence for k 2 1 and 

n 2 0. 
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Proofi According to theorem 12-4 Drummond’s sequence transformation gin)(s,, c+) accel- 
erates linear convergence if gk( sO, wO) is exact for the sequence au,,< p)), eq. (12.1-23). The 
remainder estimate w, = a, leads to w, = p”-‘, the remainder estimate (3, = a,,, leads to 
Q, = P”, and the remainder estimate w,, = ~,a,+,/( a, - a,,,) leads to w, = p”/(l - p). Since 
these remainder estimates are all of the form of either eq. (12.2-5) or (12.2-6), it follows from 
theorem 12-8 that for k 2 1 @‘)(so, oo) with either w, = a,, w = a,,,, or w, = u,u,+,/(u, - 
a,,,) is exact for the sequence @,,(p)D, eq. (12.1-23). This completes the proof of theorem 12-11. 

Similar results as in theorems 12-9 and 12-10 can also be derived for the analogous variants of 
the generalized transformations Y$)(p, s,, w,), eq. (7.1-8), P’,$)(p, s,, a,,), eq. (8.2-Q, and 
~%pj(y, s,, w,), eq. (9.2-7), with 12 1. 

12.3. A modification of Germuin-Bonne’s theory for sequence transformations involving remainder 
estimates 

In the last section Germain-Bonne’s formal theory of convergence acceleration was applied to 
those variants of the sequence transformations Pi”‘< p, s,, o,), eq. (7.1-7), Y’i”‘( p, s,, w,), eq. 
(8.2-7) J@‘(y, s c+), eq. (9.2-6), and gp)(sn, an), eq. (9.54), which are based upon Levin’s 
[28] eiplicit rema:nder estimates (7.3-4), (7.3-6), and (7.3-lo), as well as Smith and Ford’s [29] 
modified remainder estimate (7.3-8). 

The sequence {tin/j of remainder estimates plays a central rale in the sequence transformations 
mentioned above since its choice will ultimately determine success or failure. Experience shows 
that simple remainder estimates (7.3-4), (7.3-6), (7.3-8), and (7.3-10) often work remarkably well 
in a variety of situations. However, one cannot expect that these simple remainder estimates will 
always lead to satisfactory results and in some cases it may well be much more efficient to use 
other remainder estimates awn). 

It is often possible to obtain explicit expressions for the remainders arnD of a sequence &D. 
Unfortunately, expressions of that kind are in most cases practically useless since they are 
normally too complicated. In some cases, however, it may be possible to derive with the help of 
simplifying assumptions, which are valid in the limit of large indices n, simple explicit 
expressions which can be used as remainder estimates @.+I. If such an explicit remainder 
estimate w, does not depend explicitly upon one or several elements of 4~~1, the sequence 
transformations 9in)(P, s,, w,), P’j’)(P, s,, wH), JJp)(y, s,, a,,), and g,$‘)(s,, wn) are linear 
sequence transformations. In addition, they are also defined and exact for constant sequences. 

In such a case, one would of course like to know how the two sequences QsnQ and @,,I have to 
be related in order to guarantee at least the regularity of the transformation, and under which 
circumstances the convergence of ljsnD will be accelerated. These questions can at least partially 
be answered by a suitable modification of Germain-Bonne’s theory. 

Our approach is inspired by a modification of Germain-Bonne’s theory which can be found in 
Brezinski’s first book (see pp. 126-132 of ref. [19]). Brezinski considered sequence transforma- 
tions which simultaneously act upon k + 1 consecutive elements of the sequence {snD to be 
transformed and on k + 1 consecutive elements of an auxiliary sequence {x~). Brezinski’s 
modification of Germain-Bonne’s theory is suited for algorithms which remain well-defined if 
some or all elements of the auxiliary sequence QxnD are zero. This cannot be assumed here. 
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It follows from eqs. (7.1-6), (8.2-6), (9.2-5), and (9.5-3) that the sequence transformations 

=%“‘(P, s,, a,,), Yi”)( j3, s,, tin), A?‘( y, s,, o,), and &“‘(s,, wn) are all of the form of eq. 
(12.2-2). If we assume that the remainder estimates awn) do not explicitly depend upon the 
elements of l]snD, then it is a typical feature of the sequence transformations mentioned above 
that they are linear functions of their first k + 1 variables. Consequently, these transformations 
are all continuous in their first k + 1 variables provided that the elements of (Is~D are bounded. 
Much more critical is the continuity of these sequence transformations with respect to their 
second k + 1 variables, the remainder estimates w,, w, + t, . . . , w,+~_ Since the remainder esti- 
mates always occur in denominators, the elements of 40~1 must not be zero for all finite values of 
n. In addition, the remainder estimates have to be chosen in such a way that the denominator of 
such a sequence transformation, which is the k-th difference of Pk_ 1( n), a polynomial of degree 
I k - 1 in n, divided by o,,, will not vanish. Hence, a necessary but unfortunately not sufficient 
condition, which an admissible sequence 40~1 of remainder estimates would have to satisfy, is 
that its elements are nonzero and distinct for all finite values of n. This implies that for every 
finite value of n a substring w,, w,+r,.. ., o,,+~ has to belong to a suitable subset of E-Ok+‘, the 
intersection of lFk+’ and Dkf’. 

In this section ri”’ stands for a sequence transformation which acts upon k + 1 consecutive 
elements of a convergent sequence 4~~) and which also requires k + 1 consecutive elements of a 
sequence Qw~D of remainder estimates. The superscript n indicates that I’,$“’ may depend 
explicitly upon n. 

Hence, for fixed k E t$J, a sequence transformation I’i”’ is a function which may depend 
explicitly on n E N, and which is defined on vectors x = (x1, xZ,..., xk+t) E [Wk+t and z = 
(21, z2 ,..., zk+l) E Wk+‘. In addition, we assume that such a sequence transformation rj”‘: 
Rktl x Hk+l 

+ R possesses for fixed k E IV, and for all n E IV,, the following properties: 

(A-O): Tin’ is defined and continuous on a subset of [w kil X HI k+l. 

(A-I): rp IS a homogeneous function of degree one in its first k + 1 variables and a homogeneous 
function of degree zero in its second k + 1 variables. This means that for all vectors 

x E Rk+’ and z E O-Ilk+‘, for which I$“’ is defined and continuous, and for all A, p E R 

with p z 0 we have 

r,n)(xx,, +,-, hXk+l Izl, z2,**-, Zk+l) 

=xr~“‘(x,, x2,.--,xk+llz1, z2,-*,zk+l), (12.3-la) 

rin)(X1> x2,*.*,xk+l )pzi, /-%.*..~zk+l) 

=rin)(X1, +,...,xk+ilzl, z2~,~k+l)- (12.3-lb) 

(A-2): I’i”’ is linear in its first k + 1 variables. Consequently, for all vectors x, y E [Wk+’ and 
z E w k+l, for which is ri”’ d f’ d e me an continuous, we have d 

r,% +tY,, x2+y2,--,xk+l +Yk+l izl, z2?-., zk+l) 

(12.3-2) 
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(A-.?): Let c=(c, c,...,c)EIRk+l be a vector with constant components and let z belong to the 
subset of lHlk+’ for which I’,$“’ is defined and continuous. Then, I’,$“’ is exact, i.e., 

ri”)(c, c ,..., cIz1, z2 ,..., zk+l) = c. (12.3-3) 

(A-4): There exists a subset of HI k+l such that for all bounded vectors x E R k+l and for all 
vectors z belonging to this subset the limiting transformation 

= lim I$“)(xi, x2 )...) xk+i Iti, z2 )...) zk+i) 
n-+oo 

(12.3-4) 

is uniquely defined and continuous on this subset of R’ k+l X Wk+‘. In addition, it is 
assumed that the limiting transformation I’i”’ IS also homogeneous and linear according to 
(A-l) and (A-2). 

Similarly as in the case of the sequence transformations Gp) it cannot be assumed that a 
sequence transformation ri”’ and its limiting transformation I’,$“) will be defined and continu- 
ous on the same subset of R k+l X W k+l. 

It follows from their explicit expressions that the sequence transformations _YJn)(P, s,, w,), 
eq (7 l-7) spk’“‘(p, s . . 9 n, o,), eq. (8.2-7), ~~%‘f’(y, s,, w,), eq. (9.2-6), and @“)(s,, w,), eq. 
(9.5-4), satisfy (A-O)-(A-4) if suitable sequences {wnD of remainder estimates are used. Since 
these transformations are linear functions of the k + 1 sequence elements s,, s,+ I,. . . , .s,+~ if the 
elements of 4~~1 do not depend explicitly upon the elements of 1~~1, they are defined and 
continuous for arbitrary sequences @,,I if the elements of awn) are nonzero for all finite values of 
n and if the remainder estimates are chosen in such a way that the denominators of these 
transformations do not vanish. The denominators of ZJ”)( p, s,, a,*), Yi”)(p, s,, (J,), 
A?‘(Y, s,, u,), and @“‘(s,, w,,), which are all of the type of eq. (12.2-2) will be nonzero for all 
k, n E N, if the remainder estimates satisfy Ak ( Pk_l( n)/w,) f 0. In the case of L$“)( p, s,, w,), 
we have according to eq. (7.1-6) P,_,(n) = (n + p)k-‘, in the case of Yi”‘(/3, s,, w,,) we have 
according to eq. (8.2-6) P&i(n) = (n + P)k_l, in the case of ~%‘,$“)(y, s,, w,) we have according 
to eq. (9.2-5) P&i(n) =(-n - y)k-l, and in the case of &“)(s~, wn) we have according to eq. 
(9.5-3) Pk_l( n) = 1. 

We are now in a position to formulate an analogue of theorem 12-2 for sequence transforma- 
tions of the type I’i”‘: Rk+’ x Wk+’ + R. 

Theorem 12-12: Every sequence transformation rL”‘, which is defined and continuous for all vectors 
x E IF&! k+l and for all z belonging to a suitable subset of W k+l and which also satisfies (A-0)-( A-4), 
can be expressed in the following way: 

xk+l -xk z2 - 
,..*, 

‘k Zl 
, .**, (12.3-5) 
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The associated transformation yj”‘, which is defined and continuous on a suitable subset of 
R k x IF k, is given by 

xk+l -xk ‘2 - 
,.“, 

=k =1 
9 .“, 

= rp’ 0 x2 k-1 xj+2 - xj+1 k-1 zj+2 

, 

=1 
>.“, c ,...) JJ-. 

i 
(12.3-6) 

j=O zj+l j=O =j+l 

Proof: It follows from (A-2) and (A-3) that r$“’ is invariant under translation in the sense of eq. 
(3.1-4). Consequently, we can subtract xl from rk . (n) Since by assumption zl # 0, it follows from 
(A-l) that we can divide the 2k + 2 arguments of I$“) by zl. This yields: 

r,%x,9 x21--*,xk+ll=1, =2,...,++1) 

=xl+zlrp 0, y )...) xk+;;xl ( 1, ; )...) +l . 1 
We now need the following two relationships which can be proved quite easily: 

X v+1 - Xl 

=1 

= ‘< “‘:,:“I ‘z fy, 
YENO. 

j=O r+l 

(12.3-7) 

(12.3-8) 

(12.3-9) 

If we insert eqs. (12.3-8) and (12.3-9) into eq. (12.3-7) we obtain eqs. (12.3-5) and (12.3-6). The 
continuity of yi”’ on a suitable subset of IR k x IF k follows from the continuity of r$“) on a subset 
of iRk+’ x Wk+’ via eq. (12.3-5). 

With the help of theorem 12-12 it can be analyzed for which convergent sequences QsnD and 
for which sequences {tin) of remainder estimates a sequence transformation I’i”’ satisfying 
(A-O)-(A-4) will be regular. 

Theorem 12-13: Let r,$“’ be a sequence transformation which satisfies theorem 12-12. This means 
that according to eqs. (12.3-5) and (12.3-6) an associated transformation vi”’ exists which is 

continuous on a suitable subset of Rk x Fk. Let us assume that a sequence jsnD converges to some 

limit s, and that the elements of a sequence (Iw”~ of remainder estimates - although they are 
different from zero for all finite values of n - approach zero as n + 00. Then, ri”’ is regular if the 
elements of &s,,D and (Itin) satisfy: 
(i): For sufficiently large values of n E N, the ratios As,/w, are all bounded, i.e., 

1 &,/q, I I c, o<c<co. (12.3-10) 
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(ii): For all bounded vectors y = ( yl, y2, . . . , yk) E R’ k the associated transformation yin’ remains 
bounded as n -+ 00: 

(12.3-11) 

Proof: It follows from eq. (12.3-5) that I’i”’ can be written in the following way: 

+ w yp ds, As nfk-1 %+1 w n+k = s 

n n 
a” )*.*’ (‘b+k-l (3, “*” ‘++k-1 

(12.3-12) 

According to eq. (12.3-6) the associated transformation is given by 

As, ‘k,+k-1 %+I 
-y )..., wn+k_l 

n 

= rp’ 0 
As,+1 k-1 As,,+~ j-l w,+~+~ 
- 

> 
% ’ ‘--’ 

C-l-I--- 
j=() wn+j i=O @n+, 

1,w”‘)...) 

% 
(12.3-13) 

ri”) preserves the convergence of js,,D to its limit s if the second term on the right-hand side 
of eq. (12.3-12) vanishes as n + a. Since {a, D approaches zero as n -+ cc, we only have to show 
that the associated transformation ~2”’ remains bounded as n + cc. Since I’i”’ is according to 
(A-2) linear in its first k + 1 components, we may conclude from eq. (12.3-13) that yi”’ is 
bounded for all n E No if its 2k arguments remain bounded as n + 00, and if it remains 
continuous in its second k variables as n + 00. It follows from (i) and (ii) that this is indeed the 
case which proves theorem 12-13. 

If we compare theorem 12-13 with the analogous theorem 12-3, which formulates criteria for 
the regularity of sequence transformations Gc): W k+l + R, we see that theorem 12-13 is quite 
liberal with respect to the set of admissible sequences {snD since only convergence to some limit 
is assumed. However, given a convergent sequence {sn D, the criteria, which have to be satisfied by 
an admissible sequence jonI of remainder estimates, are quite restrictive. 

The next theorem deals with the acceleration of linear convergence by sequence transforma- 
tions ri”‘. The following theorem is virtually identical with the analogous theorem 12-4 which 
deals with sequence transformations G p’. In both cases the decisive criterion is that the limiting 
transformations FJ”) and G!“’ have to be exact for a shifted sequence of partial sums of the 
geometric series. This again emphasizes the importance of the geometric series for a theoretical 
analysis of the acceleration of linear convergence. 
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Theorem 12-14: Let us assume that the elements of the sequences {s,,b and {w,,D satisfy: 

(i): lim s,=s, (12.3-14) 
n+oo 

(ii): lim 
s, - s -=c > cf 0, 

n’M w, 
(12.3-15) 

(iii) : lim cJ”“‘=p, 
n+m (3, 

O<\pl<l. (12.3-16) 

Then, a necessary and sufficient condition that a sequence transformation I’,$“’ accelerates the 
convergence of the sequence as,,) is that its associated transformation yj”’ satisfies: 

lim yi”‘(Y,, Yn+l,..., Y,+k-1 Izn, Z,+i,.... Z,+k-1) 
n+m 

=ypyy, y )...) ylz, z )...) z) = 5. (12.3-17) 

Here, 4 ynD and {z,,D are essentially arbitrary sequences which converge to y and z, respectively. The 
above statement can also be formulated in terms of the limiting sequence transformation I’i”): 

lim ri”’ 0, Y,,..., 
n+Cc i 

YYn+j:i'n+;i '3 'n,..-, E'n+j] 

j=o 

i 

k-l 

=J-y’ 0, y )...) y c zj O<lzl<l. 
;=o 

(12.3-D) 

Proof: If we subtract s from both sides of eq. (12.3-12) and divide the resulting expression by 

s, - s we obtain: 

s, - s 

As n+k-1 w n+l w n+k 

0 n+k-1 ‘d, “‘*’ ‘$,+k-1 
(12.3-19) 

According to eq. (2.6-6) the convergence of a sequence $snD to its limit s is accelerated by a 
sequence transformation ri”’ if 

Iim r~n)(s,, s,+l,.*e> sn+k 1 %, %+I,*..> %+k) -s = o. 

rl+a, s -s n 
(12.3-20) 

Hence, if we perform the limit n + CC in eq. (12.3-19), the left-hand side has to vanish if I’i”’ 
accelerates convergence. Thus, we only have to investigate under which conditions the right-hand 
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side of eq. (12.3-19) also vanishes as n -+ 00, It follows from eq. (12,3-15) that w,/(s, - S) + l/c 
as n + W. In addition, it fofows from eq. (12.3-16) that the second K arguments of the 
associated transformation yi”’ aI approach p as n --+ 00, and with the help of eqs. (12.3-15) and 
(12.3-16) we find that the first k arguments of yi”’ all satisfy: 

Hence, if we perform the limit n -+ 00 in eq. (12.3-19) we find: 

l+~~~(c(P-l). e(p-l),..~,cfp-l)~p, p,.--,p)=o” (12.3-22) 

Now we only have to set c(p - 1) = y and p = z in order to see that if a sequence 
transformation ri”’ accelerates the convergence of Qs,,), then its associated transformation has to 
satisfy eq. (12.3-17). In the same way, if eq. (12.3-17) is satisfied by the associated transformation 
of a sequence transformation r. (n), then it follows from eqs. (12.3-M), (12.3-lti), and (12.3-19) 
that f,“’ accelerates the convergence of jsnb according to eq. (12.3-20). This proves theorem 
12-14. 

First, it should be remarked that condition (ii), eq, (12.3-15), is identical with eq. (7.3-l). This 
is another confirmation that the elements of a sequence of remainder estimates should be chosen 
in such a way that w,, is proportional to the leading term of an asymptotic expansion of S, - s as 
rr+ XJ. 

The first k + 1 ~gurn~nts of tiW’ in eq. (12.3-18) are apart from the factor y identicaI with 
the elements of the sequence &r,(z>D which are defined by eq. (12.1-23). Consequently, the 
right-hand side of eq. (12.3-18) can be rewritten in the following way: 

Next, theorem 12-14 will be used to prove that the sequence transformations 6”,‘“‘( J3, s,, w,), 
eq. (7.1-7), spk’“‘(fl, se, GJ~), eq. (8.2~7), A’r)(y, s,, w,,), eq. (9.2-6), and @“)(s_, (J,), eq. 
(9.5-4), are able to accelerate linear convergence if the remainder estimates are chosen in such a 
way that w, is proportional to the leading term on an asymptotic expansion of s, - s as n + 60. 

Theorem 12-15: We assume that a sequence transformation Tin)(s,, w,) can be written in the 
following way: 

T”r’%, 9 k, HEN,. (12.3-24) 
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If the sequences as,, 1 and @,, 1 are as in theorem 12-14 and if the coefficients fk( n) satisfy 

lim fk(n) = 1, kENrJ, (12.3-25) 
n--too 

then T,‘“‘( s,, w,,) accelerates the convergence of as,, D for k 2 1. 

Proof: According to theorem 12-14 we have to show that the limiting transformation Tk(O”) 
satisfies either eq. (12.3-18) or (12.3-23). However, the limiting transformation of all sequence 
transformations T,‘“)( s,, an) satisfying eqs. (12.3-24) and (12.3-25) is Drummond’s sequence 
transformation &“)( s,, a,,), eq. (9.5-4). Consequently, it is sufficient to show that Drummond’s 
sequence transformation is exact for the sequence yju,( z)D, with {un( z)D defined by eq. 
(12.1-23), if the remainder estimates w, = z” are used, i.e., 

Y =- 
1-z’ (12.3-26) 

The numerator sum in eq. (12.3-26) may be rewritten in the following way: 

It follows from eq. (2.4-8) that the second sum on the right-hand side is zero for k 2 1. This 
shows that eq. (12.3-26) is correct and proves theorem 12-15. 

It can be deduced directly from their explicit representations that P$“)( p, s,, w,), eq. (7.1-7), 
y$W, s ,,, tin), eq. (8.2-7), &p’(y, s,, an), eq. (9.2-6), and @“)(s,, w,), eq, (9.5-4), with 12 1 
satisfy eqs. (12.3-24) and (12.3-25). In addition, it can be shown that the generalized transforma- 
tions 6pk’,?‘(P, s,,, a,), eq. (7.1-8), %(,?)(P, s,, We), eq. (8.2-g), and JZgj(y, s,, a,), eq. (9.2-7), 
also satisfy eqs. (12.3-24) and (12.3-25) for sufficiently large values of k. Consequently, these 
sequence transformations accelerate the convergence of a linearly convergent sequence {s,D if the 
remainder estimates jw,,D are chosen in such a way that conditions (i)-(iii) of theorem 12-14 are 
fulfilled. 

It is in fact by no means trivial that the generalized sequence transformations Z,$)( p, s,, tin), 
~j;)(P, s n, a,), JG$(Y, s,, w,) with 12 1 also accelerate convergence if the sequences {sn D and 
@iI satisfy conditions (i)-(iii) of theorem 12-14. It follows from the model sequences (7.1-lo), 
(8.2-lo), and (9.2-9) that these transformations were derived assuming that s, - s - PI( n)o, as 
n + CO with PI(n) being a polynomial of degree 1 in n. However, in theorem 12-14 it is assumed 
that s, - s - w, as n -+ CO. Hence, we see that sequence transformations Tin)(s,, w) satisfying 
eqs. (12.3-24) and (12.3-25) accelerate linear convergence even if instead of the “right” sequence 
awn) of remainder estimates a “wrong” sequence @Al of remainder estimates with w,‘, = P,(n) w, 
with 1 E N, is used. 
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This behaviour is quite typical of all sequence transformations of the type of eq. (1X2-2) which 
are defined as ratios of finite differences. 

With the help of the following theorem it can also be shown that the sequence tr~sforma~o~s 
=%“‘(P, sn, u,), eq. (7-l-7), ,spk’“)(P, s,, w,), eq. (8.2-T, dp’(y, s,, a,), eq. (9.2-Q and 
@“)(s~, w,), eq. (9.5-4), as well as the generalized transformations pu”,‘,y)(& s,, w,), eq. (7.1-Q 
%(i;‘(P, snt Q,), eq. (8.2-Q and J$?(Y, sm, w,), eq. (9.2-7), with 12 1 are all exact for the 
geometric series. 

Theorem 12-16: We assume that u sequence transformation T,‘“)( s,, w,) can be written in the 
following way : 

(12.3-28) 

If for s~~~c~e~t~~ large u&es of k the &~eff~~~e~ts q,_.,(n) are ~~~~~~rn~~~s of degree I k - I in n, 
then for s~ff~~~ent~~ kzrge value of k such a sequence tru~sfo~at~o~ T’n)(~,, w,) is exact for the 
partial sums of the geometric series, eq. (2.6-2), if the remainder estimates are chosen according to 
w, = 2 n+OL with (Y E R. 

Proofi The numerator ~~l~o~al in eq. (12.3-28) can then be rewritten in the following way: 

,cE(:_z, $pj( r)sk-l(n+i). 
J- 

(12.3-29) 

Let us uuw assume that k is large enough such that rp,_ r( ~1) is a polynomial of degree I k - 1 
in n. Then it follows from eq. (2.4-8) that the second sum in eq. (12.3-29) vanishes. This proves 
theorem 12-16. 

Obviously, all sequence transformations mentioned above satisfy the prerequisites of theorem 
12-16. 

12.4. A critical assessment of Germ&-Bonne’s theory 

With the help of either the original version of Germain-Bonne’s formal theory of convergence 
acceleration or its modifications it can be decided whether a sequence transformation is regular, 
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i.e., whether the transformed sequence (I.sLD converges to the same limit as the original sequence 
(I,snD. In addition, a necessary and sufficient condition could be formulated by means of which it 
can be decided whether a sequence transformation is able to accelerate linear convergence or not. 
Theoretically, these results are certainly remarkable achievements, in particular since for their 
derivation only some very general properties of the sequence transformation such as continuity, 
homogeneity, and translativity had to be assumed. Also, concerning the sequences $rnD, which 
are to be transformed, only relatively little has to be assumed. In most cases it is sufficient that 
the sequences converge or - if the acceleration of linear convergence is analyzed - that they 
converge linearly. 

However, it must not be overlooked that Germain-Bonne’s formal theory of convergence 
acceleration has some serious shortcomings which definitely limit its practical usefulness, 
although it certainly is a beautiful mathematical theory. For instance, the generality of Germain- 
Bonne’s theory and its modifications - although highly desirable from a theoretical point of view 
_ is at the same time a major weakness since it implies that the results of this theory are quite 
general and cannot be as specific as one would like them to be. 

Germain-Bonne’s theory is only able to make statements as for instance that a sequence 
transformation is regular or that it is able to accelerate linear convergence. However, from a 
practical point of view the statement that a given sequence transformation is able to accelerate 
linear convergence is just as useful - or as useless - as the statement that a given series 
converges. 

Germain-Bonne’s theory is essentially asymptotic in nature because only the sequence ele- 
ments S, and the transforms Gf’ or ri”’ with large values of n matter. This asymptotic nature 
is essential because it makes a theoretical analysis possible. However, it refers to a situation - 
sequence elements S, or transforms S: with large indices n - which one would like to avoid by 
using sequence transformations. In addition, the predictive value of an asymptotic theory is often 
quite limited. A given numerical technique need not be particularly powerful for moderately 
large values of n, let alone for small values of n even if it is guaranteed that this technique will 
work well in the limit n --) 00. 

In actual computations only a relatively small number of sequence elements will normally be 

known, say s,, s,+~, . . . , %+k, and one would like to know how the information, which is 
contained in these sequences elements, can be extracted and utilized in an optimal way. Here, 
Germain-Bonne’s theory or its variants cannot help at all since it does not discriminate among 
sequence transformations which all have the same properties in the limit n + 00. For instance, 
according to theorem 12-10 certain variants of the sequence transformations Z’~“‘( /3, s,, a,), eq. 

(7 l-7) Yin)@, s . , n, tin), eq. (g.2-7), and J@?‘(Y, s,, wn), eq. (9.2-6), are able to accelerate linear 

convergence if and only if the analogous variants of Drummond’s sequence transformation 
@“‘(S n, o,), eq. (9.54), are able to accelerate linear convergence. Consequently, Drummond’s 
sequence transformation plays a very important rSle in our modification of Germain-Bonne’s 
formal theory of convergence acceleration since it allows a unified treatment of a large class of 
sequence transformations. But it is wrong to assume that Drummond’s sequence transformation 
will be particularly useful in actual computations. In fact, we shall see later that Drummond’s 
sequence transformation is normally significantly less powerful than the other sequence transfor- 
mations mentioned above. 

Germain-Bonne’s theory is essentially a successful theory of the acceleration of linear 
convergence and it does not help at all if for instance logarithmic convergence is to be 
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accelerated. This is quite deplorable since the acceleration of logarithmic convergence is a much 
more annoying problem than the acceleration of linear convergence - both theoretically and 
computationally. 

Another problem of great practical relevance is the determination of the antilimit s of a 
divergent sequence &snD by employing a suitable sequence transformation Gk”’ or Fin). In such a 
case a formal theory, which involves a limit n -+ cc, makes no sense. Instead, any theoretical 
analysis of such a summation process would have to say something about the convergence of a 
sequence of transforms Gp’ or Fi”’ to the antilimit s and how this convergence is affected if the 
subscript k is increased while the superscript n is held fixed. Again, Germain-Bonne’s theory 
and its modifications cannot contribute anything. 

Hence, Germain-Bonne’s theory of convergence acceleration is not able to treat several 
problems of great practical relevance and has to be supplemented by other theoretical ap- 
proaches. However, it is not likely that Germain-Bonne’s theory can be improved significantly 
without making much more detailed assumptions about both the sequence transformations, 
which are to be analyzed, and the sequences, which are to be accelerated or summed. 

13. Summation and convergence acceleration of Stieltjes series 

13.1. Stieltjes series and Stieltjes functions 

This section deals with the summation of divergent asymptotic series, as they for instance 
occur in the theory of special functions or in quantum mechanical perturbation theory. It is well 
known that a given function f(z) admits at most one asymptotic power series. The converse, 
however, is not true, i.e., it may happen that there are several different functions which all admit 
the same asymptotic power series. In a theoretical analysis of summation processes, the possible 
nonuniqueness of asymptotic expansions is certainly quite annoying and the set of admissible 
asymptotic series should be suitably restricted in order to avoid these complications. 

These nonuniqueness problems can be avoided in the case of Stieltjes series which assume an 
exceptional position among divergent series. For Stieltjes series there exists a highly developed 
convergence and representation theory (see refs. [18,22,79,95,96]). For instance, it can be shown 
that PadC approximants are able to sum even wildly divergent Stieltjes series if the terms a, of 
these series do not grow faster in magnitude than c”+‘(2n)! as n + cc with c being a suitable 
positive constant (see theorems 1.2 and 1.3 of ref. [87]). This implies that PadC approximants are 
able to sum the divergent Euler series, eq. (l.l-7), which is, as we shall see later, a Stieltjes series. 

Stieltjes series are also of considerable physical interest since many quantum mechanical 
perturbation expansions are Stieltjes series. For instance, it could be proved rigorously that the 
Rayleigh-Schrijdinger perturbation expansions for the energy eigenvalues of the quartic 
anharmonic oscillator are Stieltjes series [86,97]. It also follows from the asymptotic behaviour 
(1.1-5) of the perturbation series coefficients that PadC approximants are able to sum the 
divergent perturbation series (1.1-4) for the ground state energy of the quartic anharmonic 
oscillator. 

In this section, the summation of divergent Stieltjes series by means of nonlinear sequence 
transformations will be investigated both theoretically and numerically. It will be one of the 
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main results of this section that the sequence transformations L?jn) (p, s,, tin), eq. (7.1-7), 
spk’“‘(P, s o ) eq (8 2-7) and JG!p)(y s . . an), eq. (9.2-6), which all require a sequence @,,D 
of remain& e”s;imates for their computadoi: sum divergent Stieltjes series much more efficiently 
than for instance PadC approximants, which may be computed with the help of Wyrm’s c 
algorithm, eq..(4.2--l), or also Brezinski’s 9 algorithm, eq. (10.1-9). This is probably due to the 
fact that in the case of a Stieltjes series it is comparatively easy to find simple remainder 
estimates (Ian), which may be used in the sequence transformations mentioned above and which 
in spite of their simplicity yield rigorous and tight upper bounds for the remainders of truncated 
Stieltjes series. 

In order to make this section more self-contained, first those properties of Stieltjes series and 
Stieltjes functions, which are of particular importance for our purposes, will be reviewed. 

A function f(z) with z E C will be called Stieltjes function if it can be expressed as a Stieltjes 
integral, 

(13.1-l) 

Here, #(t) is a positive measure on 0 I t -c co which has for all m E N, finite and positive 
moments p., defined by 

A formal series expansion of the following type, which need not be convergent, 

f(z)= f (-l)mP,zM, 
m=O 

(13.1-2) 

(13.1-3) 

is called a Stieltjes series if its coefficients p, are moments of a positive measure q(t) on 
0 I t < co according to eq. (13.1-2), i.e., 

f(z) = E (-l)m~,Jm*m d+(t). 
m=O 0 

A good example for a Stieltjes function with a wildly divergent 
Euler integral, eq. (Ll-6), and its associated asymptotic series, 
(1.1-7). 

(13.1-4) 

Stieltjes series is the so-called 
the so-called Euler series, eq. 

Theorem 13-1: Every Stieltjes function f(z) can be written in the following way: 

f(z) = 2 (-l)mp,Zm+ (-z)~flJrnf 
‘+l d+(t) 

1+zt ’ 
Ia&W~- 

m=O 0 

(13.1-5) 
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Proof: We only have to insert the relationship 

(13.1-6) 

with x = -zt into eq. (13.1-1) and do the moment integrals according to eq. (13.1-2). 
Whether a Stieltjes series converges or diverges depends upon the behaviour of the remainder 

integral on the right-hand side of eq. (13.1-5). The next theorem shows that this remainder 
integral is bounded by the first term of the power series (13.1-3) which was not included in the 
partial sum in eq. (13.1-5). This bound will also help us to find a simple and - as we shall see 
later - efficient sequence of remainder estimates for the sequence transformations 
JZ’in)(/3, s,, a,,), eq. (7.1-7), Yin)(P, s,, tin), eq. (8.2-7), Ap)(y, s,, w,), eq. (9.2-6), and 
@“I( s,, w,), eq. (9 5-4) . . 

Theorem 13-2: The remainder term in theorem 13-1, 

RJz) = (_z)n+l/om tn+l dw ) 
1 + zt 

(13.1-7) 

satisfies depending upon the value 

I&(z) I s Pn+llz”+ll~ 

(R,(z) 1 I j~,+~Iz~+l cosec 

Proof: Setting z = r e’” gives 

of 9 = arg( z) the following inequalities: 

19(172/2, 

61, n/2-++0. 

(13.1-8a) 

(13.1-8b) 

(l+ztI= [1+2rtcos1Y+r~t~]~‘*. (13.1-9) 

Next, one has to look for the value of t with 0 I t < 00 for which 11 + zt 1 assumes its minimal 
value. Differentiation with respect to t gives the extremal condition 

cos 9 t= -- 
r . 

(13.1-10) 

Now, two different cases have to be distinguished: 
(i): 119 ) I a/2. Then, cos 9 2 0. Consequently, (1 + zt 1 assumes its minimal value for t = 0 and 

we obtain the estimate (13.1-8a). 
(ii): m/2 < I#(< VT. Then, cos 9 < 0. Combination of eqs. (13.1-9) and (13.1-10) yields 

/sin 61 111 +ztI. (13.1-11) 

If this inequality is used in eq. (13.1-7), estimate (13.1-8b) follows. This shows that theorem 
13-2 is correct. 

It also follows from theorem 13-2 that every Stieltjes function possesses an asymptotic series 
valid uniformly in every sector 1 arg( z) ( -C 8 for any 9 <: 7~ and that this asymptotic series is a 
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Stieltjes series (see p. 398 of ref. [86]). It can also be proved that for every Stieltjes series there 
exists at least one associated Stieltjes function. Since this possible nonuniqueness is very 
inconvenient in summation processes, a criterion would be needed which makes it possible to 
prove that there is a one-to-one correspondence at least between certain divergent Stieltjes series 
and certain Stieltjes functions. Thus, a condition would be needed which is stronger than the 
existence of an asymptotic power series of the type of eq. (13.1-3) but weaker than the existence 
of a convergent Stieltjes series. 

On the basis of Carleman’s theorem (see p. 39 of ref. [98]) a sufficient condition can be 
formulated which guarantees that there exists a one-to-one correspondence between a Stieltjes 
function and its associated asymptotic series. 

A Stieltjes function f(z), which is analytic in a sectorial region of the complex plane, is said to 
satisfy a strong asymptotic condition and its associated Stieltjes series is called a strong asymptotic 
series if suitable positive constants A and E can be found such that 

f(z) - 5 (-l)mpmZm sAp+l(n + l)!lzln+l (13.1-12) 
m=O 

holds for all n E N, and for all z in this sectorial region. 
The validity of such a strong asymptotic condition implies that a Stieltjes function f(z) is 

uniquely determined by its asymptotic series (see p. 40 of ref. [98]). Such a strong asymptotic 
condition can only be valid if the Stieltjes moments p,, which are defined by eqs. (13.1-3) and 
(13.1-4), satisfy for all n E N, (see p. 43 of ref. [98]) 

p,, 4 A<“n!. (13.1-13) 

The moments of the Euler series, eq. (l.l-7), satisfy this inequality. Hence, we may conclude that 
the Euler integral, eq. (l.l-6), is uniquely determined by its asymptotic series (1.1-7). In the same 
way, it follows from the asymptotic behaviour (1.1-5) of the series coefficients that the 
perturbation series (1.1-4) for the ground state energy of the quartic anharmonic oscillator is a 
strong asymptotic series. Consequently, the ground state energy of the quartic anharmonic 
oscillator is uniquely determined by its divergent perturbation series (see also p. 41 of ref. [98]). 

However, there are Stieltjes series of considerable physical interest which have moments p,, 
that behave like (kn)! with k > 1 as n + cc. For instance, in the case of the perturbation 
expansions for the energy eigenvalues of the sextic or octic anharmonic oscillator there is ample 
numerical evidence that the coefficients of these series grow as (2n)! or (3n)!, respectively, as 
n + cx) (see p. 43 of ref. [98]) Obviously, a strong asymptotic condition cannot be valid in such a 
case. However, it can be shown (see p. 43 of ref. [98]) that a function f(z), which is analytic 
within a sectorial region of the complex plane, is also uniquely determined by its asymptotic 
series if f(z) satisfies a modified strong asymptotic condition of order k and if its asymptotic series 
is a modified strong asymptotic series of order k. This means that suitable positive constants A 
and 5 can be found such that 

f(z) - 2 (-l)mpL,~“~ <A.$“+l[k(n+ l)]!lzjn+’ 
m=O 

holds for all n E N, and for all z in this sectorial region. 

(13.1-14) 
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Again, such a modified strong asymptotic condition of order k can only be valid if the Stieltjes 
moments p,, satisfy for all n E N, (see p. 406 of ref. [86]) 

p, <A[“(kn)!. (13.1-U) 

The bounds for the remainders R,(z) in theorem 13-2 are also of considerable importance for 
convergence acceleration and summation processes because it helps us to find simple and 
manageable remainder estimates @,I. Because of the specific structure of the sequence transfor- 
mations Zi’“‘(p s 0 ) Yi”‘( p, s w,), J%‘P’( y, s,, w,), and &“)(sn, w,), all those quanti- 
ties which are ind&en”dknt of n, d”d not have to be included in the remainder estimate w,. 
Consequently, it is not necessary to distinguish the two different cases 19 15 7~ and 7r/2 < 19 ( < T 

in theorem 13-2 and for every sector larg(z) 1 -c 8 with 9 < 7~ a suitable estimate o, for the 
remainder R,(z) of a Stieltjes series would be 

w, = ( -l)n+lp,+IZn+l, nEN,. (13.1-16) 

This choice is identical with the remainder estimate (7.3-8) of Smith and Ford [29]. Hence, for 
the summation of divergent Stieltjes series the most natural choices among the numerous variants 
of the sequence transformations _5?J”)( p, s,, tin), y;c(n)(D, s,, G), and J@‘(Y, s,, w,) would 
be the transformations dp)(/?, s,), eq. (7.3-9), Si”)( /3, s,), eq. (8.4-4), and A’,“)(y, sn), eq. 
(9.4-4). 

13.2. Theoretical error estimates 

In this section theoretical error estimates for the summation of a divergent Stieltjes series by 
means of nonlinear sequence transformations will be derived. However, the error estimates of 
this section can also be applied if the convergence of sequences with strictly alternating 
remainders is accelerated. 

There are only relatively few references in the literature in which the summation of divergent 
Stieltjes series by means of nonlinear sequence transformations is analyzed. In articles by Wynn 
[99], Common [loo], Allen, Chui, Madych, Narcowich, and Smith [loll, and Karlsson and Sydow 
[102] the PadC summation of Stieltjes series was analyzed. Then, there is an article by Sidi [103] 
on the summation of certain wildly divergent series by Levin’s u and t transformations, eqs. 
(7.3-5) and (7.3-7). Sidi could show that if the divergent series satisfies certain conditions, Levin’s 
u and t transformation produce sequences of approximants which converge to the Bore1 sum of 
the divergent series. Other sequence transformations were apparently not yet treated in the 
literature. This is not too surprising since many nonlinear sequence transformations as for 
instance Brezinski’s 9 algorithm, eq. (10-l-9), are defined by relatively complicated recursive 
schemes and otherwise only very little is known about these transformations. Currently, a 
detailed theoretical analysis of the efficiency of such a sequence transformation in convergence 
acceleration and summation processes seems to be more or less impossible. 

However, sequence transformations of the type of eq. (12.2-2) can be analyzed relatively easily 
if suitable assumptions concerning the sequences Qsn 1 and awn D are made. Consequently, in this 
section the emphasis will be on the sequence transformations _%$n)(/3, s,, (J,), eq. (7.1-7) 
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qy?p, s a,,), eq. (8.2-Q Ap’(y, s,, an), eq. (9.2-6), and gi”‘(s,, w,), eq. (9.54), as well as 
on the n& generalizations S$‘(p, s,, w,), eq. (7.1-8), YJ,;)(p, s,, an), eq. (8.2-Q and 
A$YYY s,, an), eq. (9.2-7). The following theorem will be the basis of our analysis. 

Theorem 13-3: Let us assume that a sequence transformation Gr’( s,, s,+ 1,. . . , s,,+~) with k, 
n E N, is invariant under translation according to eq. (3.1-4). Then a necessary and sufficient 
condition that this sequence transformation is able to sum a divergent sequence (ls,,D to its antilimit s 
on a path .9= (I(nj, k,)) with j E N, is that 

lim G:p’(s,,, - s, S,,+l - S,. . ., S,,+k, - S) = 0. 
;+ cc 

(13.2-1) 

Proof: Since Gi”) is by assumption invariant under translation according to eq. (3.1-4), we have 
for arbitrary integers n, and kj: 

(13.2-2) 

Performing the limit j + 00 shows that theorem 13-3 is correct. 
It can be proved quite easily by a typical 2~ proof that if the antilimit s of a divergent series 

{s,,D exists on a given path 8, then it is uniquely determined on this path. For different paths, 
however, no general statement concerning the uniqueness of the antilimit s can be made. In 
summation processes, one is normally only interested in horizontal paths, i.e., in paths in which 
nj is ultimately constant and in which only kj is increased. Of course, theorem 13-3 can be 
reformulated in such a way that it applies to convergence acceleration processes. 

Theorem 13-4: Let us assume that a sequence transformation Gp’( s,, s, + 1, . . . , s, + k) with k, n E NO 
is invariant under translation according to eq. (3.1-4). Then a necessary and sufficient condition that 
this sequence transformation preserves the limit s of a convergent sequence &s,,D on a path 9 = {(n,, 
kj)D with j E N, is that 

lim G:;+,, - s, s,,+r -s,.. .) s,,+k, - s) = 0. 
J.+ cli 

(13.2-3) 

What is gained if summation and convergence acceleration processes are analyzed with the 
help of theorems 13-3 and 13-4. Since the limit or antilimit s of a sequence {snD is normally not 
known, it is in most cases very hard or even impossible to estimate, how close 
Gp’(s s,+l,. e.2 s,+~) and s are. However, it will become clear in the sequel that it is 
frequegtly comparatively easy to obtain a theoretical estimate for the magnitude of the error 
term Gp’(s -s s,,+~ -s s - s) and its dependence upon k and n. 

Theorems” 13-3 and 1314’remam of course valid if the sequence transformation Gf), which 
only depends upon k + 1 sequence elements s,, s,+ i, . _ . , sntk, is replaced by a sequence 
transformation ri”’ which in addition to the k + 1 sequence elements s,, s, + 1, . . . , s, +k also 
depends upon k + 1 remainder estimates o,, w, + ,, . . . , w,+ k. 

In this section we shall try to make some quantitative predictions about the magnitude of the 
summation error if a given sequence transformation, which is of the type of eq. (12.2-2), is used 
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for the summation of a divergent Stieltjes series. Unfortunately, it seems that such an error 
analysis cannot be done in the case of a completely arbitrary Stieltjes series. However, if we 
apply sequence transformations of the type of eq. (12.2-2) to some suitably chosen model 
sequences, valuable insight into the mechanism as well as the power of these sequence transfor- 
mations can be gained. 

Our error analysis will be based upon theorems 13-3 and 13-4, i.e., we shall try to estimate the 
magnitude of the error term Gp)(sn - s, .s,+i - s, . . . , s,,+k - s) and its dependence upon k and 
n. In addition, we assume that the sequences Q.snD and {w,,D possess the following properties: 

(S-O): The elements of &sn/) are the partial sums of an infinite series which either converges to 
some limit s or in the case of divergence can be summed to give s. 

(S-l ): The elements of the sequence 4~” D of remainder estimates for Qs,, 1 are strictly alternating in 

sign. 
(S-2): For all n E N ,, the ratio (s, - s)/o, can be expressed as a factorial series, i.e., 

s, - s 
- = Jgo @fin)/ 

%I 
PER+, nENj,. (13.2-4) 

On the basis of these assumptions the summation of divergent Stieltjes series as well as the 
acceleration of the convergence of certain alternating series can be analyzed. 

Concerning (S-l) it should be remarked that if we chose the remainder estimates {wnQ 
according to eq. (13.1-16) then the positivity of the Stieltjes moments p,, according to eq. (13.1-2) 
implies that we are restricted to power series with positive arguments z. If z would be an 
arbitrary complex number, it could not be guaranteed that our remainder estimates w, will have 
strictly alternating signs if they are chosen according to eq. (13.1-16). 

The requirement that (s, - s)/ o, can be expressed as a factorial series according to eq. 
(13.2-4) may appear to be somewhat restrictive. However, this is not necessarily more restrictive 
than the analogous requirement that (s, - s)/w, can be expressed as a series in inverse powers of 

P+n, 

S” - s 
-= 

% 
f- cJ’ @R+, 

j=o (p+n)” 
nEN(,. (13.2-5) 

In Nielsen’s book it is described how inverse power series and factorial series can be transformed 
into each other (see pp. 272-282 of ref. [77]). Assumptions (S-0)-(S-2) will now be used to obtain 
quantitative error estimates in summation and convergence acceleration processes. 

Theorem 13-5: Let us assume that the sequences {sn 1 and IanD satisfy (S-0)-( S-2) and that the 
sequence transformation 9Ln)(P, s,, w,), eq. (8.2-7), is used for the transformation of 1~~). Then 
we obtain for fixed k E N and for all n E N, the following estimate for the error term: 

(13.2-6) 
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This implies for fixed k E N and for large values of n the following order estimate: 

3Fw~ s,, %> -s = O(n_2k) 

S” - s 
, n+co. (13.2-7) 

Proof: First, we observe that s”i’“‘( p, s,, w,), eq. (8.2-7), is invariant under translation according 

to eq. (3.1-4). This implies that the magnitude of the transformation error and its dependence 
upon k and n can be analyzed by estimating the magnitude of s”,‘“)( p, s, - s, an). The starting 
point of our analysis is eq. (8.2-6) which is rewritten in the following way: 

9pyp, s, - s, WJ = A”{@ + 4k-16% - 4/% > 
A”(@ + 4k-l/% > * 

(13.2-8) 

In the numerator in eq. (13.2-8) (s, - s)/ w, is replaced by the factorial series (13.2-4) yielding 

k-l 

= Ak C c~(P + n +j)k-j-1 + Ak f 
‘k +J 

j=O j=O (P + 12 + k - l)j+l . 

(13.2-9) 

(13.2-10) 

Next, we derive from eq. (8.4-10) the following two relationships: 

Ak(a + n), = (-l)k(-m)k(a + n + k)m_k, (13.2-11) 

Ak[l/‘(b + &I = (-l)k(m)k/(h + n)k+mv 
(13.2-12) 

If these two relationships are used in eq. (13.2-lo), we find that the first sum vanishes since it 
is a polynomial of degree k, in n and we obtain for the numerator in eq. (13.2-8): 

Ak(P+n)k_I(s,,-s) = r(P+n+k-1) 5 Ck+j(j+l)k 

%I r(P+n+2k) j=o (/3+n+2k)j’ 

With the help of eq. (2.4-8) we obtain for the denominator in eq. (13.2-8): 

Ak(P+n)k-l 

% 

(13.2-13) 

(13.2-14) 

According to (S-l) the elements of 4~~) strictly alternate in sign. This gives us immediately the 
following estimate: 

(13.2-E) 
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Combination of eqs. (13.3-g), (13.2-13) and (13.2-15) gives eq. (13.2-6). The order estimate 
(13.2-7) follows from the fact that according to eq. (13.2-4) 

(s,-s)/w,=cO[l+o(nl)], n+cc, (13.2-16) 

and that (,0 + n)zk = O(n2k) as n + cc. This proves theorem 13-5. 
Since the denominator sum (13.2-14), which consists of k + 1 terms, is estimated by a single 

term according to eq. (13.2-15) the error estimate (13.2-6) is quite conservative. 
It is a typical feature of the error estimate (13.2-6) and also of some analogous error estimates 

for other sequence transformations, which will be derived later in this section, that the error 
estimate is directly proportional to w,. Consequently, no distinction between convergent and 
divergent sequences {.snD of partial sums has to be made. It also follows from the error estimate 
(13.2-6) that 9’2”)( p, s n, w,), eq. (8.2-7), is able to sum a divergent series satisfying (S-0)-(S-2) 
on a horizontal path if the coefficients cj of the factorial series (13.2-4) do not grow too fast in 
magnitude as j + cc. 

The next theorem, which can be proved in essentially the same way as theorem 13-5, shows 
that our error analysis is able to distinguish between the sequence transformation Yin)( p, s,, a,), 

eq. (8.2-7), and its mild generalization Y$y)(p, s,, a,,), eq. (8.2-g), with 12 1. 

Theorem 13-6: Let us assume that the sequences $snD and {c+Q satisjj (S-O), (S-l), and 

(13.2-17) 

and that the sequence transformation sP$‘/‘(j3, s,, LO,,), eq. (8.2-g), with I2 1 is used for the 
transformation of js,,D. Then we obtain for fixed k, I E NJ with k 2 I + 1 and for al/ n E N, the 
following estimate for the error term: 

This 

p?iy?(P, s,, 4 --s/ 5 
M dk-l+j(j+ l>k 

(/3+nw;(),k_,jz,, (p+n+2k)j . 
c 

implies for fixed k, 1 E N with k 2 1 + 1 and for large values of n the following order estimate: 

n I-2 k 
1, n -+ 00. (13.249) 

If we compare eqs. (13.2-4) and (13.2-17), it seems that in theorems 13-5 and 13-6 the 

(13.2-18) 

existence of two different factorial series expansions for the ratio (s, - s)/w, are assumed. 
However, the factorial series (13.2-4) and (13.2-17) are not independent. In Nielsen’s book it is 
shown how a factorial series of the type of eq. (13.2-4) can be transformed into a factorial series 
of the type of eq. (13.2-17) (see pp. 252-253 of ref. [77]). 

Theorems 13-5 and 13-6 indicate that 9”n)(/?, s,, w,), eq. (8.2-7), should normally be more 
efficient than its generalization 9$)( /3, s,, wn), eq. (8.2-g), with 12 1. 
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In the following theorem, the efficiency of Drummond’s sequence transformation $“)( s,,, w,,), 

eq. (9.5-4), is analyzed. 

Theorem 13-7: Let us assume that the sequences $s,D and awnI satisfy (S-0)-( S-2) and that 
Drummond ‘s sequence transformation C@p’( s,, an), eq. (9.5-4), is used for the transformation of 
{sn 1. Then we obtain for fixed k E N and for all n E IV,, the following estimate for the error term: 

This implies for fixed k E N and for large values of n the following order estimate: 

%%L 4 -s = (q&d) 
> n-+m. 

s, - s 

(13.2-20) 

(13.2-21) 

This theorem, which can be proved in exactly the same way as theorem 13-5, indicates that in 
particular for larger values of k Drummond’s sequence transformation @“)(s,, o,), eq. (9.5-4), 
should be significantly less powerful than FL”‘< p, s,, w,), eq. (8.2-7) or its mild generalization 

yk’;‘(P, s o,), eq. (8.2-8), with 12 1. 
It woulzbe interesting to do the same kind of error analysis also for the sequence transforma- 

tion Ap’(y, s,, wn), eq. (9.2-6), and its mild generalization A?j$(y, s,, a,,), eq. (9.2-7). How- 
ever, if we would try to estimate the error term of this transformation for arbitrary sequences 
asnD and awnI satisfying (S-0)-(S-2) we would in general end up with very complicated formulas 
which would contribute little to our understanding. This is due to the fact that for arbitrary p 
and y we would have to use Leibniz’ theorem for finite differences (see p. 35 of ref. [72]), 

A”[f(n)g(n)l = e (“)[A~f(n)][A”~g(n)l. 
j=o J 

(13.2-22) 

Much more revealing and enlightening is, however, the following observation: 

Theorem 13-8: Assume that y = p + k - 2 holds. Then, 

dj$(Y, s,, an) =~/?‘(A s,, an>. (13.2-23) 

Proof: If we use the following relationship for Pochhammer symbols (see eq. (1.5) on p. 239 of 
ref. [104]), 

(a-m),=(-l)“(l-a),, (13.2-24) 

we obtain 

(-y-n),_,=(-l)k-1(n+y-k+2)k-1. (13.2-25) 

If we insert this relationship into eq. (9.2-6) and use y = fi + k - 2, we obtain eq. (8.2-7). 
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Theorem 13-8 does not imply that the two strings Aj”)(y, s,, w,,) and y.cn)( p, s,, wn) with 
0 ~j I k are identical if y = p + k - 2 holds. Only the last elements of the two strings are 
guaranteed to be identical, but not the others. 

In the case of Levin’s sequence transformation pin)(P, s,, tin), eq. (7.1-7), an analysis of the 
magnitude of the error term as in theorem 13-5 would again be very complicated and would lead 
to lengthy and messy expressions. This is due to the fact that Levin’s sequence transformation is 
constructed on the basis of the model sequence (7.1-l), which is merely a truncation of the 
inverse power series (13.2-5) after k terms, and that in the calculus of finite differences 
PO&hammer symbols and not powers are the most simple functions. However, at least some 
order estimates can be obtained relatively easily in the case of the Levin transformation. 

Theorem 13-9: Let us assume that the sequences {snD and @,,D satisfy (S-O), (S-l), and eq. (13.2-5) 

and that Levin’s sequence transformation =.Y’$“‘( ,8, s,, w,), eq. (7.1-7), is used for the transforma- 
tion of as,, 1. Then we obtain for large values of N and for fixed k E N the following order estimate: 

Proof Obviously, Z’in)(p, s,, wn) is invariant under translation according to eq. (3.1-4). This 
implies that the magnitude of the error term and its dependence upon k and n can be analyzed 
by estimating the magnitude of A$“‘( p, s, - s, w,). The starting point of our analysis is eq. 
(7.1-6) which is rewritten in the following way: 

zpyp, s, - s, WJ = 
A”( (p + n)k-‘(s, - ~)/a,) 

Ak((/3 + n)“-‘/a”) ’ 
(13.2-27) 

In the numerator in eq. (13.2-27) (s, - s)/w, is replaced by the power series (13.2-5) yielding 

Ak (P + 4k%, - 4 
(4 

=Ak(p+n)k-l f ” 
j=o (/3 + n)j 

k-l 
=Ak c c;(p+n)k-j-‘l+Akf “+i 

j=o ]=o (/I + n)j+l. 

(13.2-28) 

(13.2-29) 

The first sum on the right-hand side of eq. (13.2-29) is annihilated by Ak since it is a 
polynomial of degree k - 1 in n. The large n behaviour of the second sum can be estimated with 
the help of the relationship 

Amnpa = O(Caem), (Y z=- 0, (13.2-30) 

to give 

Ak(P+n)k-‘(sn-s) 
%I 

= O(nWk-‘), n-,ca. (13.2-31) 
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Since the remainder estimates (Ian) are strictly alternating in sign according to (S-l), we obtain 
the following estimate for the denominator in eq. (13.2-27), 

I(P + n)“-‘/d s lA”( (P + n)“-‘/in) 1. (13.2-32) 

If we combine eqs. (13.2-27), (13.2-31), and (13.2-32) and take into account that (p + n)k-l = 
O( nk-i) as n + co, we see that theorem 13-9 is correct. 

In the following theorem, which can be proved in essentially the same way as theorem 13-9, an 
order estimate for Levin’s generalized sequence transformation T’,‘,‘j’( j3, s,, wn), eq. (7.1-8), with 
12 1 is derived. 

Theorem 13-10: Let us assume that the sequences 4.~~1 and Qw,,D satisfy (S-O), (S-Z), and eq. 
(13.2-5) and that Levin’s generalized sequence transformation S’,$‘( p, s,, CO”), eq. (7.1-g), with 
I 2 1 is used for the transformation of Is,, D. Then we obtain for fixed k, 1 E N udth k 2 I + 1 and for 
large values of n the following order estimate: 

=%$‘(k ‘n, %I) -’ =o(&Zk) 
3 n+ca. 

s, - s 
(13.2-33) 

A comparison of the order estimates (13.2-7), (13.2-19), (13.2-26), and (13.2-33) shows that 
Levin’s sequence transformation =.CYL”‘( /3, s,, tin), eq. (7.1-7), should be roughly comparable with 
%?P, s,, w ) eq. (8.2-7), and that for fixed 12 1 Levin’s generalized transformation 

~JY(P, s n, 01): eq. (7.1-g), should be roughly comparable with $$)(p, s,, w,), eq. (8.2-8). In 
addition, a comparison with the order estimate (13.2-21) shows that these sequence transforma- 
tions should all be significantly more powerful than Drummond’s sequence transformation 
@“‘(s,, wn), eq. (9.5-4). A more detailed comparison cannot be made here since this would 
require additional knowledge about the sequence js,,D and the remainder estimates {tinI. 

The error analysis of this section is restricted to convergent or divergent sequences {s,D with 
strictly alternating remainder estimates {tin). This restriction is essential because otherwise the 
denominator sums of the pertaining sequence transformations cannot be estimated by a single 
term as it was for instance done in eqs. (13.2-H) and (13.2-32). If we want to analyze the 
transformation of sequences with nonalternating remainders, additional assumptions about the 
behaviour of the remainders have to be made. For instance, in the case of logarithmic 
convergence we could assume something like 

r(P+n+k-1) 

r(&+n--j) ’ 
P, 6ER+, nENO, (13.2-34) 

because then the denominator of eq. (13.2-8) could be computed with the help of eq. (8.4-10) and 
we would obtain an explicit expression for the transformation error Yi”)( j3, s, - s, wn). With 
the help of similar assumptions Sidi [56,105] could derive various error estimates for Levin’s 
sequence transformation @“‘( /3, s,, o,), eq. (7.1-7), in convergence acceleration and summa- 
tion processes. 
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13.3. Summation of the Euler series 

PadC approximants are generally accepted to be valuable numerical tools for the treatment of 
scientific problems. Therefore, it is certainly interesting to compare PadC approximants with the 
other sequence transformations of this report. 

Unfortunately, the theoretical error estimates for the Pad& summation of a Stieltjes series, 
which can be found in the literature, are not directly comparable with the error estimates of 
section 13.2, in which the error is always directly proportional to the remainder estimate w,. For 
instance, in the articles by Allen, Chui, Madych, Narcowich, and Smith [loll, and by Karlsson 
and Sydow [102] the summation error is expressed in terms of polynomials which are orthogonal 
with respect to the measure q(t) in the Stieltjes integral (13.1-1). 

Consequently, we first would have to derive something like theorem 13-5 for PadC approxi- 
mants before we could compare PadC approximants and the sequence transformations 

%?(P, s n, w ) eq 
$fl)(S,, w ) n ’ . 

(7.1-7) > YJn)(/3, s n, wn), eq. (8.2-7), Jacr’(y, s,, w,), eq. (9.2-6), and 
eq. (9.5-4) and their mild generalizations L?$‘;)(p, s,, w,), eq. (7.1-Q 

Y$)(p, s,,: I,), eq. (8.2-S), and ~%Yt](y, s,, wn), eq. (9.2-7), with respect to their ability of 
summing divergent Stieltjes series or accelerating the convergence of some alternating series. 
Unfortunately, no such theorem could be derived which treats the Pad& summation of an 
arbitrary Stieltjes series. 

However, there is a notable exception. In the case of the Euler integral, eq. (l.l-6), and its 
associated asymptotic series, the so-called Euler series, eq. (l.l-7), Sidi [84] could show that their 
PadC approximants can be expressed in closed form via Drummond’s sequence transformation 
@“‘(s,, w,), eq. (9.5-4), 
Wynn’s E algorithm, eq. 
approximants [II + k/k], 

eq. (l.l-7), we have 

with w, = a,,,. Sidi’s proof is based upon the well-known fact that 
(4.2-l), which according to eq. (4.2-10) is able to compute the PadC 
is exact for the model sequence (4.1-3). In the case of the Euler series, 

s,= 2 (-l)yY!zy, 
v=o 

(13.3-1) 

a, = (-l)“n!zfl. (13.3-2) 

If we insert these relationships into the model sequence (4.1-3), we obtain 

k-l 

S” = s + c Cj( -l)“+j+l(, +j + l)!z”+‘+‘. (13.3-3) 
j=O 

This model sequence for the PadC approximants [n + k/k] of the Euler series can be rewritten 
in the following way: 

s, - s k-l 

(- l)n+l(n + l)!z”+’ 
= ,~oCj(-l)iZ'(tZ + 2)j. (13.3-4) 
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The sum on the right-hand side of eq. (13.3-4) is a polynomial of degree k - 1 in n. 
Consequently, it can be annihilated by the difference operator Ak. Hence, it follows from eq. 
(9.5-2) that the PadC approximants [n + k/k] for the Euler series can be expressed in closed form 
in terms of Drummond’s sequence transformation, eq. (9.5-4) 

[n + k/k] = c&j = @ys,, a,,,), k, n EN,. (13.3-5) 

From this relationship we may conclude that in the case of the Euler series Drummond’s 
sequence transformation is much more efficient than Wynn’s E algorithm. If the diagonal PadC 
approximant [n/n], which according to eq. (4.1-8) is a ratio of two polynomials p,(z) and q,(z) 

of degree n in z, is computed with the help of Wynn’s e algorithm as 692, the partial sums 

so, Sl,...,SZn of the Euler series will be needed. If the same diagonal PadC approximant [n/n] is 
computed as gi”)( so, a,), then according to eq. (9.5-4) only the partial sums so, sl,. . . , s,+~ will 
be needed. Consequently, in the case of the Euler series, Drummond’s sequence transformation is 
approximately twice as efficient as Wynn’s E algorithm. 

How can this behaviour be explained? If Drummond’s sequence transformation is applied to a 
sequence of partial sums of the Euler series, then we find that &“)( so, al) is the ratio of two 
polynomials p,(z) and q,(z) of degree n in z. However, it follows from eq. (9.5-4) that the 
2n + 2 coefficients of the two polynomials are not all independent. In fact, these two polynomi- 
als p,,(z) and q,(z) are completely determined by the n f 2 terms a,, a,, . . . , a,, 1. If the same 

ratio p,(z)/q,( ) z is computed via Wynn’s E algorithm, it is implicitly assumed that the 2n + 2 
coefficients of the two polynomials are independent apart from a common normalization 
condition. This implies that Wynn’s 6 algorithm needs 2n + 1 independent conditions - in this 
case the 2n + 1 partial sums so, sI,. . . , s2,, - for the construction of the ratio p,( z)/q,( z). 

Actually, it is a typical feature of all sequence transformation Tk(n)(.s,, tin) of the type of eq. 
(12.2-2) that the coefficients of the numerator and denominator sums are not independent. 

It is a natural idea to try to apply theorem 13-7, which gives an error estimate for 
Drummond’s sequence transformation, also for of the PadC summation of the Euler series. 
Assumptions (S-O) and (S-l) are obviously satisfied. However, it is not clear whether and how a 
sequence &,+D of remainder estimates can be found such that assumption (S-2), which requires 
that (s, - s)/w, can be represented as a factorial series according to eq. (13.2-4) is valid. No 
explicit proof for the existence of such a factorial series could be found in the case of the Euler 
series, if the remainder estimates were chosen according to 

w, = (-l)““(fl+ l)!zn+l, IZEN,. (13.3-6) 

Consequently, it can only be investigated numerically whether the error analysis of theorem 13-7 
provides an adequate description of the PadC summation of the Euler series. 

A close relative of the Euler integral, eq. (l.l-6), is the so-called exponential integral 

(13.3-7) 
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By means of some elementary operations we find: 

z ez E,(z) = km=. (13.3-8) 

If we compare this relationship with eq. (1.1-6) and also use eq. (l.l-7), we see that the associated 
Stieltjes series of the integral in eq. (13.3-8) is the Euler series with argument l/z, 

z e” JS4 - 5 (-~)"wz!z-m =2Fo(1, I; -I/~), z-, 00. (13.3-9) 
m=O 

The radius of convergence of the hypergeometric series 2Fo on the right-hand side of eq. 
(13.3-9) is zero, i.e., the series diverges quite rapidly for all finite values of z. Since reliable 
programs for the exponential integral E,(z) with z E Iw + are available, eq. (13.3-9) is well suited 
to test the ability of a sequence transformation of summing even wildly divergent series. In this 
report, the exponential integral E,(z) will be computed with the help of the routine S13AAF of 
the NAG FORTRAN library [106]. This function computes an approximation for the exponen- 
tial integral in DOUBLE PRECISION (15-16 decimal digits) using appropriate Chebyshev 
expansions. 

In table 13-1 the effect of Aitken’s iterated A2 process, eq. (5.1-15), of Drummond’s sequence 
transformation, eq. (9.5-4), and of Wynn’s c algorithm, eq. (4.2-l), on the partial sums 

s,= i: (-l)%,r!Z-m, nEl+J, (13.3-10) 
m=O 

of the divergent series 2F, in eq. (13.3-9) with z = 3 is compared. In Drummond’s sequence 
transformation, eq. (9.5-4) the remainder estimates are chosen according to eq. (13.1-16) which 
in this case means 

a, = a,+, = ( -l)n+l(n + l)!z-“-1, nEN,. (13.3-H) 

The partial sums and the three different transforms in table 13-1 were computed in 
QUADRUPLE PRECISION (31-32 decimal digits). When these computations were repeated in 
DOUBLE PRECISION (15-16 digits) in order to study the numerical stability of the pertaining 
numerical processes, it turned out that the two computations agreed at least up to 12 decimal 
digits. 

In all cases, the approximants were chosen in such a way that the information, which is 
contained in the finite string so, si, . . . , s, of partial sums, is exploited optimally. This means that 
in the case of Aitken’s iterated A2 process, eq. (5.1-15), the approximants were chosen according 
to eq. (5.2-6), and in the case of Wynn’s 6 algorithm, eq. (4.2-l), they were chosen according to 
eq. (4.3-6). 

A comparison of these three sequence transformations is quite interesting. Aitken’s iterated A2 
process and Wynn’s z algorithm are closely related since they are both generalizations of 
Aitken’s A2 process, eq. (5.1-4), and one would like to know which one of these two generaliza- 
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Table 13-1 
Summation of the asymptotic series ,F,(l,l; -l/z)= ze’E,(z) for z = 3 

n partialsum s, &{("$w) 

eq.i5.1-15) 
@'(S o, ad 

(n-2En/21) 

ei (9.5-4) 
c28n/21 

eq.(13.1-10) eq.(4.2-1) 

10 0.4831550069x10°2 0.78625130019479 0.78625125348502 0.78626367674141 
11 -0.1770160037x10°3 0.78625114835779 0.78625123263883 0.78624220653206 
12 0.7243100137x10°3 0.78625122394910 0.78625122525386 0.78625447790898 
13 -0.3181436062x10w 0.78625121766831 0.78625122252501 0.78624881508686 
14 0.1504537896x10°5 0.78625122089403 0.78625122147819 0.78625215335611 
15 -0.7608869613~10~~ 0.78625122063943 0.78625122106292 0.78625052018310 
16 o.4099597043x10°6 0.78625122077179 0.78625122089311 0.78625150842397 
17 -0.2344314565x10°7 0.78625122076057 0.78625122082175 0.78625100153477 
18 0.1418133105x10°s 0.78625122076626 0.78625122079099 0.78625131522011 
19 -0.9048109119x10°8 0.78625122076568 0.78625122077742 0.78625114787954 
20 0.6072683904~10~~ 0.78625122076597 0.78625122077131 0.78625125348502 
21 -O.4276977981x1O'o 0.78625122076594 0.78625122076850 0.78625119524201 
22 0.3154082874~10" 0.78625122076595 0.78625122076718 0.78625123263883 
23 -0.2430623561~10'~ 0.78625122076596 0.78625122076656 0.78625121141456 
24 0.1953763123~10'~ 0.78625122076595 0.78625122076626 0.78625122525386 
25 -0.1635311587~10'~ 0.78625122076596 0.78625122076611 0.78625121720071 
26 O.1423O65O21x1O'5 0.78625122076596 0.78625122076603 0.78625122252501 
27 -0.1285630059~10'~ 0.78625122076596 0.78625122076600 0.78625121935772 
28 0.1204177785x10" 0.78625122076596 0.78625122076598 0.78625122147819 
29 -0.1167898319x10'8 0.78625122076596 0.78625122076597 0.78625122019177 
30 0.1171526266x10'9 0.78625122076596 0.78625122076596 0.78625122106292 

NAG function S13AAF 0.78625122076594 0.78625122076594 0.78625122076594 

tions fares better. In addition, since the series (13.3-9) is the Euler series with argument l/z, the 
validity of eq. (13.3-5) can be checked numerically by comparing the results for Wynn’s E 
algorithm and Drummond’s sequence transformation. 

The clear winner in table 13-l is Aitken’s iterated A2 process which produces 14 decimal digits 
after n = 23 (there is strong independent evidence that the last digit produced by the NAG 
function S13AAF in table 13-l is incorrect and that Aitken’s iterated A2 process and Drum- 
mend’s sequence transformation produce the correct result). It is followed by Drummond’s 
sequence transformation, which reaches an accuracy of 14 decimal digits after n = 30, and the 
clear loser is WymYs e algorithm. 

The results in table 13-l show that eq. (13.3-5) is obviously valid in the case of the divergent 
series ,F,(l, 1; - l/z) because we find 

(13.3-12) 

Since LB$,“‘( sO, al) is able to produce an accuracy of 14 decimal digits, it follows from eq. 
(13.3-12) that Wynn’s c algorithm will need the partial sums sO, si,. . . , sGo of the asymptotic 
series in eq. (13.3-9) to produce the same accuracy. 

In table 13-2 the same divergent series 2F0 in eq. (13.3-9) with z = 3 is summed by the 
sequence transformations dL’)( /3, so), eq. (7.3-9) and S,‘“)( /3, so), eq. (8.4-4), with fi = 1 and 
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Table 13-2 
Summation of the asymptotic series 2F0(l, 1; -l/z) = z eZE,(z) for z = 3 

n partial sum s, dO’(l, so) 
ei. (7.3-9) 

S’O’(1, so) 
el. (8.4-4) 

A(“(17 so) 
eq. (13.1-10) eL;. (9.4-4) 

0.78633660627852 3 0.6666666667 x 10” 
4 0.9629629630 x 10” 
5 0.4691358025 x loo0 
6 0.1456790123 x 10” 
7 - 0.8477366255 x loo0 
8 0.5297668038 x 10” 
9 -0.1313854595 x 10” 

10 0.4831550069 x loo2 
11 -0.1770160037 x loo3 
12 0.7243100137 x loo3 
13 - 0.3181436062 x loo4 
14 0.1504537896 x 10” 
15 - 0.7608869613 x 10” 
16 0.4099597043 x loo6 
17 - 0.2344314565 x loo7 
18 0.1418133105 x 10” 

NAG function S13AAF 

0.78709677419355 
0.78607714016933 
0.78628225839245 
0.78624675493384 
0.78625162955159 
0.78625123599599 
0.78625120523222 
0.78625122396512 
0.78625122056582 
0.78625122068924 
0.78625122079175 
0.78625122076354 
0.78625122076528 
0.78625122076622 
0.78625122076593 
0.78625122076595 

0.78672985781991 
0.78622197922362 
0.78625036724446 
0.78625141640628 
0.78625123162756 
0.78625121903376 
0.78625122051031 
0.78625122077239 
0.78625122077131 
0.78625122076646 
0.78625122076590 
0.78625122076593 
0.78625122076595 
0.78625122076596 
0.78625122076596 
0.78625122076596 

0.78625813355638 
0.78625167667778 
0.78625123654802 
0.78625121997903 
0.78625122068020 
0.78625122077447 
0.78625122076641 
0.78625122076576 
0.78625122076598 
0.78625122076596 
0.78625122076595 
0.78625122076596 
0.78625122076596 
0.78625122076596 
0.78625122076596 

0.78625122076594 0.78625122076594 0.78625122076594 

A(“)( y, so) eq (9 4-4) . . with y = 17. These three sequence transformations use the same remainder 
es;imate (;3.3-11) as ‘%$‘)(so, a,) in table 13-l. 

Table 13-2 was also produced in QUADRUPLE PRECISION. When this computation was 
repeated in DOUBLE PRECISION, it turned out that in the last two columns all 14 digits 
agreed. Only in the case of the Levin transformation dL’)(p, so), eq. (7.3-9), it occasionally 
happened that the last digit disagreed. Thus, numerical instabilities are no problem here. 

A comparison of the results in tables 13-l and 13-2 confirms the error analysis in section 13.2, 
which indicates that Drummond’s sequence transformation @“)(s,, an), eq. (9.5-4), should be 
significantly less powerful than the sequence transformations _YLn)( p, s,, an), eq. (7.1-7), 

YJ”‘(P, s ,,, w,), eq. (8.2-7), and Mp’(y, s,, tin), eq. (9.2-6) if the same remainder estimates 
{wn D are used. Even dA”( p, so), which is somewhat weaker than the other two transformations in 
table 13-2, is clearly more powerful than the transformations in table 13-1, and both A’,“)(?, so) 
and S,“‘(/3, so) are approximately twice as efficient as &‘)(so, ai). This observation is at least 
qualitatively in agreement with the order estimates (13.2-7) and (13.2-21). 

In view of its slow convergence a PadC summation of the divergent series *F. in eq. (13.3-9) 
does not seem feasible if its argument is significantly smaller than z = 3 as it was chosen in table 
13-l. If, however, variants of the sequence transformations Zi”)(p, s,, w,), eq. (7-l-7) 

Yk’“‘(P, s n, w,), eq. (8.2-7), and -My’(y, s,, w,), eq. (9.2-6) are used, the summation of the 
divergent series in eq. (13.3-9) can be done even for relatively small arguments. Table 13-3 shows 
that the sequence transformations dA”( p, so), eq. (7.3-9), and Si’“)( p, so), eq. (8.4-4) with p = 1 
and A’,o’(y, so), eq. (9.4-4), with y = 29 are able to sum the divergent series *F. in eq. (13.3-9) 
with an accuracy of 14 decimal digits even if the argument of the series is as small as z = l/2. 
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Table 13-3 
Summation of the asymptotic series 2F0(l, 1; -l/z) = z e’&(z) for z = l/2 

n partial sum s, d’O’(1, so) 
ei. (7.3-9) 

P(l> so) ACo)(29, so) 
eq. (13.1-10) eq. (8.4-4) el. (9.4-4) 

15 - 0.4147067254 x 10” 0.46145531715043 0.46145531958535 0.46145595366489 
16 0.1329725286 x 1Ol9 0.46145530923846 0.46145531701552 0.46145551453546 
17 - 0.4529093729 x 10” 0.46145531613431 0.46145531625982 0.46145536941468 
18 0.1633052915 x lo’* 0.46145531735759 0.46145531613493 0.46145532757622 
19 - 0.6214401349 x 10 23 0.46145531627646 0.46145531616450 0.46145531778365 
20 0.2488938643 x 10 *’ 0.46145531605612 0.46145531620445 0.46145531622965 
21 - 0.1046565329 x 102’ 0.46145531622971 0.46145531622787 0.46145531618769 
22 0.4609744216 x 102* 0.46145531627375 0.46145531623807 0.46145531623838 
23 -0.2122526902 x 103’ 0.46145531624564 0.46145531624153 0.46145531624494 
24 0.1019714416 x 103* 0.46145531623631 0.46145531624231 0.46145531624191 
25 - 0.5102726985 x 1O33 0.46145531624080 0.46145531624227 0.46145531624156 
26 0.2655415912 x 1O35 0.46145531624283 0.46145531624210 0.46145531624194 
27 - 0.1434925159 x 103’ 0.46145531624214 0.46145531624197 0.46145531624189 
28 0.8040791666 x 103* 0.46145531624170 0.46145531624191 0.46145531624184 
29 - 0.4666476909 x 1040 0.46145531624180 0.46145531624188 0.46145531624188 
30 0.2801466126 x 104* 0.46145531624189 0.46145531624187 0.46145531624187 

NAG function S13AAF 0.46145531624187 0.46145531624187 0.46145531624187 

In the case of table 13-3 it is essential to use QUADRUPLE PRECISION. In DOUBLE 
PRECISION, a heavy loss of significant digits occurs. The best results in DOUBLE PRECI- 
SION are obtained by a’,“‘(~, so) for n = 20 (10 decimal digits). For larger values of n, the 
accuracy of the results deteriorates rapidly due to numerical instabilities, leading to nonsensical 
results for the Levin transformation d$)( /3, s,,) and to only 3 digits accuracy for S,‘z)( p, so) and 
A’%Y> ~1. 

If the other variants of the sequence transformations Z’in)(P, s,, an), eq. (7.1-7), 
Yk’“‘(P, s “, w*), eq. (8.2-7), and Mf)(y, s,, a,), eq. (9.2-6), which are based upon the remainder 
estimates (7.3-4), (7.3-6), (7.3-lo), and (9.4-l), are used for the summation of the divergent series 
*FO in eq. (13.3-9), it turns out that these transformations are roughly comparable with 
d’O’(P, so), S(O)@, so) n or A$)(y, so), which were used in tables 13-2 and 13-3. 

The other “sequence ‘transformations of this report do not sum the divergent series 2Fo in eq. 
(13.3-9) as efficiently as the transformations mentioned above. For instance, Brezinski’s 9 
algorithm, eq. (lO.l-9), or other transformations, which are based upon the 9 algorithm, as for 
instance fin), eq. (10.3-6), .G@‘,$“‘, eq. (ll.l-5), and Vi”‘, eq. (ll.l-12), all rank between Aitken’s 
iterated A2 algorithm, eq. (5.1-15), and Drummond’s sequence transformation, eq. (9.54), with 
respect to their ability of summing the divergent series in eq. (13.3-9). The sequence transforma- 
tions h(kn), eq. (11.2-l), uJn), eq. (11.2-2), and pL(kn), eq. (11.2-3), sum the divergent series 2Fo in eq. 
(13.3-9) slightly less efficient than Drummond’s sequence transformation. 

It is a remarkable fact that compared with di”(P, so), eq. (7.3-9), S,“‘(/?, so), eq. (8.4-4), or 
A%Y, soI, eq. (9.4-4), which were used in tables 13-2 and 13-3, the PadC summation of the 
divergent series 2Fo in eq. (13.3-9) is hopelessly inefficient, even if the Pad& approximants are 
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computed via Drummond’s sequence transformation according to eq. (13.3-5) and 
Wynn’s c algorithm. 

How can this inferiority of PadC approximants be explained? It was remarked earlier, 
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not via 

that the 
PadC approximants [n + k/k] for the Euler series can be constructed on the basis of the model 
sequence (13.3-5). The remainder r,, of this model sequence is of order 0( .~“+~n~+~) as n ---, cc. 
However, it follows from theorem 13-2 that the remainder integral R,(z) of the Euler series 
(1.1-7) with z E R’ + is rigorously bounded by (n + l)!z”+’ which is only of order 0( zn+inn+‘) as 
n ---) cc. Hence, we see that the remainder of the model sequence (13.3-3) for PadC approximants 
[n + k/k] yields unrealistically large estimates in the case of a wildly divergent series such as the 
Euler series. Consequently, it is to be expected that in the case of such a wildly divergent series 
PadC approximants will be less efficient than sequence transformations which use tighter 
remainder estimates as for instance suitable variants of p(“)(/?, s,, wn), eq. (7.1-7), 
yJn)(P, s,, w,), eq. (8.2-7), and Ap)(y, s,, w,), eq. (9.2-6). 

There is considerable numerical evidence that the inferiority of Pade approximants in 
summation processes is not restricted to the Euler series. For instance, the numerical tests 
performed by Smith and Ford [29,30], who also considered the summation of several alternating 
divergent series, showed that Levin’s u transformation, eq. (7.3-5), is significantly more powerful 
than Wynn’s E algorithm. 

The inferiority of PadC approximants in summation processes also becomes quite obvious in 
the case of the following class of auxiliary functions, 

F,(z) = /glllZrn epru2 du, mEN,, ZER,. (13.3-13) 

These auxiliaray functions F,(z) are of considerable importance in molecular ab initio 
calculations with Gaussian-type basis functions since the nuclear attraction and interelectronic 
repulsion integrals are ultimately expressed in terms of these functions. In molecular calculations 
these auxiliary functions have to be computed over a wide range of parameters m and arguments 
z so frequently that it amounts to a significant part of the whole integral evaluation time. In the 
case of larger arguments z, it is recommendable to compute this auxiliary function via its 
asymptotic expansion, 

F( m + l/2) 
fix4 - 2Zm+1,2 - G2el(1, 1/2-m; -I/z), Z-+00. (13.3-14) 

In ref. [63] it was shown that Levin’s d transformation, eq. (7.3-9), sums this divergent series 
much more efficiently than Wynn’s E algorithm. Later, in ref. [107] the effect of the sequence 
transformations up)( p, s,), eq. (7.3-5), yL”)( /3, So), eq. (8.4-2), and Y,‘“)(y, s,), eq. (9.4-2), on 
the divergent series 2F0 in eq. (13.3-14) was compared. Similarly as in the case of the divergent 
series 2& in eq. (13.3-9) it was found that Levin’s u transformation is slightly less efficient than 
the analogous new sequence transformations yi”)(p, sn) and Y,‘“)(y, s,). 

13.4. A Stieltjes series with a finite radius of convergence 

Let us consider the following integral representation for the logarithm which is defined for all 
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z belonging to the cut complex plane which is cut along - cc < z 5 - 1, 

(13.4-1) 

The integral in eq. (13.4-1) is a Stieltjes integral as the one in eq. (13.1-1). To see this we only 
have to set #(t) = t for 0 I t I 1 and q(t) = 1 for 1 < t < 00 in eq. (13.1-l). The moments pLm of 
this positive measure #(t) are given by 

lmtm d#(t) = llt- dt = --&, mENo. (13.4-2) 

If we use these moments p, in eq. (13.1-3), we obtain the following power series for the 
logarithm which is by construction a Stieltjes series: 

cx) ( _l)mZm+l 
ln(1 +z) = C =z &(l, 1; 2, -z). 

m=O m+l 
(13.4-3) 

The power series in eq. (13.4-3) converges absolutely for all z E C with ) z I< 1, for z = 1 the 
series converges conditionally, and all for z E C with 1 z I> 1 the series diverges. However, as 
long as the argument z E d: does not lie on the cut, the divergent series can at least in principle 
be summed. 

It may be interesting to note that the infinite series (13.4-3) for ln(2) occurs also in solid state 
physics since it gives the Madelung constant of a l-dimensional lattice of oppositely charged ions 
(see pp. 74-75 of ref. [108]). According to Killingbeck the infinite series (13.4-3) occurs also if 
correlation effects in atoms are treated via perturbation theory (see p. 969 of ref. [109]). 

In the last section, it was demonstrated both theoretically and numerically that the sequence 
transformations L?in)(/?, s,, an), eq. (7.1-7), Yin)(P, s,, tin), eq. (8.2-7) and A?‘(Y, s,,, tin), 
eq. (9.2-6), sum the wildly divergent series *FO in eq. (13.3-9), which is essentially the Euler series, 
significantly more efficiently than Pad& approximants. In addition, some arguments were 
presented which indicate that this inferiority of PadC approximants is not restricted to the Euler 
series (1.1-7) and will occur also in the case of other wildly divergent series. For 1 < z < cc, the 
sequence of partial sums of the Stieltjes series in eq. (13.4-3), 

(13.4-4) 

obviously diverges but not as wildly as the partial sums of the divergent series 2F0 in eq. (13.3-9). 
Consequently, it should be interesting to investigate whether the striking superiority of the 
sequence transformations =.@“)(/3, s,, w,), .Y$“)( p, s,, u,), and &Yp)(y, s,, w,), over Pad& 
approximants is also observed in the case of the Stieltjes series (13.4-3). 

In this context it would of course be helpful to have some theoretical summation error 
estimates. In the case of the sequence transformations Z$“‘(p, s,, tin), eq. (7.1-7), 
Yk’“‘(P, s n, w,), eq. (8.2-7), and ~Vp’(y, s,, o,), eq. (9.2-6), this poses no problems. If the 
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argument z of the Stieltjes series in eq. (13.4-3) is positive, the error analysis of section 13-2 can 
be used since the remainders of the power series are then strictly alternating. 

In the case of PadC approximants the error analysis of section 13-2 cannot be applied because 
only the PadC approximants of the Euler series, eq. (l.l-7), can be computed via Drummond’s 
sequence transformation. In Wimp’s book [23] the effect of Wynn’s c algorithm, eq. (4.2-2), on 
the following model sequence is studied. The elements of this model sequence are defined by 
Poincare-type asymptotic expansions in inverse powers of n, 

co 

sn - s + Ann8 C cj/ni, co # 0, n+co. (13.4-5) 
j=O 

A sequence of the type of eq. (13.4-5) should be a reasonably good model for the behaviour of 
the partial sums s, of the series (13.4-3) as n + co. The sequence (13.4-5) obviously converges 

linearly if 1 X 1 -C 1 and it diverges if 1 h ( > 1. Assuming X # 1 and 9 # 0, 1,. . . , k - 1 in eq. 
(13.4-5), Wimp obtained for fixed k E N the following order estimate (see p. 127 of ref. [23]): 

# _s = co~n+2kn+2kk!w)k [1 + o( q, 

(A - l)2k 
n-+ cc. 

n 

Since s, - s - A”n’ as n + cc, we obtain from eq. (13.4-6) the following order estimate: 

cyj - s 
- 0( nwZk), n+co. 

s, - s 

(13.4-6) 

(13.4-7) 

The error estimate (13.4-6) shows quite clearly that for I A I -C 1 Wynn’s c algorithm accelerates 
the convergence of the linearly convergent sequence. It also follows from the error estimate 
(13.4-6) that the limit s can be determined more easily if X is negative which is well in agreement 
with experience. 

However, if we compare the order estimate (13.4-7) with the order estimates (13.2-7) and 
(13.2-26) for Yi”)(fi, s an),,>, eq. (8.2-7), and LZ’i”‘(p, s,, w,), eq. (7.1-7), respectively, we find 
that Wynn’s 6 algorithm should be significantly less efficient than the other two sequence 
transformations mentioned above. This follows from the fact that for the computation of I, 
which according to eq. (13.4-7) gives an order estimate of order O(npzk), 2k + 1 sequence 
elements s,, s,+i,. . .) x,+2k will be needed, whereas for the computation of Y$“)( p, s,, a,), and 

pJn)(P, s n, w,), which also give an error estimate of order 0( n-2k), only k + 1 sequence 
elements s,, s,+ i, . . . , s, +k will be needed. 

In table 13-4 the effect of the sequence transformations tp)( /3, sn), eq. (7.3-7), ri’)( /?, s,,), eq. 
(8.4-3), with p = 1 and Wynn’s E algorithm, eq. (4.2-l), on the partial sums of the divergent 
Stieltjes series in eq. (13.4-3) with z = 5 are compared. 

The results in table 13-4 are another striking example for the inferiority of Pa& approtimants 
in summation processes. The results also indicate that our conclusions concerning the efficiency 
of PadC approximants in summation processes, which were based upon a comparison of the 
order estimates in theorems 13-5 and 13-9 and in eq. (13.4-6), should at least be qualitatively 
correct. 
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Table 13-4 
Summation of the divergent series z ,F,(l, 1; 2; - z) = ln(l+ z) for z = 5 

n 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

partial sum s, (n-%/21) 
C2b/21 t:“‘(L so> d’O’(L so) 

eq. (13.4-4) .eq. (4.2-l) eq. (7.3-7) eq. (8.4-3) 

0.3639603183 x loo7 1.79198007997771 1.79175951159974 1.79175959220168 
- 0.1670544890 x 10” 1.79159768463775 1.79175946864530 1.79175949178480 

0.7719479148 x loo8 1.79179758764032 1.79175946794412 1.79175947333854 
- 0.3587706103 x 10” 1.79173348919423 1.79175946933559 1.79175946997338 

0.1675734598 x 10” 1.79176609278102 1.79175946926071 1.79175946936268 
-0.7861008566 x 10” 1.79175520193427 1.79175946922241 1.79175946925230 

0.3701778279 x 10” 1.79176062438322 1.79175946922743 1.79175946923241 
- 0.1749098431 x 1Ol2 1.79175875744767 1.79175946922828 1.79175946922884 

0.8289578584 x 1012 1.79175967119854 1.79175946922806 1.79175946922819 
- 0.3939413724 x 1013 1.79175934919749 1.79175946922805 1.79175946922808 

0.1876711762 x 1Ol4 1.79175950460547 1.79175946922806 1.79175946922806 
- 0.8960496379 x 1014 1.79175944882296 1.79175946922806 1.79175946922806 

0.4286962951 x 1Ol5 1.79175947543322 1.79175946922805 1.79175946922806 
- 0.2054830571 x 1016 1.79175946573795 1.79175946922805 1.79175946922806 

0.9866098385 x 1Ol6 1.79175947031756 1.79175946922806 1.79175946922806 
- 0.4744606005 x 10” 1.79175946862827 1.79175946922806 1.79175946922806 

FORTRAN function QLOG 1.79175946922806 1.79175946922806 1.79175946922806 

Table 13-4 was produced in QUADRUPLE PRECISION. When the same computation was 
repeated in DOUBLE PRECISION, some loss of accuracy was observed. The best results were 
produced by ti”(l, so) and 7,“‘(1, so) for n between 15 and 18 (approximately 11 decimal 
digits). For larger values of n the accuracy deteriorates. 

The Stieltjes series (13.4-3) is not only suited to test the efficiency of a sequence transforma- 
tion in summation processes. A very popular test case, which is frequently found in the literature, 
is the conditionally convergent series (13.4-3) for ln(2) which converges quite slowly. According 
to Bender and Orszag (see p. 372 of ref. [2]) about 7000 terms of the series in eq. (13.4-3) with 
z = 1 will be needed to compute ln(2) with a relative accuracy of 0.01 percent. The same 
sequence transformations as in table 13-4 accelerate the convergence of the series for ln(2) also in 
table 13-5. This time, the e algorithm is comparatively successful since it only needs the partial 
sums (13.3-4) up to n = 18 to produce an accuracy of 14 decimal digits. However, the other two 
sequence transformations in table 13-5 are still significantly more powerful. 

Table 13-5 was again produced in QUADRUPLE PRECISION. When this computation was 
repeated in DOUBLE PRECISION, no loss of accuracy was observed. 

The potential of the Stieltjes series (13.4-3) for ln(1 + z) to test the performance of sequence 
transformations is not yet exhausted. If the argument z of the power series satisfies - 1 < z < 0, 
all of its terms have the same sign. The convergence of this series will become quite bad if z 
approaches - 1 because for z = - 1 it becomes the series (1.1-2) for l(l) which diverges. 
Consequently, it should be interesting to find out whether and how well the convergence of the 
Stieltjes series (13.4-3) can be accelerated if its argument z is close to - 1. 

In this context, it would again be helpful to have some theoretical error estimates. In the case 
of Pad6 approximants this poses no problems. If we assume that the elements of the model 
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Table 13-5 
Acceleration of the conditionally convergent series z z&(1, 1; 2; - z) = ln(1 + I) for z = 1 

n partial sum s, (n-2Bn/2P) 
Cm/21 t:“‘(L so) do’& so> 

eq. (13.4-4) eq. (4.2-l) eq. (7.3-7) eq. (8.4-3) 

3 0.58333333333333 0.69047619047619 0.69313725490196 0.69321533923304 
4 0.78333333333333 0.69333333333333 0.69314393939394 0.69314971751412 
5 0.61666666666667 0.69308943089431 0.69314740192831 0.69314726571364 
6 0.75952380952381 0.69315245478036 0.69314717779003 0.69314718328808 
7 0.63452380952381 0.69314574314574 0.69314718001500 0.69314718064517 
8 0.74563492063492 0.69314733235438 0.69314718060123 0.69314718056257 
9 0.64563492063492 0.69314714248772 0.69314718055924 0.69314718056003 

10 0.73654401154401 0.69314718496213 0.69314718055985 0.69314718055995 
11 0.65321067821068 0.69314717951778 0.69314718055995 0.69314718055995 
12 0.73013375513376 0.69314718068816 0.69314718055995 0.69314718055995 
13 0.65870518370518 0.69314718053085 0.69314718055995 0.69314718055995 
14 0.72537185037185 0.69314718056369 0.69314718055995 0.69314718055995 
15 0.66287185037185 0.69314718055912 0.69314718055995 0.69314718055995 
16 0.72169537978362 0.69314718056005 0.69314718055995 0.69314718055995 
17 0.66613982422806 0.69314718055992 0.69314718055995 0.69314718055995 
18 0.71877140317543 0.69314718055995 0.69314718055995 0.69314718055995 

FORTRAN function OLOG 0.69314718055995 0.69314718055995 0.69314718055995 

sequence (13.4-5) is still a good model for the behaviour of the partial sums (13.4-4) as n + cc, 
we may conclude from eq. (13.4-6) that Wynn’s e algorithm will accelerate the convergence of 
the sequence (13.4-5). 

In the case of the sequence transformations Z$“)(/?, s,, an), eq. (7.1-7), SPk(“)(fi, s,, a,,), eq. 
(8.2-7), and Ap’(y, s,, o,), eq. (9.2-6), the situation is more complicated since the error 
analysis of section 13-2, which rests upon the assumption that the remainder estimates strictly 
alternate in sign, cannot be applied here. Consequently, we have to find estimates of the type of 
eq. (13.4-6) for the other sequence transformations mentioned above. 

Theorem 13-11: Let us assume that the elements of the sequence @,,I satisfy 

s,=s+X”n8[c,+0(n-‘)I, co#O, h#O,l, n-+oc, (13.4-8) 

that the elements of the sequence of remainder estimates {o,,D can be chosen in such a way that 

w,, = X”n”[do + O(n-‘)I, d,#O, n+oo, (13.4-9) 

and that the ratio (s, - s)/o, can for all n E No be expressed as a factorial series, 

S” - s -= 
%I ,to (p:‘n)j’ PER+. (13.4-10) 
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If the sequence transformation Pi”‘( /3, s,, wn), eq. (8.2-7), is used for the transformation of (IsnD, 
we obtain for fixed k E N the following order estimate: 

c4Pk(YP~ s,> 4 -s = O(n_*k) 

> n+oo. 
s, - s 

(13.4-U) 

Proof: We can proceed as in theorem 13-5, i.e., the starting point for the proof of theorem 13-11 
is eq. (13.2-8). Since eqs. (13.2-4) and (13.4-10) are identical we find that the numerator of this 
expression is also given by eq. (13.2-13) which is obviously of order 0( nPk-‘) as n + 00. 

In order to obtain an estimate for the denominator Ak[(p + n),_,/W,] we use (see eq. (41) on 
p. 21 of ref. [23]) 

Ak[z”ncy] - Z’(Z - l)kn”, z#l, n+ca. (13.4-12) 

This relationship gives us the following asymptotic estimate for the denominator in eq. 
(13.2-8): 

A”[(/3 + n)k_l/~,] - [l -A] kX-n-knk-6-1, n-+c9. (13.4-13) 

If we combine the expressions for the numerator and the denominator and take into account 
that s, - s - A” n’ as n -+ cc, we obtain eq. (13.4-11). 

In the next theorem, which can be proved in essentially the same way as theorem 13-11, it is 
shown that Levin’s sequence transformation 9in)( p, s,, wn), eq. (7.1-7), also leads to an error 
estimate of order 0( n-2k). 

Theorem 13-12: Let us assume that the elements of the sequence $snD satisfy 

s,=s+X”n’[c,+O(n-‘)I, co # 0, X#O,l, n+co, (13.4-14) 

that the elements of the sequence of remainder estimates &.+D can be chosen in such a way that 

w,=X”n4[do+O(n-‘)I, d,#O, n+oo, (13.4-15) 

and that the ratio (s, - s)/w, can for all n E No be expressed as a power series of the following 

type, 

s, - s 
-= 

% 
E YJ' PER,. 
j=O (p + n)” 

(13.4-16) 

If the sequence transformation Z’-(‘)(/?, s,, w”), eq. (7.1-7), is used for the transformation of Qs,,D, 
we obtain for fixed k E N the following order estimate: 

-Epk’“‘(bT ‘,, %) -s = O(n-2,) 
> n-+ca. 

s -s n 
(13.4-17) 
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Table 13-6 
Acceleration of the absolutely convergent series z ,F,(l, 1; 2; - z) = ln(1 + z) for z = - 0.9 

n partial sum s, Cn-XnPD) 
C2In/21 t:“‘(l, so 1 7n”v, so) 

eq. (13.4-4) eq. (4.2-l) eq. (7.3-7) eq. (8.4-3) 

1.5 - 2.23201245730299 
16 - 2.24182256418514 
17 - 2.25016115503498 
18 - 2.25727090091747 
19 - 2.26334973364700 
20 - 2.26856016170088 
21 - 2.27303639307444 
22 - 2.27688984443081 
23 - 2.28021344622568 
24 - 2.28308503817645 
25 - 2.28557006967230 
26 - 2.28772376363538 
27 - 2.28959286232476 
28 - 2.29121704463416 
29 - 2.29263008324333 
30 - 2.29386079429003 

FORTRAN function OLOG 

- 2.30249119271252 
- 2.30253886165435 
- 2.30255980521704 
- 2.30257257511841 
- 2.30257828055989 
- 2.30258170574611 
- 2.30258325724815 
- 2.30258417685642 
- 2.30258459820761 
- 2.30258484529651 
- 2.30258495961133 
- 2.30258502604192 
- 2.30258505703207 
- 2.30258507490093 
- 2.30258508329701 
- 2.30258508810542 

- 2.30258509299405 

- 2.30258308878949 
- 2.30258429564850 
- 2.30258477584394 
- 2.30258496686622 
- 2.30258504284117 
- 2.30258507305389 
- 2.30258508506691 
- 2.30258508984292 
- 2.30258509174154 
- 2.30258509249623 
- 2.30258509279620 
- 2.30258509291542 
- 2.30258509296280 
- 2.30258509298163 
- 2.30258509298911 
- 2.30258509299209 

- 2.30258509299405 

- 2.30258507564758 
- 2.30258508829481 
- 2.30258509172157 
- 2.30258509264961 
- 2.30258509290084 
- 2.30258509296883 
- 2.30258509298723 
- 2.30258509299220 
- 2.30258509299355 
- 2.30258509299391 
- 2.30258509299401 
- 2.30258509299404 
- 2.30258509299404 
- 2.30258509299404 
- 2.30258509299405 
- 2.30258509299405 

- 2.30258509299405 

The error estimate (13.4-17) for Levin’s sequence transformation has in principle already been 
derived by Sidi (see eq. (3.14) on p. 840 of ref. [105]). 

In the same way, it can be proved that for fixed k E IV and for large values of n the sequence 
transformations Z$‘( /3, s,, w,), eq. (7.1-Q and Y”,J’( /3, s,, w,), eq. (8.2-Q with I E kl lead to 
error estimates of order O(&“‘ ) and that Drummond’s sequence transformation @“)(s,, w,,), 
eq. (9.5-4), leads to an error estimate of order O(KZ-~-‘). 

On the basis of these order estimates it is to be expected that in the case of negative arguments 
z the different variants of ZLn)(P, s,, wn), eq. (7.1-7), and Y”n)(/Z, s,, w,,), eq. (8.2-7), should 
accelerate the convergence of the Stieltjes series in eq. (13.4-3) more efficiently than the 
analogous variants of the generalized transformations Y$)(/3, s,, wn), eq. (7.1-8), and 

Yi’l’(P, s w,), eq. (8.2-8), with I> 1. Also, Drummond’s sequence transformation, eq. (9.5-4), 
sh&ld be”;oughly as efficient as Wynn’s 6 algorithm, eq. (4.2-l). 

In table 13-6 the convergence of the absolutely convergent Stieltjes series (13.4-3) with 

z = -0.9 is accelerated by the same sequence transformations as in tables 13-4 and 13-5. The 
inferiority of Wynn’s 6 algorithm is again evident. 

Table 13-6 was produced in QUADRUPLE PRECISION. When the same computation was 
repeated in DOUBLE PRECISION, a heavy loss of accuracy was observed. No transformation 
was able to produce an accuracy of more than 8 decimal digits. These 8 digits were produced by 
$“(l, so) for n = 17, by ti”(l, sO) for n = 21, and by Wynn’s E algorithm for n = 30. For larger 
values of n the accuracy deteriorated again. However, it seems that Wynn’s E algorithm is not as 
much affected by numerical instablities as the other two sequence transformations in table 13-6. 

More extensive numerical tests showed that in the case of the convergent or divergent Stieltjes 
series in eq. (13.4-3) YJn)(/3, s “7 on), eq. (8.2-7), had a slight plus over YJ”)(fi, s,, a,,), eq. 
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(7.1-7). A comparison of the numerous variants of the sequence transformations Z$“)( p, s,, wn) 
and Z$“)( p, s,, w,,) showed that they differ in their ability of summing or accelerating the 
Stieltjes series in eq. (13.4-3). Those variants, which are based upon the remainder estimates 
(7.3-4) and (7.3-8), are approximately as efficient as tp’(/3, s,), eq. (7.3-7), and ri”)(/3, So), eq. 
(7.3-7). However, up)(p, s,), eq. (7.3-ll), and cp(kn)(p, So), eq. (8.4-5), which are both based 
upon the remainder estimate (7.3-lo), were significantly less efficient. Also, &f)( y, s,, an), eq. 
(9.2-6), and its variants were somewhat less efficient than the analogous variants of 

,Epk’“‘(P, s w ) and .?$“)(/3 s o ) 
Almost”& e”fficient as the ‘se&e&e transformations mentioned above were $k(“), eq. (10.3-6), 

and %?A’), eq. (11.1-12), followed by Brezinski’s 9 algorithm, eq. (10.1-9). Next came Aitken’s 
iterated A2 process, eq. (5.1-15), which was again more efficient than Wynn’s e algorithm, eq. 
(4.2-l). The transformations %?$“), eq. (11.1-5), X(kn), eq. (11.2-l), ai”), eq. (11.2-2), and I, eq. 
(11.2-3), were weaker than the c algorithm. 

Of all transformations tested Drummond’s sequence transformation, eq. (9.5-4), was least 
efficient. It was able to sum or accelerate the Stieltjes series (13.4-3) moderately well for positive 
arguments z, i.e., as long as the terms of the power series for ln(l + z) had alternating signs. 
However, it failed completely if the argument z approached - 1. For instance, for z = - 0.9 
Drummond’s sequence transformation produced a sequence of transforms gi”)(so, al) which 
rapidly diverged with increasing n. This example shows that asymptotic order estimates - 
although undeniably quite helpful for the classification of sequence transformations - do not 
necessarily tell the whole truth about the capability of a sequence transformation. 

14. The acceleration of logarithmic convergence 

14.1. Properties of logarithmically convergent sequences and series 

It is tempting to believe that the most formidable task for a nonlinear sequence transformation 
is the summation of a wildly divergent series such as the Euler series, eq. (l.l-7), and that 
convergence acceleration should not be overly troublesome. In the case of alternating series or 
sequences with strictly alternating remainders, this is indeed normally true. However, it will 
become clear later in this section that the acceleration of the convergence of a monotonic 
sequence or a series with terms, that all have the same sign, can be a more formidable 
computational problem than the summation of an alternating divergent series, 

The numerical examples presented in sections 13.3 and 13.4 showed that several sequence 
transformations are able to sum efficiently divergent series with alternating terms. In addition, it 
was shown that it is frequently possible to sum alternating divergent series with an accuracy that 
is close to or identical with machine accuracy. Particularly efficient and also remarkably reliable 
were variants of Levin’s sequence transformation 2in)(P, s,, w,), eq. (7.1-7), and partly even 
more so variants of the new sequence transformations .Y”“)( /3, s,, w”), eq. (8.2-7), and 
JZp)(y s o ) eq. (9.2-6). 

The ii&&n is much less satisfactory if logarithmic convergence has to be accelerated. Many 
series with positive terms are known which converge so slowly that the evaluation of such a series 
by successively adding up the terms would be hopeless. In such a case, the use of a convergence 
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acceleration method is indispensable. However, there is a considerable amount of theoretical and 
numerical evidence which indicates that convergence acceleration methods are generally less 
efficient and also more susceptible to rounding errors in the case of series with positive terms 
than in the case of alternating series. Consequently, it is often easier to sum an alternating 
divergent series, even if it diverges quite wildly, than to accelerate the convergence of a slowly 
convergent series with terms that all have the same sign. 

A good example of a very slowly convergent series with positive terms is the series (1.1-2) for 
the Riemann zeta function. It is well known that this series converges for all .z E C with 
Re(z) > 1. However, it follows from eqs. (7.3-12) and (7.3-14) that the remainder r, of the series 
(l.l-2), which is defined by 

r,= E (m+l)-‘, 
m=n+l 

(14.1-l) 

is of order 0( n’-‘) as n + oe. Consequently, the computation of l(z) with the help of the series 
(1.1-2) would only be feasible if Re( z) is relatively large. But even then, the use of convergence 
acceleration techniques would be recommendable. 

In order to make this section, in which the acceleration of logarithmic convergence by means 
of nonlinear sequence transformations will be treated, more selfcontained, first some properties 
of logarithmically convergent sequences and series are reviewed. A sequence (Is,,~, which 
converges to some limit s, is said to converge logarithmically if 

(14.1-2) 

This definition of logarithmic convergence is inconvenient since it involves the limit s of the 
sequence 4~~1 which is normally not known. Thus, it would be advantageous to have an 
alternative criterion for logarithmic convergence which only involves the differences As,,. Such 
an equivalent criterion can be formulated if it is assumed that the elements of the sequence 4~~1 
are partial sums of an infinite series with real terms a, that all have the same sign. Then, Clark, 
Gray, and Adams could show (see theorem 2 on p. 26 of ref. [35]) that the sequence of partial 
sums converges logarithmically according to eq. (14.1-2) if the following condition holds: 

lim !.!!L!_ = AS 
2 =I_ 

n+oO a, n!!! As,_~ 
(14.1-3) 

Eq. (14.1-3) implies that for larger indices n the terms a,, of a logarithmically convergent 
series differ only slightly. This fact is not only responsible for the often prohibitively slow 
convergence of logarithmically convergent series but also affects convergence acceleration 
processes in a very unpleasant way. 

A sequence transformation can only beat the conventional process of successively adding up 
the terms of a series if it does not only use the numerical values of the terms. It also has to 
extract from the terms of the series some additional information about the behaviour of the 
partial sums s, as n increases. 
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All sequence transformations of this report retrieve and utilize this additional information by 
computing rational expressions of weighted differences of partial sums. In the case of alternating 
series the computation of these weighted differences normally does not lead to a serious loss of 
significant digits. If, however, the terms a,, of a series all have the same sign and do not differ 
much in magnitude, this additional information, which has to be retrieved, is hidden somewhere 
in the later digits. Consequently, in the case of logarithmic convergence the computation of 
weighted differences is likely to lead to a cancellation of significant digits and ultimately, i.e., in 
the case of large transformation orders, completely nonsensical results are to be expected. This 
explains why rounding errors are more or less inevitable if logarithmic convergence is accelerated 
and why the acceleration or summation of alternating series is frequently remarkably stable. A 
good discussion of these stability problems can be found in an article by Longman [58]. 

A theoretical analysis of the acceleration of logarithmic convergence is also far from simple. 
For instance, it would certainly be quite helpful if an analogue of Germain-Bonne’s theory of the 
acceleration of linear convergence [33] could be developed because then a decision based on 
some theoretical criteria could be made whether a given sequence transformation is able to 
accelerate logarithmic convergence or not. In the case of linear convergence this question can be 
decided on the basis of theorems 12-4 and 12-14. It only has to be shown that the sequence 
transformation under consideration is exact for a sequence which apart from a shift of indices 
consists of the partial sums of the geometric series, and it is guaranteed that linear convergence 
will be accelerated. 

Smith and Ford had speculated whether it might be possible to develop an analogue of 
Germain-Bonne’s theory also in the case of logarithmic convergence, i.e., whether some special 
sequence could be found such that the exactness of a sequence transformation for this sequence 
would imply that all logarithmically convergent sequences will be accelerated. They also had 
presented some potential candidates which in their opinion might possibly be suited to serve as 
this special sequence (see p. 238 of ref. [29]). In the meantime, this question has been answered 
by Delahaye and Germain-Bonne [llO], but unfortunately the answer is negative. Delahaye and 
Germain-Bonne [llO] showed that no algorithm exists which would be able to accelerate the 
convergence of every logarithmically convergent sequence. Consequently, a general theory in the 
spirit of Germain-Bonne’s theory, which would cover the acceleration of all logarithmically 
convergent sequences, cannot exist. Such an analogue of Germain-Bonn’s theory can exist at 
most for suitably restricted subsets of the set of logarithmically convergent sequences. But it 
seems that even this has not yet been accomplished so far. 

14.2. Exactness results and error estimates 

As mentioned in the last section, a theoretical analysis of the acceleration of logarithmic 
convergence is far from simple. Particularly hard is the analysis of the acceleration properties of 
those sequence transformations which are defined by a complicated nonlinear recursive scheme 
as for instance Brezinski’s 9 algorithm, eq. (10.1-9). In those cases, apart from the defining 
recursive scheme only very little else is normally known. However, at least for Levin’s sequence 
transformation .ZYjn)(/3, s,, o,), eq. (7.1-7), some exactness results and asymptotic error esti- 
mates can be derived quite easily if suitable model sequences are considered. 
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Similar exactness results and error estimates as for Levin’s sequence transformation can also 
be derived for the sequence transformations S“J”)( /3, s,, w,), eq. (8.2-7), and &p)(y, s,, w,), 
eq. (9.2-6). However, they will not be considered here. The reason is that numerical tests showed 
that those variants of these sequence transformations, which should be able to accelerate 
logarithmic convergence, are significantly less efficient than the analogous variants of Levin’s 
sequence transformation. For the moment, no completely satisfactory explanation can be given 
why these otherwise very powerful sequence transformations perform so weakly in the case of 
logarithmic convergence. It is at least conceivable that in the case of logarithmically convergent 
sequences inverse powers of n are better suited for a description of the n-dependence of the 
ratios (s, - s)/u~ than PO&hammer symbols, which are the basis of the sequence transforma- 
tions Y$*)(/3, s,, w,,), eq. (8.2-7), and ~Yp’(y, s,, a,,), eq. (9.2-6). However, this is only 
speculation. 

The explicit expressions of Levin’s u transformation, eq. (7.3-5), and t transformation, eq. 
(7.3-7) are very similar. Also, with respect to the acceleration of linear convergence or the 
summation of alternating divergent series these two sequence transformations have virtually 
identical properties. However, in the literature on convergence acceleration it is always emphasized 
that Levin’s u transformation is one of the best accelerators of logarithmic convergence, whereas 
Levin’s t transformation completely fails to accelerate logarithmic convergence. In view of the 
otherwise close similarity of these two sequence transformations this different behaviour with 
respect to the acceleration of logarithmic convergence is certainly quite puzzling. It will now be 
shown that the different properties of Levin’s u and t transformation can be understood on the 
basis of the different exactness properties of these two sequence transformations. 

Quite common in practical applications are logarithmically convergent sequences {snb with 
remainders {rn /j that are of order 0( nWa) with (Y E Iw + as n + cc. Hence, for large values of n the 
elements of such a logarithmically convergent sequence can be characterized in the following 
way: 

s,=s+n -“[c+O(n-l)], czo, (UER,, n-co. (14.2-l) 

The explicit expressions for up’( p, So), eq. (7.3-5), and tp’(j?, s,), eq. (7.3-7), contain the 
terms a, of the series which is to be transformed. If these two transformations are to be applied 
to sequences of the type of eq. (14.2-l), the terms a, in the explicit expressions have to be 
replaced by the differences As,_*. If we compute these differences and apply some simplifying 
assumptions, which are permitted if n is large, we see that sequences of the type of eq. (14.2-1) 
satisfy: 

(sn - s)/As,-1 = O(n), n-,00. (14.2-2) 

This relationship is quite typical of logarithmically convergent sequences of the type of eq. 
(14.2-1). Also, eq. (14.2-2) is essentially identical with the remainder estimate (7.3-4) which is the 
basis of Levin’s u transformation. 

In the following theorem the exactness properties of Levin’s u and t transformation for a 
special class of logarithmically convergent model sequences are analyzed. Model sequences 
belonging to this special class have the same behaviour as n --, cc as the dominant term of 
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sequences of the type of eq. (14.2-1). Consequently, the following theorem makes it plausible why 
Levin’s u transformation accelerates the convergence of sequences of the type of eq. (14.2-l), and 
why Levin’s t transformation fails to accelerate the convergence of these sequences. 

Theorem 14-1: Assume that a sequence transformation FJ”‘(s,) is defined in the following way: 

yfys ) _ Ak[Pk-lb)sn/Asn-l] 
n - 

Ak[Pk-,(n)/&-,] ’ 
k, n E IV,,. (14.2-3) 

P&1(n) is for sufficiently large values of k a polynomial of degree I k - 1 in n. Obviously, 
AL”) is defined as long as Ak does not annihilate Pk_l(n)/ds,_,, i.e., as long as P&,(n)/ 
As,, _ i is not a polynomial of degree I k - 1 in n. 

Let us assume that the sequence {snD, which converges to some limit s, belongs to the domain of 
the sequence transformation FL*) and that its elements satisfy for all n E N, 

(s, - s)/As,_, = yn + 6, y, SER, yzo. (14.2-4) 

If for sufficiently large values of k the degree of Pk_l( n) is exactly k - 1, Fi”)(s,) does not 
accelerate the convergence of js,, 1, and if Pk_ 1( n) is a polynomial of degree I k - 2 in n, Fi”)( s,) 

is exact for jsn 1. 

Proof: Since Fi”‘(s,) is obviously invariant under translation in the sense of eq. (3.1-4), we can 
write 

opys > = s + Ak[Pk-l(n)(sn - s)/“sn-,I 
k n 

Ak[Pk-,(n)/‘h-,] ’ 
k, n E N,. (14.2-5) 

Next, the ratio (s, - s)/As,_, in eq. (14.2-5) is replaced by yn + 6 according to eq. (14.2-4). 
This yields 

9y(s,) = s + 
Ak[pk-lb)(Yn + a)1 

Ak[Pk-lb)/Asn-~] ’ 

k, nEN,, yf0. (14.2-6) 

Let us now assume that k is large enough such that Pk_-l( n) is a polynomial of degree 
I k - 1 in n. If the degree of Pk_-l( n) in eq. (14.2-6) is exactly k - 1, the product ( yn + 6) Pk_*( n) 
is a polynomial of degree k in n. Consequently, this product will not be annihilated by Ak and 
$*)(s,,) will not accelerate as,b_ If, however, P&i(n) is of degree I k - 2 in n, the product 

(Yn + s)pk-d > n is a polynomial of degree I k - 1 in n. Consequently, this product will be 
annihilated by Ak and $“‘( s,) is exact for &I. This proves theorem 14-l. 

In the case of Levin’s u transformation, eq. (7.3-5) the polynomial P&i(n) is given by 
(/I + n)k-2, i.e., it is a polynomial of degree k - 2 in n. Consequently, up)( /?, s,) will be exact 
for sequences QsnD satisfying eq. (14.2-4). In the case of Levin’s t transformation, eq. (7.3-7) the 
polynomial Pk_ i( n) is given by (p + n)k-l, i.e., it is a polynomial of degree k - 1 in n. This 
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implies that tp’(P, s,) will not accelerate the convergence of a sequence satisfying eq. (14.2-4). 
It also follows from theorem 14-1 that for sufficiently large values of k Levin’s generalized 
sequence transformation 5$,7)( /3, s,, CJ,), eq. (7.1-8), with 12 2 and w,, = As,_~ is also exact for 
every sequence (Is~D satisfying eq. (14.2-4). 

A simple example of a logarithmically convergent sequence, which for all n E N, satisfies eq. 
(14.2-4), would be 

S,=S+~, a, bER+, a<b. 
n+l 

(14.2-7) 

In sections 13.2 and 13.4 error estimates for the summation of divergent Stieltjes series and the 
acceleration of the convergence of Stieltjes series by means of sequence transformations as for 
instance =@“‘(/3, s,, w,), eq. (7-l-7), or Yi”‘(/3, s,, o,), eq. (8.2-7), were derived. It could be 
shown that the application of these sequence transformations to the partial sums of convergent 
or divergent Stieltjes series lead to asymptotic error estimates which were of order 0( n-2k) as 
n --$ 00. In the next theorem a similar asymptotic error analysis is done for a large class of 
logarithmically convergent sequences. 

Theorem 14-2: Let us assume that the elements of the sequence j.s,,D, which converges logarithmi- 
cally to some limit s, satisfy 

S,=s+n-a [b,+O(n-‘)I, b,#O, (YER,, n+oo. (14.2-8) 

Let us also assume that the elements of a sequence of remainder estimates @,,I can be chosen in such 
a way that 

w,=n-*[d,+O(n-‘)I, d,#O, n+oo, (14.2-9) 

and that the ratio (s, - s)/( w,,) can for all n E N 0 be expanded in a power series of the following 

type, 

s, - s 
-= 

% 
E ci PER,. 

j-o (j3 + n) j ’ 
(14.2-10) 

If the sequence transformation gi”)(P, s,, a,,), eq. (7.1-7), is used for the acceleration of the 
convergence of @,,I, we obtain for fixed k E N and for n + 00 the following order estimate: 

-Epk’“‘(P, s,, 4 -3 = O(n-/y 

, n-,03. 
s -s n 

(14.2-11) 

Proof: We can proceed as in theorem 13-9, i.e., the starting point for the proof of theorem 14-2 is 
the representation of the transformation error P$“‘( fl, s, - s, 0,) as in eq. (13.2-27). Since the 
series expansions (13.2-4) and (14.2-10) are structurally identical, we can conclude that according 
to eq. (13.2-31) the numerator of the transformation error is also of order O(n-k-‘) as n + CO. 
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In order to obtain an estimate for the denominator A“[( fi + n)k-l/~,] we take into account 
that according to eq. (14.2-9) the remainder estimate o, is of order 0( n-“) as n + co. This 
implies that (fl + n)k-l/~, is of order O(n“+*-‘) as n --) cc. Hence, with the help of eq. 
(13.2-30) we obtain the following order estimate for the denominator of the transformation error: 

A’[(/3 + n)“-‘/till] = O(n*-l), n-+co. (14.2-12) 

If we combine this relationship with the expression for the numerator of the transformation 
error according to eq. (13.2-21), which is of order O(nWk-‘) as n + cc, we find that the 
transformation error &“)( & s, - s, c+) is of order 0( Camk) as n + cc. If we next divide the 
transformation error by s, - s and use eq. (14.2-g), we obtain eq. (14.2-11) which proves theorem 
14-2. 

An essentially identical result as theorem 14-2 was derived previously by Sidi (see theorem 4.2 
on p. 320 of ref. [56]). A comparison of the asymptotic order estimate (14.2-11) with the 
analogous order estimates (13.2-26) and (13.4-17) in theorems 13-9 and 13-12, respectively, which 
are all of order 0(n-2k) as n + co, shows that the acceleration of logarithmic convergence is 
indeed a much more formidable task than the acceleration of linear convergence, and it can be 
even harder than the summation of wildly divergent series. 

In extensive numerical studies performed by Smith and Ford [29,30] it was demonstrated that 
Levin’s u and u transformations, eqs. (7.3-5) and (7.3-ll), respectively, are among the best 
accelerators for logarithmic convergence. Hence, we have to conclude that the relative inef- 
ficiency of Levin’s sequence transformation according to theorem 14-2 is entirely due to the 
complicated nature of logarithmically convergent sequences and that it cannot be attributed to 
an intrinsic weakness of Levin’s sequence transformation. 

The next theorem, which can be proved in the same way as theorem 14-2, shows that Levin’s 
generalized sequence transformation Z,$‘( j3, s,, w”), eq. (7.1-g), with 12 1, is also able to 
accelerate logarithmically convergent sequences of the type of eq. (14.2-8). However, with 
increasing 1 E N the efficiency of the acceleration process deteriorates. 

Theorem 14-3: Let us assume that the sequences jsnD and @,,D are chosen as in theorem 14-2. If the 
sequence transformation dipk((f)( /S, s,, CO,,), eq. (7.1-g), is used for the acceleration of the convergence 

of as,,), we obtain for fixed k, 1 E N with k 2 I+ 1 and for n + CO the following order estimate: 

9i$‘(bT ‘,, %> -’ = O(n’-k) 
9 n+oo. 

s, - s 

14.3. Some numerical test series 

(14.2-13) 

Due to the lack of theoretical criteria, by means of which it can be decided whether a given 
sequence transformation is able to accelerate logarithmic convergence or not, numerical testing 
will be of particular importance. In the literature on convergence acceleration the partial sums of 
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the series expansion (1.1-2) for l(2), 

l(2) = E (m+l)-* = 7T2/6, (14.3-1) 
m=O 

are frequently used to test the ability of a sequence transformation of accelerating logarithmic 
convergence. It follows from eqs. (7.3-12) and (7.3-14) that the remainders r, of this series are of 
order O(n-‘) as n + 00, i.e., the convergence of the sequence of partial sums of this series is 
prohibitively slow and the series for l(2) indeed appears to be a good test problem for 
logarithmic convergence. However, the next theorem shows that it can happen that a sequence 
transformation is able to accelerate the convergence of a sequence if the remainders behave like 
an integral power of l/n as n + cc but fails to accelerate convergence if the remainders behave 
like a nonintegral power of l/n. Consequently, the partial sums of the series (14.3-1) for l(2) are 
not suited to test the ability of a sequence transformation of accelerating the convergence of a 
large class of logarithmically convergent sequences. 

Theorem 14-4: Let us assume that the linear sequence transformation A$“(P, s,), eq. (7.3-20), 
which corresponds to the special case x, = l/( p + n) of the Richardson extrapolation scheme , eq. 

(6-l-5), is applied to the following logarithmically convergent model sequence: 

s,=s+ F c/ 
j=o (/? + n)““’ 

nENO, a, PER+, co # 0. (14.3-2) 

If a is a positive integer, i.e., a = 1, 2, . . . , we obtain for fixed k E N and k 2 a and for large 
values of n the following asymptotic order estimate 

Ay)( /I, sn) - s = O(nWk-‘), (14.3-3) 

which shows that AJG”‘(/I, s,) accelerates the convergence of this sequence according to eq. (2.7-7) 
for sufficiently large values of k. 

If, however, a is not a positive integer, A’,“‘( p, s,) does not accelerate the convergence of the 
sequence (14.3-2). 

Proof: Obviously, A(,“‘(/% sn), eq. (7.3-20), is invariant with respect to translation according to 
eq. (3.1-4). Hence, with the help of eqs. (7.3-17) and (7.3-19) we can write: 

A’“)(P 

k (14.3-4) 

Let us now assume that (Y is a positive integer, i.e., (Y = m with m E IN, and that k 2 m. Then, 
with the help of eq. (14.3-2) we obtain for the numerator of the right-hand side of eq. (14.3-4): 

k-m 

A”[@ +n)k(s,-s)] =Ak c c,(j3+n)k-m-‘+AkE ek_m+j+i(P+n)-‘-‘. (14.3-5) 
j=O j=O 
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The first sum on the right-hand side is a polynomial of degree k - m in n, i.e., it is annihilated 
by Ak, and according to eq. (13.2-30) the second sum will produce a result which is of order 
O(n -k-1) as n + cc. This proves eq. (14.3-3). 

Let us now assume that cx is not a positive integer. Then, with the help of eqs. (13.2-30) and 
(14.3-2) we obtain for the numerator of the right-hand side of eq. (14.3-4) the following 
asymptotic estimate 

Ak[(/3+n)k(~,-~)] =Ak f c,(/3+n)k-“-‘=O(n-“), n-,09, 
j=O 

(14.3-6) 

which proves the second part of theorem 14-4. 
Hence, if we want to use the Richardson extrapolation scheme, eq. (6-l-5), for the acceleration 

of the logarithmically convergent sequence (14.3-2) if (Y is not a positive integer, we cannot use 
the interpolation points X, = l/( p + n) and we would at least have to find a different set of 
interpolation points {xnD. There is considerable numerical evidence that the situation is quite 
analogous in the case of Wynn’s p algorithm, eq. (6.2-2). The standard form of Wynn’s p 

algorithm, eq. (6.2-4), corresponds to the choice x, = p + n for the interpolation points. It is 
together with its iteration wJn), eq. (6.3-4), probably the best accelerator for the partial sums of 
the series (14.3-1) for l(2), but is apparently not able to accelerate the convergence of a sequence 
with remainders that behave like n - ‘I2 as n --, cc. However, it will be shown later that the 
general form of Wynn’s p algorithm, eq. (6.2-2), is able to accelerate the convergence of 
sequences with remainders r, - n-1/2 as n ---, 00 if the interpolation points jx,,D are chosen 
according to x, = (j3 + n)l12 with p > 0. 

We shall see later that for instance Brezinski’s 9 algorithm, eq. (lO.l-9), or its iteration yin), 
eq. (10.3-6), are able to accelerate the convergence of sequences, whose remainders behave like 
n - ‘I2 as n + cc. Consequently, 9p’ and fin) are more flexible and versatile than the 
Richardson extrapolation scheme or Wynn’s p algorithm since these sequence transformations 
only work if appropriate interpolation points QxnD are used. 

This implies that because of theorem 14-4 the infinite series (14.3-1) for l(2) is not suited to 
test the ability of a sequence transformation of accelerating logarithmic convergence. Instead, 
one should use test problems with remainders that behave like a nonintegral power of l/n as 
n + cc. A simple idea would be to use the infinite series (1.1-2) for l(z) for nonintegral 
arguments and not for z = 2. However, only if z is an even positive integer, a simple explicit 
expression for l(z) is known (see p. 19 of ref. [34]). Therefore, the use of the infinite series (1.1-2) 
for c(z) with z B: N as a test problem for logarithmic convergence would be somewhat 
inconvenient and the emphasis in this report will be on other test problems. 

Well suited for our purposes is the following series expansion (see p. 14 of ref. [ill]): 

A= E (2m-l)!! 1 
m=0 (2m)!! 4m+ 1. 

(14.3-7) 

Here, A stands for the so-called lemniscate constant which can be expressed in terms of the 
complete elliptic integral K (see pp. 358-359 of ref. [34]), 

A= ’ J 
dt 

0 [l - ty2 
= 24/2K(1/2) = [W~4)1 2 . 

4(27~)*‘~ 
(14.3-8) 
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If we use the following expression for the ratio of two gamma functions which holds for 
121 + 00 (see p_ 12 of ref. [34]), 

r(z+4 = 
r(z + P) 

~~-~[l+O(z-~)], ]arg(z)] <s, 

we find that the terms of the series (14.3-7) behave like n-312 as n --) 00. Consequently, it follows 
from eqs. (7.3-12) and (7.3-14) that the remainders of this series behave like ne112 as n + oc. 

When Smith and Ford [29] investigated numerically the performance of sequence transforma- 
tions in convergence acceleration and summation processes, they used the series (14.3-7) for the 
lemniscate constant A to test the ability of a sequence transformation of accelerating logarithmic 
convergence. Smith and Ford observed that the standard version of Wynn’s p algorithm, eq. 
(6.2-4), was not able to accelerate the convergence of this series (see p. 235 of ref. [29]). 

Another test problem, which is well suited for our purposes, is the following series expansion 
for l/z in terms of the so-called reduced Bessel functions, 

l/z = : L,_,,2(z)/[2mm!], ZER,. (14.3-10) 
m=O 

This series expansion was derived and used in connection with explicit expressions for certain 
molecular multicenter integrals of exponentially declining basis functions (see eq. (6.5) of ref. 
[112]). In table I of ref. [64] it was shown that this series converges extremely slowly. For z = 1 
the infinite series (14.3-10) produced an accuracy of only three decimal digits after 1000000 
terms. 

The so-called reduced Bessel function A,(z) of real or complex order v, which was introduced 
by Steinborn and Filter (see eqs. (3.1) and (3.2) of ref. [113]) as an exponentially declining basis 
function in electronic structure calculations, is defined by 

R,(z) = (2/#2ZVK,(Z). (14.3-11) 

Here, K,(z) is a modified Bessel function of the second kind (see p. 66 of ref. [34]). If the order v 
of the reduced Bessel function is half-integral and positive, v = n + l/2 with n E No, a reduced 
Bessel function can be represented as an exponential multiplied by a terminating confluent 
hypergeometric series iE;1 (see eq. (3.7) of ref. [114]), 

lc n+l,2(~) = 2”(1/2), e-‘,F,( -n; -2n; 22). (14.3-12) 

The polynomial part of these reduced Bessel functions with half-integral orders v = n + l/2 
with n E No has also been investigated independently in the mathematical literature. There, the 
following notation is used (see p. 34 of ref. [115]): 

an(z) = ezR n+l,2(z) = 2”0/2),14(-n; -2n; 24, nENo. (14.3-13) 
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Together with some other, closely related polynomials, which are denoted by y,(z), the 
polynomials an(z) are called Bessel polynomials. In Grosswald’s book on Bessel polynomials 
[115] numerous applications of these polynomials in vastly differing fields are described. For 
instance, they are applied in number theory, in statistics, or for the analysis of complex electrical 
networks. 

In the context of convergence acceleration and summation it may be interesting to note that 
Bessel polynomials occur also in the theory of PadC approximants. In the book by Baker and 
Graves-Morris it is shown that the PadC approximants [l/m] for ez are given by (see eq. (2.12) of 
part I of ref. [22]) 

(14.3-14) 

Comparison of eqs. (14.3-13) and (14.3-14) shows that the diagonal elements [n/n] of the Pad& 
table for ez can be expressed as ratios of Bessel polynomials, 

[n/n] = %(z/2) 
%z,(-z/2) ’ 

nEN(,. (14.3-U) 

With the help of some well known monotonicity properties of the modified Bessel function of 
the second kind, K,(z), it can be shown that the reduced Bessel functions k,(z) are positive and 
bounded by their values at the origin provided that v > 0 and z 2 0 (see eq. (3.1) of ref. [114]). In 
the case of reduced Bessel functions with half-integral orders this implies: 

O<R n+1,2(Z)I~n+1,2(0)=2”(I/2)., O<z<oo, nEN,. (14.3-16) 

Grosswald’s book [115] also contains a chapter on the asymptotic properties of Bessel 
polynomials. There, it is shown that for fixed and finite argument z the Bessel polynomials a,,(z) 
satisfy (see p. 125 of ref. [115]) 

(14.3-17) 

If we combine eqs. (14.3-13) and (14.3-17) we find that the dominant termpf the Poincare-type 
asymptotic expansion in inverse powers of n of a reduced Bessel function kn+1,2( z) with fixed 
and finite argument z corresponds to its value at the origin, 

(14.3-18) 

Higher terms of the asymptotic expansion of a reduced Bessel function f, + i,*( z) in inverse 
powers of n can in principle be obtained from related expansions for Bessel polynomials y,(z). 
In Grosswald’s book the coefficients for terms up to an order 0( n-3> can be found (see p. 130 of 
ref. [115]) and in an article by Salzer [116] the coefficients for the terms up to an order 0( ne4). 

Starting from eq. (14.3-18) it can be proved quite easily with the help of eq. (14.3-9) that the 
terms of the infinte series (14.3-10) behave like K3j2 as n + 00 (see p. 3709 of ref. [64]). In view 
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of eqs. (7.3-12) and (7.3-14) this implies that the remainders of the partial sums of the series 
(14.3-10) behave like K~/’ as n 3 cc. 

From the series expansion (14.3-10) in terms of reduced Bessel functions another series of the 
same convergence type can be derived. The new series is essentially the z-independent part of the 
infinite series (14.3-10). If we take into account that R_ 1,2(z) = e-‘/z, we can conclude from eq. 
(14.3-12) that only the first term of the infinite series (14.3-10) is singular at the origin. 
Consequently, the following limit exists, 

lim [l/z - L_,,,(z)] = line E i,_1,Z(z)/[2”m!] = 1, 
2-O m=l 

and we obtain with the help of eq. (14.3-16): 

O” (2m - l)!! 1 M (l/2), 1 

,;, (2m+2)!! = 2m;o (m+l)! = * 

(14.3-19) 

(14.3-20) 

Again, it follows from eq. (14.3-9) that the terms of this series behave like nm3/* as n + cc, 
which according to eqs. (7.3-12) and (7.3-14) implies that the remainders of this series behave like 
n-i/* 

Several sequence transformations are exact for the infinite series (14.3-20) since its partial 
sums satisfy the prerequisites of theorem 14-1. With the help of a summation theorem by Gauss 
for a hypergeometric series 2F, with unit argument (see p. 40 of ref. [34]) it can be proved quite 
easily that the remainders of the infinite series (14.3-20)satisfy 

O” (2m - l)!! (l/2),+, 

,z+i (2m +2)!! = (n+l)! ’ 

which shows that the partial sums of the infinite series (14.3-20) are of the 

(14.3-21) 

type of the sequence 
(14.2-7). Hence, it follows from theorem 14-1 that Levin’s u transformation, eq. (7.3-5), will only 
need the partial sums s, _ i, s, , s, + 1, and s, + 2 to be exact for the infinite series (14.3-20). Also, 
from eq. (10.3-4) it follows that Brezinski’s 9 algorithm, eq. (lO.l-9), and its iteration #jn), eq. 
(10.3-6), only need the partial sums s,, s,+i, s,+*, and s,,+~ to be exact for the infinite series 
(14.3-20). 

Levin’s u transformation, eq. (7.3-ll), is even more efficient than the sequence transforma- 
tions mentioned above because only the partial sums s,_ i, s,, and s,+ 1 are needed to sum the 
infinite series (14.3-20) exactly. This follows from the fact that in the case of the infinite series 
(14.3-20) the remainder estimate (7.3-lo), which is the basis for the u transformation, 

a n+lan = 1 W%+1 -- 
a II+1 - a, 3 (n+l)! ’ 

(14.3-22) 

is proportional to the remainder (14.3-21) of the infinite series (14.3-20). Consequently, in this 
case the ratio (s, - s)/w, is independent of n which implies that (j? + n)k-l(~, - s)/w, will be 
annihilated by A“ for k 2 1. 
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The terms of the three test series (14.3-7), (14.3-lo), and (14.3-20) all behave like rze312 as 
n + cc. Consequently, we may expect that these three series should be roughly comparable with 
respect to their rates of convergence as well as in convergence acceleration processes. However, 
at least in convergence acceleration processes these three test series are definitely not equivalent. 
The acceleration of the convergence of the series expansion (14.3-10) in terms of reduced Bessel 
functions is a much more formidable task, in particular for larger values of z, than the 
acceleration of the convergence of the other two series (14.3-7) and (14.3-20). In fact, for 
sufficiently large values of z it is virtually impossible to accelerate the convergence of the infinite 
series (14.3-10). This is probably a consequence of the exponential decline of the terms and also 
of the partial sums of this series. Numerical tests showed that for larger values of z E R + a 
reduced Bessel function is approximated by its value at the origin, 

L n+l,2(4 = L,,,,,(o) = WV%> nENlo, (14.3-23) 

with reasonable accuracy only if n is very large. For instance, if we require that eq. (14.3-23) 
should be accurate to one percent for z = 8 then we would need n 2 1400, and for z = 4 we 
would still need n 2 400. Consequently, in particular for larger values of z a partial sum S, of the 
series (14.3-10) is essentially a linear combination of some quantities which decline exponentially, 
and only for relatively large values of n it can actually be observed that s, behaves like n - ‘I2 as 
n -+ cc. Thus, it is likely that for a sequence transformation, which tries to extract and utilize 
some regularity in the behaviour of the partial sums, the partial sums of the infinite series 
(14.3-10) appear for larger values of z to be much more irregular than the partial sums of the 
other two infinite series (14.3-7) and (14.3-20). 

14.4. Numerical examples 

In this section, the acceleration of logarithmically convergent sequences will be studied 
numerically. The emphasis will be on the test series (14.3-7), (14.3-lo), and (14.3-20), which 
should converge approximately as slowly as the infinite series (1.1-2) for {(3/2). But since the 
infinite series (14.3-1) for l(2) is the most popular test problem for logarithmic convergence in 
the literature, it is of interest to see how in particular the new sequence transformations fare if 
they are applied to the partial sums 

s, = i (m + l)-‘, nEN/,, 
m=O 

of the infinite series (14.3-1) for c(2). 
In table 14-l the partial sums (14.4-l) are transformed by the standard form of 

(6.3-4), by A(,“‘(P, So), eq. (7.3-20), with p = 1, which corresponds to the special case 

WJ’), eq. 

x, = l/(P 
+ n) of the Richardson extrapolation scheme, eq. (6.1-Q and by fin), eq. (10.3-6). In all cases, 
the approximants were chosen in such a way that the information, which is contained in the 
finite string sO, sr, . . . , s, of partial sums, is exploited in an optimal way. This means that in the 
case of Yin), eq. (6.3-4) the approximations to 1 (2) were chosen according to eq. (6.3-9), and in 
the case of $k (n), they were chosen according to eq. (10.4-7). 

(14.4-l) 
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Table 14-1 
Acceleration of the series (14.3-1) for l(2) = ~*/6 

n 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

partial sum s, 
eq. (14.4-1) 

1 .ooooooooooooo 
1.2500000000000 
1.3611111111111 
1.4236111111111 
1.4636111111111 
1.4913888888889 
1.5117970521542 
1.5274220521542 
1.5397677311665 
1.5497677311665 
1.5580321939765 
1.5649766384209 
1.5708937981842 
1.5759958390005 
1.5804402834450 
1.5843465334450 

^W$“/;fr”/Zn) 

eq. :6.3-4) 
A’O’(1, so) 
e; (7.3-20) 

1 .ooooooooooooo 1.0000000000000 
1.2500000000000 1.5000000000000 
1.6500000000000 1.6250000000000 
1.6468253968254 1.6435185185185 
1.6449013949014 1.6449652777778 
1.6449244489889 1.6449513888889 
1.6449342449874 1.6449351851852 
1.6449341126465 1.6449339434186 
1.6449340660297 1.6449340411698 
1.6449340666548 1.6449340662475 
1.6449340668515 1.6449340671488 
1.6449340668489 1.6449340668835 
1.6449340668482 1.6449340668472 
1.6449340668482 1.6449340668476 
1.6449340668482 1.6449340668482 
1.6449340668482 1.6449340668482 

3In/31) 
o+t/3n 

eq. (10.3-6) 

1 .ooooooooOOooo 
1.2500000000000 
1.3611111111111 
1.6388888888889 
1.6423611111111 
1.6436111111111 
1.6449225865209 
1.6449297924298 
1.6449321959755 
1.6449340557022 
1.6449340629267 
1.6449340652730 
1.6449340668410 
1.6449340668458 
1.6449340668473 
1.6449340668482 

r2/6 1.6449340668482 1.6449340668482 1.6449340668482 

All sequence transformations in table 14-1 accelerate the convergence of the infinite series 
(14.3-1) for c(2) quite efficiently. The winner in table 14-1 is WLn), eq. (6.3-4), which together 
with the standard form of Wynn’s p algorithm, eq. (6.2-4), is the best accelerator for the series 
for l(2). Somewhat less efficient are Av’(P, s,), eq. (7.3-20), which in the case of the partial 
sums (14.4-1) is identical with Levin’s u transformation, eq. (7.3-5), and #in), eq. (10.3-6). 

Other good accelerators for the partial sums (14.4-1) are Levin’s u transformation, eq. (7.3-ll), 
which is as efficient as Levin’s u transformation, eq. (7.3-5), and Brezinski’s 6 algorithm, eq. 
(lO.l-9), and ai”), eq. (11.2-2), which are almost as efficient as yin), eq. (10.3-6). 

The partial sums and the three transforms in table 14-1 were computed in QUADRUPLE 
PRECISION (31-32 decimal digits). When these computations were repeated in DOUBLE 
PRECISION (15-16 decimal digits) the loss of some significant digits was observed. This is not 
surprising since the acceleration of logarithmic convergence is - as emphasized previously - an 
inherently unstable process. Of the three sequence transformations in table 14-1 it was again 
Vi”), eq. (6.3-4), which turned out to be the numerically most stable transformation since it lost 
at most 3 significant digits in DOUBLE PRECISION. The other two transformations, which lost 
up to 5 decimal digits, are apparently more sensitive to rounding errors. 

Next, we want to see how the convergence of the test series (14.3-7), (14.3-lo), and (14.3-20) 
can be accelerated. Since the remainders r,, of these series behave like n- 1/2 as n + cc, we expect 
that these series will converge significantly more slowly than the series (14.3-1) for l(2), whose 
remainders are of order 0( n-l). Here, it must be emphasized that it is not clear how and to what 
extent the slower convergence of the test series (14.3-7), (14.3-lo), and (14.3-20) will affect 
convergence acceleration processes. 
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Table 14-2 
Acceleration of the series (14.3-7) for the lemniscate constant A 

n partial sum S, 
eq. (14.4-2) 

%Y(l, so a,) 
eq.‘(7.1-8)’ 

u’O’(1, So) 
el. (7.3-5) 

38n/3Dj 
Gfg3m 

eq. (10.3-6) 

3 1.1657051282051 1.2190476190476 1.3163120567376 1.3037037037037 
4 1.1817896870287 1.3343421605717 1.3108727079053 1.3080867850099 
5 1.1935084370287 1.3103293923028 1.3109952008776 1.3095200070979 
6 1.2025318745287 1.3108082123295 1.3110289627926 1.3110119624014 
7 1.2097550695718 1.3110277257117 1.3110291499078 1.3110229739315 
8 1.2157059973061 1.3110318476640 1.3110287979182 1.3110263202535 
9 1.2207187157130 1.3110290080304 1.3110287737803 1.3110287611468 

10 1.2250162047862 1.3110287461269 1.3110287766205 1.3110287718416 
11 1.2287537180105 1.3110287708982 1.3110287771522 1.3110287750875 
12 1.2320431110268 1.3110287771312 1.3110287771540 1.3110287771349 
13 1.2349672811610 1.3110287772480 1.3110287771466 1.3110287771425 
14 1.2375891404731 1.3110287771553 1.3110287771460 1.3110287771447 
15 1.2399574101139 1.3110287771452 1.3110287771460 1.3110287771461 
16 1.2421104860230 1.3110287771458 1.3110287771461 1.3110287771461 
17 1.2440790912340 1.3110287771461 1.3110287771461 1.3110287771461 
18 1.2458881405432 1.3110287771461 1.3110287771461 1.3110287771461 

[~(1/4)12/[4(2~)“21 1.3110287771461 1.3110287771461 1.3110287771461 

First, we shall accelerate the convergence of the sequence of partial sums of the infinite series 
(14.3-7) for the lemniscate constant A, 

s = 5 (2m-l)!! 1 
n m=O (2m)!! 4m+ 1. 

(14.4-2) 

In table 14-2 we see the effect of Levin’s generalized sequence transformation 9,$)( /3, s,, wn), 
eq. (7.1-8), with I = 2, o, = a,,, and p = 1, of Levin’s u transformation, eq. (7.3-9, with p = 1, 
and of $k(“) on the partial sums (14.4-2). As usual, the approximants were chosen in such a way 
that the information, which is contained in the finite string s,,, si,. . . , s, of partial sums, is 
exploited optimally. This means that in the case of the Levin transformations the approximations 
to the lemniscate constant A were chosen according to eq. (7.5-4). 

If we compare the results in tables 14-l and 14-2, we see that the significantly slower 
convergence of the infinite series (14.3-7) does not affect the efficiency of convergence accelera- 
tion too much. The convergence of the transforms in table 14-2 is almost as fast as in table 14-l. 
However, it seems that the slower convergence of the test series (14.3-7) has a detrimental effect 
on the numerical stability of the transformations. As usual, table 14-2 was produced in 
QUADRUPLE PRECISION. When the same computations were repeated in DOUBLE PRECI- 
SION, a larger number of significant digits were lost than in table 14-l. The best results were 
obtained by Levin’s u transformation which achieved a relative accuracy of 11 decimal digits 
after n = 11. For larger values of n, the accuracy deteriorated again. For instance, for n = 18 the 
best results were obtained by ,#$) which achieved an accuracy of 8 decimal digits. 
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If we compare eqs. (7.1-8) and (7.3-5), we find that Levin’s u transformation may also be 
considered to be a special case of Levin’s generalized sequence transformation Z’,$)(p, s,, w,), 

(14.4-3) 

This relationship shows that the numerical data in table 14-2 are in agreement with theorem 
14-3 which predicts that the efficiency of Levin’s generalized sequence transformation 
~~‘f’(P, s w,), eq. (7.1-Q for the acceleration of the convergence of sequences of the type of 
eq.’ (14.2-i; should decrease with increasing 1 E N. This behaviour is apparently quite typical 
since it was also observed when the partial sums of the test series (14.3-10) were accelerated by 
up’(/?, s,), eq. (7.3-5), and ZZ’,$‘(/3, s,, a,), eq. (7.1-8), with I2 2. 

Other good sequence transformations for the test series (14.3-7) are Levin’s u transformation, 
eq. (7.3-ll), which is as good or even slightly better than Levin’s u transformation, eq. (7.3-5) 
and Brezinski’s 9 algorithm, eq. (10.1-9) which is as good as p&)(p, s,, a,). 

Theorem 14-4 predicts that A(,“)(P, s,), eq. (7.3-20), which corresponds to the special case 
x, = l/(/I + n) of the Richardson extrapolation scheme, eq. (6.1-5), is not able to accelerate the 
convergence of the series (14.3-7), (14.3-lo), and (14.3-20). Numerical tests confirmed this 
prediction. In addition, the standard forms of Wynn’s p algorithm, eq. (6.2-4), and of its 
iteration ^ty;c(‘), eq. (6.3-4), also fail to accelerate the convergence of these series. Since the 
remainders of the test series mentioned above all behave like n-1/2 as n + cc, and since the 
Richardson extrapolation scheme A$“)( s,, x,), eq. (6.1-5), is by construction exact for the 
model sequence (6.1-6) it is an obvious idea to choose an alternative set of interpolation points 
lx,,) according to 

x, = (p + p2, TZEN,, PER,. (14.4-4) 

Practical experience has shown that if the Richardson extrapolation scheme, eq. (6.1-5), can 
successfully handle a certain problem if the interpolation points {xnQ are used, then the general 
forms of Wynn’s p algorithm, eq. (6.2-2), and of its iteration +@“), eq. (6.3-3), are usually able to 
handle the same problem if the interpolation points &&I with 5, = l/x, are used. Hence, if we 
want to use these nonlinear sequence transformations for the acceleration of the convergence of 
the series (14.3-7), (14.3-lo), and (14.3-20) we should choose the elements of the set {(,,I of 
interpolation points according to 

6, = (P + ny2, nEN(,, #8ER+. (14.4-5) 

In table 14-3 the partial sums (14.4-2) are accelerated by the Richardson extrapolation scheme, 
eq. (6.1-5), and by the general forms of Wynn’s p algorithm, eq. (6.2-2), and of -w,(“), eq. (6.3-3). 
In the case of the Richardson extrapolation scheme the interpolation points ax,,) were chosen 
according to eq. (14.4-4) with j3 = 1, and in the case of pp) and wi”’ the interpolation points 
a,$‘, /) were chosen according to eq. (14.4-5) with p = 1. 

The most efficient transformation in table 14-3 is the general form of Wynn’s p algorithm, eq. 
(6.2-2) followed by the Richardson extrapolation scheme, eq. (6.1-5), and the general form of 
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Table 14-3 
Acceleration of the series (14.3-7) for the lemniscate constant A 

n 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

partial sum S, 
eq. (14.4-2) 

1.2250162047862 
1.2287537180105 
1.2320431110268 
1.2349672811610 
1.2375891404731 
1.2399574101139 
1.2421104860230 
1.2440790912340 
1.2458881405432 
1.2475580797723 
1.2491058660392 
1.2505456974656 
1.2518895646423 
1.2531476731141 
1.2543287710802 
1.2554404064530 

J@“)(%J> x0) 
eqy (6.1-5) 
x, = (n +1)-l/2 

1.3110281470344 
1.3110291844571 
1.3110287720479 
1.3110287371888 
1.3110287841474 
1.3110287800479 
1.3110287759641 
1.3110287770396 
1.3110287772843 
1.3110287771349 
1.3110287771336 
1.3110287771492 
1.3110287771468 
1.3110287771456 
1.3110287771461 
1.3110287771461 

(n-Znn/21) 
P2nn /2n 

eq: (6.i-2) 
5, = (n + 1)1’2 

1.3110287489950 
1.3110287903217 
1.3110287927338 
1.3110287908112 
1.3110287783445 
1.3110287774952 
1.3110287770923 
1.3110287771290 
1.3110287771523 
1.3110287771467 
1.3110287771459 
1.3110287771460 
1.3110287771461 
1.3110287771461 
1.3110287771461 
1.3110287771461 

$$q”/;;u”/2n) 

eq. ;6.3-3) 
5, = (n + 1y2 

1.3110289097428 
1.3110290181070 
1.3110289480394 
1.3110286302938 
1.3110287340891 
1.3110287694697 
1.3110287666673 
1.3110287675098 
1.3110287670755 
1.3110287674918 
1.3110287670448 
1.3110287770066 
1.3110287770883 
1.3110287771050 
1.3110287770977 
1.3110287770960 

[~(1/4)12/[4(2~)“21 1.3110287771461 1.3110287771461 1.3110287771461 

win), eq. (6.3-3). However, a comparison of tables 14-2 and 14-3 shows that even if we choose 
the interpolation points according to eqs. (14.4-4) and (14.4-9, the transformations in table 14-3 
are clearly less efficient than Levin’s u transformation or 3:“). 

As usual, table 14-3 was produced in QUADRUPLE PRECISION. When the same computa- 
tions were repeated in DOUBLE PRECISION, it was observed that the Richardson extrapola- 
tion scheme is much more unstable than the other two transformations. The Richardson 
extrapolation scheme achieved a relative accuracy of 8 decimal digits for n = 12. For larger 
values of n the accuracy of the transforms deteriorated rapidly, yielding totally nonsensical 
results for n 2 22. The other two transformations also did not accomplish more than a relative 
accuracy of 7 or 8 decimal digits. However, they maintained this relative accuracy throughout the 
whole range of n between n = 10 and n = 25. 

The results in table 14-3 and similar results for the other two test series (14.3-10) and (14.3-20) 
indicate that the Richardson extrapolation scheme, eq. (6.1-5), is able to accelerate the conver- 
gence of a sequence, whose remainders r,, behave like n-‘/2 as n + cc, if the interpolation points 
Qx~D are chosen according to eq. (14.4-4). Similary, the general forms of Wynn’s p algorthm, eq. 
(6.2-2), or of w$“), eq. (6.3-3), should be able to accelerate the convergence of such a sequence if 
the interpolation points {[,,b are chosen according to eq. (14.4-5). 

Unfortunately, in practical applications these observations are not necessarily very helpful. Let 
us assume that only the numerical values of a few sequence elements are known but nothing 
about the behaviour of the remainders. In such a situation, it will be very hard or even 
impossible to find out whether the remainders of this sequence behave like an integral or like a 
nonintegral power of l/n. If one wants to use the Richardson extrapolation scheme, eq. (6.1-5) 
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in such an unfavourable situation, it may be a good idea to follow a recommendation by 
Beleznay [117]. He suggested to choose the interpolation points according to 

x, = (n + p>-*, nf=NO, a, PER+, (14.4-6) 

and to optimize the exponent (Y of the interpolation points in such a way that the error term 
1 A$?‘, - Nn?, 1 becomes minimal. This technique was later used by Liegener, Beleznay, and 
Ladik [118] to extrapolate the results of Hartree-Fock calculations on periodic chains. A similar 
approach is of course also possible in the case of the general forms of Wynn’s p algorithm, eq. 
(6.2-2), or of its iteration -WJ’), eq. (6.3-3). In that case, the interpolation points would have to be 
chosen according to 

‘&=(n+PC nEN,> a, PER,. (14.4-7) 

There is still another possibility of modifying either the Richardson extrapolation scheme, eq. 
(6.1-j), or the general forms of the rational transformations pp), eq. (6.2-2), and -W;(‘“‘, eq. 
(6.3-3), in such a way that it will be unimportant whether the remainder of the sequence to be 
transformed behaves like an integral or a nonintegral power of l/n. This approach is inspired by 
a nonlinear variant of the Richardson extrapolation scheme, which in Wimp’s book is called 
GBW (Germain-Bonne Wimp) transformation (see p. 106 of ref. [23]). This GBW transformation 
is obtained from the Richardson extrapolation scheme by choosing the interpolation points 
according to 

x, = As, = a,,,, nEN,. (14.4-8) 

If the interpolation points {xnD are chosen according to eq. (14.4-8), then it follows from eq. 
(6.1-6) that the Richardson extrapolation scheme, eq. (6.1-5), is exact for the following model 
sequence: 

k-l 

s,=s+ c cj[As,Ij+‘, k, ~ERJ~, PER,. (14.4-9) 
j=O 

According to Wimp this GBW transformation works quite well in the case of iteration 
sequences (see pp. 106-108 of ref. [23]). However, the GBW transformation is apparently not 
able to accelerate logarithmic convergence. 

Let us now assume that the remainders r, of a sequence behave like nwa as n + 00. Then it 
follows from eq. (14.2-2) that the product [nAs,_,] also behaves like n-LI as n + co. Hence, if we 
choose the interpolation points {xnD for the Richardson extrapolation scheme according to 

x, = (P + n)As,-,, flEl+JO, PER+, (14.4-10) 

it is at least guaranteed that the interpolation points x, behave like the r,, as n + 00. 
If the interpolation points QxnD are chosen according to eq. (14.4-lo), then obviously the 

Richardson extrapolation scheme, eq. (6.1-5), is exact for the following model sequence: 

k-l 

s, =s + 1 cj[(/? + n)A.~,_~]j+~, k, n~hJ(,, PER,. (14.4-11) 
j=O 
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n 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

Table 14-4 
Acceleration of the series (14.3-7) for the lemniscate constant A 

partial sum S, 
eq. (14.4-2) 

1.2250162047862 
1.2287537180105 
1.2320431110268 
1.2349672811610 
1.2375891404731 
1.2399574101139 
1.2421104860230 
1.2440790912340 
1.2458881405432 
1.2475580797723 
1.2491058660392 
1.2505456974656 
1.2518895646423 
1.2531476731141 
1.2543287710802 
1.2554404064530 

JL”,(O)(so, x0) (n-2nn/21) 
pznn/21 

eq. (6.1-5) eq. (6.2-2) 
x, = (n + l)a, 5, =l/[(n +l)a,l 

1.3106718871541 1.3108757199219 
1.3109702421830 1.3110068620892 
1.3110807598150 1.3110296350804 
1.3110705535246 1.3110300492139 
1.3110388651127 1.3110297665932 
1.3110247934048 1.3110284817234 
1.3110247919628 1.3110287561737 
1.3110277629872 1.3110287810924 
1.3110291063652 1.3110287803056 
1.3110291052833 1.3110287815108 
1.3110288500150 1.3110287770120 
1.3110287479173 1.3110287771445 
1.3110287537771 1.3110287771529 
1.3110287734917 1.3110287771494 
1.3110287796054 1.3110287771460 
1.3110287785488 1.3110287771461 

eql(6.%3) 

L =l/Kn +lb,l 
1.3110586974716 
1.3110406715649 
1.3110524519639 
1.3110491470884 
1.3110531590519 
1.3110289425634 
1.3110288767162 
1.3110291518189 
1.3110289945504 
1.3110288722980 
1.3110288696319 
1.3110288718241 
1.3110288775601 
1.3110288714005 
1.3110288733834 
1.3110288715363 

uw/4)1~~14(2~)~~~1 1.3110287771461 1.3110287771461 1.3110287771461 

It was remarked previously that if the Richardson extrapolation scheme, eq. (6.1-5), is able to 
handle a certain problem using the interpolation points {xnD, then the extrapolation points #$‘,D 
with 5, = l/x, should be used if the same problem is to be treated by the general forms of 
Wynn’s p algorithm, eq. (6.2-2), and of its iteration win), eq. (6.3-3). Hence, the appropriate 
interpolation points {&I for pp) and %TL”’ would be 

En = V[(P + n)As,-,] 9 nEN),, #8ER+. (14.4-12) 

In table 14-4 the partial sums (14.4-2) are accelerated by the Richardson extrapolation scheme, 
eq. (6.1-5), and by the general forms of Wynn’s p algorithm, eq. (6.2-2), and of its iteration -WJ”), 
eq. (6.3-3). In the case of the Richardson extrapolation scheme the interpolation points Qx,,D were 
chosen according to eq. (14.4-10) with p = 1, and in the case of p(kn) and wi”) the interpolation 
points c][,D were chosen according to eq. (14.4-12) with j3 = 1. If we compare tables 14-3 and 
14-4, we find that the rate of convergence of the transforms is slower in table 14-4, but otherwise, 
the results are quite similar. 

As usual, table 14-4 was produced in QUADRUPLE PRECISION. When the same computa- 
tion was repeated in DOUBLE PRECISION, it was again observed that the Richardson 
extrapolation scheme is much more sensitive to rounding errors than the other two transforma- 
tions. For n = 15 the Richardson extrapolation scheme achieved a relative accuracy of 6 decimal 
digits, and for larger values of n the accuracy deteriorated rapidly yielding nonsensical results for 
n 2 22. Of the other two transformations in table 14-4, win), eq. (6.3-3), was this time the 
numerically more stable transformation. Wynn’s p algorithm, eq. (6.2-2), achieved for n 2 19 a 
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relative accuracy for 7 decimal digits, whereas wJn), eq. (6.3-3), achieved for n L 18 a relative 
accuracy of 8 decimal digits. 

Next, the acceleration of the convergence of the other two test series (14.3-10) and (14.3-20) 
will be considered. The infinite series (14.3-20) may be considered to be a special case of the 
infinite series (14.3-10) since it was derived from it by performing the limit z -+ 0. Because of eq. 
(14.3-18) we expect that these two series (14.3-10) and (14.3-20) should have roughly the same 
convergence properties. However, in convergence acceleration processes these two series differ 
significantly. As remarked previously, Levin’s u and u transformation, eqs. (7.3-5) and (7.3-ll), 
respectively, Brezinski’s 9 algorithm, eq. (lO.l-9), and yin), eq. (10.3-6), are all exact for the 
partial sums of the infinite series (14.3-20), whereas no sequence transformation is known which 
is exact for the sequence of partial sums 

sn = Ii L-,,,w[2”~!1, nEfv(o ZER+, (14.4-13) 
m=O 

of the infinite series (14.3-10). In the case of those sequence transformations, which are not exact 
for the series (14.3-20), it was observed quite consistently that the series expansion (14.3-20) can 
be accelerated more easily than the series expansion (14.3-10). Consequently, we shall not 
consider explicitly the acceleration of the convergence of the series (14.3-20). Instead, we shall 
focus our attention on the acceleration of the convergence of the infinite series (14.3-10) which is 
much more interesting in this context. The acceleration of the convergence of the series 
expansion (14.3-10) is particularly hard for larger values of z. In fact, for sufficiently large values 
of z, every sequence transformation has so far been brought down to its knees. This strong 
dependence of the success of a convergence acceleration process on the the magnitude of the 
argument z make the series expansion (14.3-10) of l/z in terms of reduced Bessel functions a 
very interesting test problem. 

In table 14-5 the convergence of the partial sums (14.4-13) is accelerated by Brezinski’s 9 
algorithm, eq. (lO.l-9), by its iteration yin), eq. (10.3-6), and by A$‘), eq. (11.2-l), with j3 = 1. As 
in tables 14-l and 14-2 (n) yk has a slight plus over Brezinski’s 9 algorithm. The third 
transformation in table 14-5, h(kn), is clearly less efficient than the other two. 

As usual, table 14-5 was produced in QUADRUPLE PRECISION. When the same computa- 
tions were repeated in DOUBLE PRECISION, the loss of some significant digits was again 
observed. Relatively insensitive to rounding errors was #$“), which for n = 22 reproduced 10 
decimal digits. For n = 22 Brezinski’s 9 algorithm reproduced 8 decimal digits, wheras Ay) 
reproduced 7 decimal digits. 

If we compare the results produced by $j”), eq. (10.3-6), in tables 14-2 and 14-5 we see that 
the convergence of the series (14.3-7) for the lemniscate constant A can apparently be accel- 
erated much more easily than the convergence of the series expansion (14.3-10) for l/z in terms 
of reduced Bessel functions. Similar results were observed also in the case of other sequence 
transformations. 

The third sequence transformation in table 14-5, Xy), eq. (11.2-l) was derived by modifying 
the recursive scheme (7.3-21) for A’,“‘( p, sn) along the lines of Brezinski’s 9 algorithm. There are 
some interesting differences between X$J), which may be considered to be an iterated weighted A* 
process, and A’,“‘( p, s,), which corresponds to the special case x, = l/( p + n) of the Richard- 
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Table 14-5 
Acceleration of the series expansion (14.3-10) for z = 4/5 

n partial sum S, 
eq.(14.4-13) 

9&3$7/3”) 

eq. (lO.l-9) 

3bl/3l) 
2x731 

eq.(10.3-6) 

$4\n/m 

eq.(11.2-1) 

7 1.0422312196170 1.2497381860187 1.2479931939358 1.2173888687023 
8 1.0550056275790 1.2499224049805 1.2494113420204 1.2172621135266 
9 1.0656857514131 1.2497936062022 1.2499952677367 1.2015462070872 
10 1.0747865667307 1.2500104486053 1.2499875622609 1.2083962702181 
11 1.0826618965033 1.2500117160875 1.2499952780892 1.2511499315352 
12 1.0895638413456 1.2500026110013 1.2499738050830 1.2501603786137 
13 1.0956774851981 1.2500122711095 1.2499996707633 1.2500076445011 
14 1.1011421634246 1.2500120099841 1.2499999749148 1.2500005196325 
15 1.1060650318428 1.2500122009821 1.2499999979586 1.2500007343758 
16 1.1105300244656 1.2500168769473 1.2500000006228 1.2500006080295 
17 1.1146039429560 1.2500002080018 1.2499999999894 1.2500010863749 
18 1.1183407028756 1.2500032915285 1.2499999999664 1.2500008892374 
19 1.1217843613599 1.2500000030342 1.2499999999776 1.2499999946191 
20 1.1249713188304 1.2500000009966 1.2499999999625 1.2499999323380 
21 1.1279319483516 1.2500000107858 1.2499999999720 1.2499999648641 
22 1.1306918204772 1.2499999999866 1.2500000000029 1.2499999366280 

exact 1.2500000000000 1.2500000000000 1.2500000000000 

son extrapolation scheme, with respect to their ability of accelerating logarithmic convergence. 
The linear sequence transformation A(,“‘(P, s,) is one of the best accelerators for the series 
(14.3-1) for l(2) but according to theorem 14-4 is not able to accelerate the convergence of the 
test series (14.3-7), (14.3-lo), and (14.3-20). The nonlinear sequence transformation h(kn) is clearly 
less efficient than A(:‘( p, s,) in the case of the series for c(2), but is at least moderately powerful 
in the case of the test series (14.3-7), (14.3-lo), and (14.3-20). This example shows once more that 
the modification of the recursive scheme of a sequence transformation along the lines of 
Brezinski’s 9 algorithm does not automatically lead to a sequence transformation which is able 
to outperform the transformation, from which it was derived, in all respects. However, it is quite 
likely that the new transformation will be more versatile than the transformation from which it 
was derived. 

The greater flexibility of those sequence transformations, which are derived along the lines of 
Brezinski’s 9 algorithm, is probably responsible for their ability of accelerating the convergence 
of the test series (14.3-7), (14.3-10) and (14.3-20), whose remainders all behave like K112 as 
n -+ co. A sequence transformation like the standard form of Wynn’s p algorithm, eq. (6.2-4), is 
often able to achieve really spectacular results if the remainders of the sequence to be 
transformed behave like an integral power of l/n, but it fails completely if the remainders 
behave like a nonintegral powers of l/n. In such a case, the general form of Wynn’s p algorithm, 
eq. (6.2-2), together with an appropriate set of interpolation points jxnD has to be used. However, 
one should not expect that it will always be an easy task to find an appropriate set of 
interpolation points {xn 1. 

If the convergence of a given sequence &rnD is to be accelerated by Levin’s sequence 
transformation ZJ”‘( p, s,, o,), eq. (7.1-7), together with one of the explicit remainder estimates 
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(7.3-4) (7.3-6), (7.3-8), and (7.3-lo), then the elements of the sequence 4~~1 also supply the 
remainder estimates {c+ 1. We can expect that Levin’s sequence transformation will produce good 
results if the the remainder estimates {a, D can be chosen in such a way that the ratio (s, - s)/w, 
will depend upon n only quite weakly, i.e., if it is a constant apart from terms, that are at least of 
order O(n-‘) as n + cc or smaller. However, in practical applications it may happen that unless 
n is very large, the explicit remainder estimates (7.3-4), (7.3-6), (7.3-8), and (7.3-10) yield only 
relatively bad approximations for the actual remainders a~,,) of the sequence to be transformed. 
In such a case, it is to be expected that Levin’s sequence transformation zZ’$~)(P, s,, wn), eq. 
(7.1-7) will be a relatively weak sequence transformation if it uses one the the explicit remainder 
estimates (7.3-4), (7.3-6), (7.3-8), and (7.3-10). 

According to eq. (14.3-16) the reduced Bessel functions intl,*( z) with z E R’ + and n E N, 
are positive and bounded by their values at the origin. However, it was already remarked in 
section 14.3 that due to the exponential decline of the reduced Bessel functions in+1,2(0) is a 
good approximation for R ,,+r,*( z) with a larger argument z only if n is relatively large. This has 
some unpleasant consequences if for instance Levin’s u transformation, eq. (7.3-9, is to be used 
for an acceleration of the convergence of the series expansion (14.3-10) of l/z in terms of 
reduced Bessel functions. For larger values of z the product (p + n)R,_,,,( z) with /? E R + will 
be a good approximation for the remainder 

r, = fi Ll,2(4/[2”4, FIEN, zER+, (14.4-14) 
m=n+l 

of the infinite series (14.3-10) only if n is very large. In such a situation, it should be worthwhile 
to look for other sets of remainder estimates 40~) even if Levin’s sequence transformation 

%P(P, s o,), eq. (7.1-7), would then be a linear sequence transformation. One simple 
possibilitjwould be to choose 

w, = (n + 1) -1’2, nElw,. (14.4-15) 

Another possibilty, which would also lead to remainder estimates that behave like nP112 as 
n + co, would be to choose the remainder estimates according to eq. (14.3-21), 

w, = (2n - 1)!!/(2n)!!, nEN,. (14.4-16) 

In table 14-6 the partial sums (14.4-13) are accelerated by ur’( /3, s,,), eq. (7.3-9, and by 

~~n)(fl, s a,), eq. (7.1-7), with either w, = (n + 1)-li2 or w, = (2n - 1)!!/(2n)!!. In all cases 
/3 = l/2 w”as used which gives slightly better results than p = 1. 

The results in table 14-6 show quite clearly that the remainder estimates (14.4-15) and 
(14.4-16) produce significantly better results than the remainder estimate (7.3-4) which is the 
basis of Levin’s u transformation. There is indirect evidence that this improved convergence of 
the transforms is indeed due to the better approximation of the remainders (14.4-14) by the 
remainder estimates (14.4-15) and (14.4-16). If the convergence of the series (14.3-7) for the 
lemniscate constant A is accelerated by Levin’s sequence transformation, eq. (7.1-7) with the 
remainder estimates being chosen according to eq. (14.4-15), then the results obtained in this way 
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Table 14-6 
Acceleration of the series expansion (14.3-10) for z = 4/5 

n partial sum s, u~"'(l/2, so) =&v/2, so, wo) LP)(1/2 2 so> @o) 
eq.(14.4-13) eq.(7.3-5) eq.(7.1-7) ei (7.1-7) 

un=(n+l)-"' 0, = (2n - 1)!!/(2n)!! 

7 1.0422312196170 1.2472807413200 1.2500112144531 1.2500305329006 
8 1.0550056275790 1.2519888543148 1.2499669957586 1.2499700063760 
9 1.0656857514131 1.2498098463228 1.2500047257200 1.2500032k27111 
10 1.0747865667307 1.2498185973113 1.2500012644944 1.2500013433652 
11 1.0826618965033 1.2500735225247 1.2499994685087 1.2499995333305 
12 1.0895638413456 1.2499966179905 1.2500000284158 1.2500000125919 
13 1.0956774851981 1.2499942161928 1.2500000253626 1.2500000250149 
14 1.1011421634246 1.2500019544458 1.2499999930747 1.2499999939416 
15 1.1060650318428 1.2499999104639 1.2500000000686 1.2499999999124 
16 1.1105300244656 1.2499998754938 1.2500000003615 1.2500000003511 
17 1.1146039429560 1.2500000414919 1.2499999999164 1.2499999999261 
18 1.1183407028756 1.2499999971441 1.2499999999999 1.2499999999984 
19 1.1217843613599 1.2499999980000 1.2500000000043 1.2500000000042 
20 1.1249713188304 1.2500000007366 1.2499999999990 1.2499999999991 
21 1.1279319483516 1.2499999999235 1.2500000000000 1.2500000000000 
22 1.1306918204772 1.2499999999760 1.2500000000000 1.2500000000000 

exact 1.2500000000000 1.2500000000000 1.2500000000000 

are as good or only marginally better than the results obtained by Levin’s u transformation. 
Hence, in the case of the series (14.3-7) for the lemniscate constant A the remainder estimates 
(14.4-M) do not lead to a spectacular improvement. 

As usual, table 14-6 was produced in QUADRUPLE PRECISION. When the same computa- 
tion was repeated in DOUBLE PRECISION, Levin’s u transformation produced for n = 15 a 
relative accuracy of 8 decimal digits. The other two transformations produced also for n = 15 a 
relative accuracy of 10 decimal digits. For larger values of n, the accuracy deteriorated again. 

15. Synopsis 

15.1. General considerations 

In this report a large number of mainly nonlinear sequence transformations for the accelera- 
tion of convergence and the summation of divergent series were discussed. Some of those 
sequence transformations as for instance Wynn’s 6 algorithm are well established in the 
literature, while many others are new. The properties of these sequence transformations were 
analyzed and efficient algorithms for their evaluation were derived. In sections 13 and 14 the 
performance of these sequences transformations was tested by applying them to certain slowly 
convergent and divergent series, which are hopefully realistic models for a large part of the 
slowly convergent or divergent series that can occur in scientific problems and in applied 
mathematics. 
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It still has to be discussed how one should actually proceed if the convergence of a slowly 
convergent sequence or series has to be accelerated or if a divergent series has to be summed. In 
view of the numerous different types of sequences and series, which can occur in practical 
problems, and because of the large number of sequence transformations, which are known, the 
selection of an appropriate sequence transformation is certainly a nontrivial problem. 

If the terms of the series, which is to be transformed, are known analytically or if it is known 
how the elements of the sequence js,,D of partial sums behave as n + cc, it is normally 
comparitively easy to find a suitable sequence transformation. Unfortunately, it can happen that 
only a few elements of a slowly convergent or divergent sequence 4.~~1 are available and that the 
behaviour of the sequence elements s, as n + cc is not known. In such an unfavourable case, in 
which it is often not easy to decide whether &snD converges at all, and if it does, whether it 
converges linearly or logarithmically, the choice of an appropriate sequence transformation is by 
no means simple and also of decisive importance for the success of the whole approach. 

It is well known that the performance of a sequence transformation depends in most cases 
quite strongly upon the type of convergence of the sequence to which it is applied. Apparently, 
there is no sequence transformation which excells in every respect. Of all the sequence 
transformations in this report, only Levin’s u transformation, eq. (7.3-5) to a somewhat lesser 
extent also Levin’s u transformation, eq. (7.3-11) Brezinski’s 9 algorithm, eq. (10.1-9) and its 
iteration #in), eq. (10.3-6), are powerful accelerators for both linear and logarithmic conver- 
gence and are also able to sum efficiently even wildly divergent series. In all test cases considered 
they were among the better sequence transformations. 

It is tempting to believe that it would be sufficient to use only the four sequence transforma- 
tions mentioned above in situations, in which apart from the numerical values of a few sequence 
elements little is known. Since these sequence transformations are known to work well in a 
variety of different situations, it seems reasonable to expect that they will accomplish at least 
something. However, in many of the test problems of this report other, less versatile sequence 
transformations were actually more efficient. Hence, even if the four transformations mentioned 
above are successful, they do not necessarily give the best results, and it may well be worthwhile 
to look for other sequence transformations which are possibly more efficient, in particular if only 
relatively few sequence elements are available. 

There are also some other aspects which should be taken into consideration. In this report, 
only the most common types of sequences and series were considered, i.e., either linearly and 
logarithmically convergent sequences and series or alternating divergent series. This does not 
exhaust all possibilities. Therefore, it is not certain whether the four sequence transformations 
mentioned above will also be able to handle successfully other types of convergence. For 
instance, Smith and Ford report that in the case of some slowly convergent series with terms 
having irregular sign patterns Wynn’s z algorithm, eq. (4.2-l), clearly outperformed Levin’s u 
transformation, eq. (7.3-5), and Brezinski’s 9 algorithm, eq. (lO.l-9), which both did not 
accomplish much (see table 5 on p. 484 of ref. [30]). Also, in a situation, in which apart from the 
numerical values of only a few sequence elements very little is known, it is often not clear 
whether and how well the whole process has already converged. Even if a sequence transforma- 
tion produces a sequence of transforms which apparently converges to some limit it cannot be 
excluded that this convergence is an artifact. If two different sequence transformations converge 
to the same limit, an artifact still cannot be ruled out but it is much less likely. Consequently, in 
such a situation it should be worthwhile to use more than a single sequence transformation. 
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In the opinion of the author the approximate determination of the limit or antilimit s of a 
slowly convergent or divergent sequence Q.rnD is essentially an experimental problem which 
should be handled with utmost care. The numerical evidence supplied by a single sequence 
transformation is not necessarily sufficient, and it is usually a good idea to compare the results 
produced by several sequence transformations. In order to facilitate the task of selecting 
appropriate sequence transformations, short resumes of the properties of all sequence transfor- 
mations, which occur in this report, will now be be given. 

15.2. Wynn’s epsilon algorithm and related transformations 

Wynn’s c algorithm, eq. (4.2-l), and its close relative, Aitken’s iterated A2 process, eq. (5.1-15), 
are both able to accelerate linear convergence and to sum alternating divergent series even if they 
diverge as wildly as the Euler series, eq. (l.l-7), but they are not able to accelerate logarithmic 
convergence. 

Practical experience and also some theoretical estimates indicate that Wynn’s e algorithm is 
only a moderately powerful sequence transformation, in particular if wildly divergent series must 
be summed. In the case of the two Stieltjes series (13.3-9) for the exponential integral and 
(13.4-3) for the logarithm, and also in other tests not discussed in this report, Wynn’s z algorithm 
was not only clearly outperformed by Levin’s sequence transformation &?J”)(p, s,, tin), eq. 
(7.1-7), and the new sequence transformations YJ”)( /3, s,, a,,), eq. (8.2-7), and J@~‘(Y, s,,, a,,), 
eq. (9.2-6), but also frequently by Aitken’s iterated A2 algorithm, albeit to a lesser extent. 

On the basis of these results it looks as if Wynn’s e algorithm should be dismissed. However, 
the real strength of Wynn’s e algorithm is not its efficiency but its robustness. The e algorithm is 
remarkably insensitive to rounding errors and can also tolerate input data which either have a 
low relative accuracy or which behave in a comparatively irregular way. Due to its robustness, 
Wynn’s E algorithm is often able to produce meaningful and reliable results in situations in 
which other sequence transformations, which are in principle much more powerful, fail. For 
instance, in ref. [64] the convergence of some infinite series with very complicated terms was 
accelerated by Wynn’s e algorithm and by Levin’s u transformation, eq. (7.3-5). Since these 
infinite series converge linearly, it was to be expected that Levin’s u transformation would do 
better than Wynn’s E algorithm. However, it was found that the e algorithm converged more 
rapidly than the u transformation. In addition, the E algorithm was apparently not affected by 
numerical instabilities whereas in the case of the u transformation a dangerous accumulation of 
rounding errors was observed (see pp. 3716-3717 of ref. [64]). 

Superficially, Aitken’s iterated A2 process appears to be a better sequence transformation than 
Wynn’s c algorithm. However, to a certain extent Aitken’s iterated A2 process combines the 
disadvantageous features of both Wynn’s E algorithm, which is only moderately powerful, and of 
the transformations J?in)(P, s,, tin), eq. (7.1-7), Yi”‘(p, s,, o,), eq. (8.2-7), and 
_Mr)(y, s,, an), eq. (9.2-6), which are not very robust since they are powerful sequence 
transformations only if the remainder estimates &.+I are good approximations of the actual 
remainders jrn). Experience indicates that Aitken’s iterated A2 process is in general less efficient 
than Zin)(p, s n, on)’ %YP> s,, a,), and -&C’<Y, s,, on), and that it is less robust and more 
susceptible to rounding errors than Wynn’s c algorithm. 
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15.3. Wynn’s rho algorithm and related transformations 

The properties of Wynn’s z algorithm, eq. (4.2-l), and of Wynn’s p algorithm, eq. (6.2-2), are 
complementary. The p algorithm is often a good or even very good accelerator for logarithmic 
convergence but is unable to accelerate linear convergence or to sum divergent series. But with 
respect to robustness, the c and the p algorithm are very similar. Experience indicates that the p 

algorithm is in general less sensitive to rounding errors than other sequence transformations 
which are also able to accelerate logarithmic convergence. This is certainly no mean accomplish- 
ment, in particular since the acceleration of logarithmic convergence is an inherently unstable 
process. 

The power of Wynn’s p algorithm, which is essentially an intelligent way of computing and 
extrapolating to infinity an interpolating rational function of the type of eq. (6.2-l) depends 
decisively upon an appropriate choice of the interpolation points $xn D. In this respect, the p 

algorithm closely resembles the Richardson extrapolation scheme, eq. (6.1-5), which is essentially 
an efficient way of computing and extrapolating to zero an interpolating polynomial of the type 
of eq. (6.1-3). According to theorem 14-4 the linear sequence transformation A(,“‘(P, s,), eq. 
(7.3-20), which corresponds to the special case x, = l/( p + n) of the Richardson extrapolation 
scheme, eq. (6.1-5), is only able to accelerate the convergence of logarithmically convergent 
sequences if the remainders of these sequences behave like integral powers of l/n as n + co. 

The standard form of Wynn’s p algorithm, eq. (6.2-4), which corresponds to the choice 
x, = /? + n for the interpolation points in eq. (6.2-2), is a very powerful accelerator for 
logarithmically convergent sequences with remainders that behave like integral powers of l/n as 
n --, cc. However, experience indicates that the standard form of the p algorithm is unable to 
accelerate convergence if the remainders of the sequence to be transformed behave like a 
nonintegral power of l/n. In section 14.4 it was shown that the general form of Wynn’s p 

algorithm, eq. (6.2-2), is apparently able to accelerate the convergence of sequences with 
remainders that behave like nP112 as n + 00 if the interpolation points jxnD are chosen in such a 
way that x, - n112 asn+oo. 

The iterated sequence transformation WL”), eq. (6.3-3), is also only able to accelerate 
logarithmic convergence. The power of (n) ^w; depends as in the case of Wynn’s p algorithm, 
from which it was derived, strongly upon an appropriate choice of the interpolation points ax,,). 
The numerical results presented in section 14.4 indicate that -w;(‘“’ has similar properties as 
Wynn’s p algorithm. The standard form of w;“), eq. (6.3-4), is apparently not able to accelerate 
the convergence of sequences whose remainders behave like nonintegral powers of l/n. How- 
ever, the results in section 14.4 also show that the general form of #‘-in), eq. (6.3-3), is apparently 
able to accelerate the convergence of sequences with remainders that behave like n - ‘I2 asn-+oo 
if the interpolation points axnD are chosen in such a way that x, - n1/2 as n + co. It also seems 
that win) is relatively insensitive to rounding errors. However, because of the limited experi- 
ence with this transformation it seems to be too early for a definite assessment of its merits as 
well as its weaknesses. Further tests of this sequence transformation should therefore be of 
interest. 

The fact, that Wynn’s p algorithm and its iteration ^ty;c(“) are only successful if an appropriate 
set of interpolation points is used, severely limits the practical usefulness of these transforma- 
tions in situations in which only the numerical values of a few sequence elements are known. In 
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such a situation, it may be a good idea to use a modification of a suggestion by Beleznay [117]. 
In this approach, the interpolation points are chosen according to eq. (14.4-7) and the free 
parameter (Y is optimized after the input of every new sequence s,. Another possibility would be 
to choose the interpolation points according to eq. (14.4-12). However, these two suggestions are 
not yet sufficiently tested and it seems to be too early for a definite assessment of their practical 
usefulness. 

15.4. Levin’s sequence transformation and related transformations 

It is a typical feature of Levin’s sequence transformations 6c;;c”)(p, s,, o,,), eq. (7.1-7), and of 
the related transformations P’j’)(P, s,, ti,), eq. (8.2-7), and dp)(v, s,, an), eq. (9.2-6), that 
they not only require the sequence elements s,, s, + 1, . . . , s, +k, but also the remainder estimates 

u n, w,+l,..., w,+k. This explicit incorporation of remainder estimates is both the strength as well 
as the weakness of these sequence transformations. If it is possible to find a sequence of 
remainder estimates {w,,) that are good approximations of the remainders jrnD of the sequence to 
be transformed, then experience as well as some theoretical estimates indicate that such a 
sequence transformation is extremely powerful. If, however, a good sequence of remainder 
estimates cannot be found, such a sequence transformation will probably perform quite poorly. 

Theoretical estimates as well as practical experience indicate that the remainder estimates 
{tin) should be chosen in such a way that the ratios (s, - s)/o, depend on n only quite weakly 
and approach a constant as n + 00. In practical applications Levin’s sequence transformation 

=@W, s ,,, o,,) has so far exclusively been used in connection with the simple remainder 
estimates (7.3-4), (7.3-6), (7.3-g) and (7.3-lo), which can also be used in the case of the new 
transformations Pi”‘( p, s,, o,) and &$“)( y, s,, w,). The remainder estimate (7.3-4) gives 
Levin’s u transformation, eq. (7.3-5), which is certainly one of the most powerful and most 
versatile sequence transformations. It is a powerful accelerator for both linear and logarithmic 
convergence and is able to sum efficiently divergent alternating series. The remainder estimates 
(7.3-6) and (7.3-8) give Levin’s t and d transformations, eqs. (7.3-7) and (7.3-g), respectively, 
which are powerful accelerators for linear convergence and are able to sum efficiently divergent 
alternating series. However, they are unable to accelerate logarithmic convergence. The remainder 
estimate (7.3-10) gives Levin’s v transformation, eq. (7.3-11) which has similar properties as 
Levin’s u transformation. Finally, the remainder estimate w, = l/( /3 + n) gives the linear 
sequence transformation A’,“‘( p, So), eq. (7.3-20), which can also be obtained from the Richard- 
son extrapolation scheme, eq. (6.1-5) by choosing X, = l/(p + n). It is able to accelerate 

logarithmic convergence if the remainders of the sequence to be transformed behave like an 
integral power of l/n as n + 00. 

The simple remainder estimates (7.3-4), (7.3-6), (7.3-g), and (7.3-10) are essentially asymptotic 
in nature because they were derived using some simplifications which are valid for large values of 
n. However, in convergence acceleration or summation processes it is tried to approximate the 
limit or antilimit of a sequence QsnD using only the information stored in the first few sequence 
elements, say sO, si, . . . , s,, with m being a relatively small number. Therefore, it is by no means 
clear whether the simple remainder estimates (7.3-4) (7.3-6) (7.3-g), and (7.3-10) lead to good 
approximations of the actual remainders for only moderately large or even small indices. 
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There is some evidence that the simple remainder estimates (7.3-4), (7.3-6), (7.3-Q, and 
(7.3-10) lead to efficient sequence transformations if the terms a, of the series, which is to be 
accelerated or summed, approach their asymptotic limits relatively fast. Let us for instance 
assume that a, is the term of a power series in z and that a, behaves like n‘? as n + co. Then, 
the sequence transformations YJ”)(p, s,, tin), Yi’*‘( ,8, s,, we), and A’p’(y, s,, w,) should 
work well in combination with one of the simple remainder estimates (7.3-4), (7.3-Q (7.3-Q and 

(7.3-10) if the leading term nazn is a good appro~mation for a, already for moderately large or 

even small values of pt. If this is not the case, the simple remainder estimates (7.3-4), (7.3-Q, 
(7.3-Q and (7.3-10) will probably not work particulary well. 

The infinite series (14.3-10) is a good example for the complications which can occur in this 
context. It was remarked earlier that the reduced Bessel functions, eq. (14.3-ll), approach their 
asymptotic limits according to eq. (14.3-18) quite slowly. This slow approach decreases the 
efficiency of Levin’s u transformation, eq. (7.3-5), considerably. The results presented in table 
14-6 show that in this case it is advantageous to use other, explicit remainder estimates, which 
are not obtained from the elements of the sequence Q.s,,D to be transformed, even if Levin’s 
sequence transformation is then a linear sequence transformation. Unfortunately, such an 
approach is only possible if the remainders are known analytically and if simple and yet good 
appro~mations for the remainders can be derived. 

Also, under unfavourable circumstances the simple remainder estimates (7.3-4), (7.3X9, (7.3-g), 
and (7.3-10) may have a detrimental effect on the robustness of the sequence transformations 

=%?)(P, s,, %), %9p. S,? wn), and &p’(y, s,, CJ,). The elements of the sequence 4.~~1 are 
not only input data, but they are also used to compute the remainder estimates &+,I. Conse- 
quently, the elements of Q.snb induce two fundamentally different kinds of errors. More or less 
inevitable are the errors due to the limited accuracy of the input data. However, the elements of 
the sequence jjsnD induce also potentially large errors among the remainder estimates @,I, either 
because they are not accurate enough or because they deviate too much from their asymptotic 
limits and therefore produce bad remainder estimates. The worst scenario, which can be 
imagined in this context, would be that the terms a, of a series are not very accurate and that the 
terms approach their limiting expressions only quite slowly and in an irregular fashion. In such a 
situation the sequence transformations Zi”‘( 8, s,, tin), Yi”)( PI s,,, w,,), and _&?‘p)( y, s,, w,,) 
will be in trouble and it is likely that Wynn’s c algorithm, although in principle only moderately 
powerful, will produce better results. 

Levin’s sequence transformation A?‘,‘“‘( /3, s,, w,), eq. (7.1-7), is based upon the assumption 
that the ratio (s, - s)/o, can be approximated by a pol~o~al in l/( j3 + n), whereas the new 
sequence transformations YJn)(P, s,, w,), eq. (8.2-7), and .A%‘V’( y, s,, tin), eq. (9%6), were 
derived assuming that the ratio (s, - s)/w, can be approximated by truncated factorial series or 
related expressions. Since power series and factorial series have different properties, it is not 
surprising that the new sequence transformations and Levin’s transformation behave differently 
in convergence acceleration and summation processes. With respect to the acceleration of linear 
convergence the new sequence transformations P’,$“‘(& s,, on) and .A!~)(y, s,, LO,) are ap- 
proximately as efficient as Levin’s sequence transformation. The new sequence transformations 
are particularly well suited to sum wildy divergent alternating series such as the Euler series, eq. 
(1.1-7). In that respect, they are usually at least as good as Levin’s sequence transformation and 
often they are even clearly better. However, the new transformations perform quite poorly if 
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logarithmic convergence is to be accelerated. Also, the linear transformations .@‘)(a, s,), eq. 
(8.4-ll), and gin)(y, So), eq. (9.4-ll), are much less efficient than their analogue A(t)(y, So), eq. 
(7.3-20). 

The stability properties of the sequence transformations Si”)(fi, s,, w,,), Yin)(F, s,, an), 
and ~%‘p’(y s w,,) depend very much upon the sequence which is to be transformed and upon 
the remainder lstimates being used. However, at least some statements of a more general nature, 
which are based upon experience, can be made. It seems that the transformation of both 
convergent and divergent alternating series is in general remarkably stable. Also, the acceleration 
of linear convergence usually poses no particular stability problems. The acceleration of 
logarithmic convergence is always a problem which may easily lead to a serious loss of accuracy. 
But it cannot be said that Levin’s sequence transformation is more sensitive to rounding errors 
than most other sequence transformations. Also, it is probably safe to say that the sequence 
transformations ZYin)(P, s,, o,), Yin)(/3, s,, w,), and ~Xp)(y, s,, wn) are in general more 
efficient and at the same time less robust than Wynn’s 6 algorithm if linear convergence is 
accelerated or if divergent alternating series are summed. In the same way, Wynn’s p algorithm is 
apparently more robust than the u and u transformation or the linear sequence transformation 
A(,“‘( /3, s,) in the case of logarithmic convergence. 

Finally, there is Drummond’s sequence transformation B~)(s,, wn), eq. (9.54), which is 
another relative of Levin’s sequence transformation since it also uses a sequence of remainder 
estimates 4wn 1. Drummond’s sequence transformation is very important theoretically, in particu- 
lar in connection with Germain-Bonne’s formal theory of convergence accleration [33] and the 
explicit construction of PadC approximants for the Euler series, eq. (1.1-7). However, in practical 
applications Drummond’s sequence transformations is at most moderately powerful. It is 
significantly less powerful than the sequence transformations .JZin)(p, s,, tin), eq. (7.1-7), 

y,n)(P, s ,,, w,), eq. (8.2-7), and &p’(y, s,, w,), eq. (9.2-6), but has the same weaknesses as 
these transformations. 

15.5. Brezinski’s theta algorithm and related transformations 

Brezinski’s 9 algorithm, eq. (lO.l-9), and its iteration yin), eq. (10.3-6), combine many of the 
advantageous features of Wynn’s E algorithm, eq. (4.2-l), and of Wynn’s p algorithm, eq. (6.2-2). 
They are able to accelerate linear convergence and to sum even wildly divergent alternating 
series, and they are also able to accelerate logarithmic convergence. 

In those tests, in which linear convergence had to be accelerated or divergent alternating series 
had to be summed, Brezinski’s 9 algorithm and its iteration YJ”) were usually better than the E 
algorithm, but less powerful than the sequence transformations ZYin)(p, s,, w,), eq. (7.1-7), 

Zj’“‘(P, s wn), eq. (8.2-7), and Mp’(y, s,, an), eq. (9.2-6). 
With rlspect to the acceleration of logarithmic convergence Brezinski’s 9 algorithm and its 

iteration 2,“) are more reliable than the standard form of Wynn’s p algorithm, eq. (6.2-4), since 
they are not restricted to sequences with remainders that behave like an integral power of l/n as 
n --, 00, and they are easier to use than the general form of Wynn’s p algorithm, eq. (6.2-2), since 
no interpolation points are needed. In those tests, in which logarithmic convergence had to be 
accelerated, they were approximately as powerful as Levin’s u and u transformations. 
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It also seems that with respect to numerical stability and robustness Brezinski’s 9 algorithm 
and its iteration jin) are less robust than the E or the p algorithm and also more susceptible to 

rounding errors. 
The other sequence transformations, which were also derived along the lines of Brezinski’s 9 

algorithm are L$“), eq. (ll.l-5), %$“I, eq. (11.1-12), X(kn), eq. (11.2-l), uf”‘, eq. (11.2-2), and p.(kn), 
eq. (11.2-3). It is a typical feature of these transformations that they are much more versatile 
than the transformations from which they were derived. This means they are all able to 
accelerate linear and logarithmic convergence and are also able to sum even wildly divergent 
alternating series. 

Unfortunately, it is also a typical feature of these sequence transformations that their 
performance in the numerical tests described in sections 13 and 14 was quite inconsistent and 
more or less unpredictable. For instance, 01”’ turned out to be a very powerful accelerator for 
the infinite series (14.3-1) for l(2), a powerful accelerator for the infinite series (14.3-20), but a 
relatively weak accelerator for the infinite series (14.3-7) and (14.3-10). No explanation for this 
inconsistent behaviour can be given. At best, the sequence transformations listed above were as 
good as Brezinski’s 9 algorithm or its iteration yk (n), but in most cases they were significantly 
weaker. Also, it seems that the sequence transformations mentionend above are not more robust 
and less susceptible to rounding errors than the 9 algorithm or $,jnt. Hence, it seems that the 
most promising choices among all sequence transformations, which were derived along the lines 
of Brezinski’s 9 algorithm, are the 9 algorithm, eq. (lO.l-9), and &k;f”), eq. (10.3-6). 

I would like to thank Professor E.O. Steinborn for stimulating discussions, for his encourage- 
ment, for his constant support, and for the excellent working conditions at the Institut fur 
Physikalische und Theoretische Chemie der Universitat Regensburg. 

The research, which ultimately led to this report, was begun during a stay at the Faculty of 
Mathematics of the University of Waterloo, Ontario, Canada. I would like to thank Professor J. 
&iek and Professor .I. Paldus for their invitation to work with them as a postdoctoral fellow in 
the Quantum Theory Group of the Department of Applied Mathematics. Their hospitality, their 
generosity, and the inspiring atmosphere which they provided is highly appreciated. Special 
thanks to Professor J. &ek who aroused my interest in asymptotic techniques, the summation of 
divergent series, and the construction of rational appro~mants. 

Many thanks also to H. Homeier, who patiently read and discussed the numerous preliminary 
versions of this manuscript, and to M. Middleton, the T,X expert at the Universitat Regensburg 
and the author of many useful macros, who helped me to typeset this manuscript in R,T,X, the 
local variant of PCT,X. 

References 

[l] S.E. Haywood and J.D. Morgan III, Discrete basis-set approach for calculating Bethe bgarithms. Phys. Rev. A 32 
(198S), 3179-3186. 



368 E.J. Weniger / Nonlinear sequence transformations 

[2] C.M. Bender and S. A. Orszag, Advanced mathematical methods for scientists and engineers (McGraw-Hill, New 
York, 1978). 

[3] C.M. Bender and T.T. Wu, Anharmonic oscillator. ZZ. A study in perturbation theory in large order, Phys. Rev. D 7 
(1973) 1620-1636. 

[4] K. Knopp, Theorie and Anwendung der unendlichen Reihen (Springer-Verlag, Berlin, 1964). 
[5] J. Stirling, Methodus differentialis sive tractatus de summatione et interpolatione serium infinitarum (London, 

1730). English translation by F. Holliday, The differential method, or, a treatise concerning the summation and 
interpolation of infinite series (London, 1749). 

[6] L. Euler, Znstitutiones calculi differentialis cum eius usu in analysi finitorum ac doctrina serium. Part ZZ.1. De 

transformatione serium (Academia Imperialis Scientiarum Petropohtana, 1755). This book was reprinted as Vol. 
X of Leonardi Euleri Opera Omnia, Seria Prima (Teubner, Leipzig and Berlin, 1913). 

[7] G.H. Hardy, Divergent series (Oxford University Press, Oxford, 1949). 
[8] G.M. Petersen, Regular matrix transformations (McGraw-Hill, London, 1966). 
[9] A. Peyerimhoff, Lectures on summability (Springer-Verlag, Berlin, 1969). 

[lo] K. Zeller and W. Beekmann, Theorie der Limitierungsverfahren (Springer-Verlag, Berlin, 1970). 
[ll] R.E. Powell and S.M. Shah, Summability theory and its applications (Van Nostrand Reinhold, London, 1972). 
[12] A.C. Aitken, On Bernoulli’s numerical solution of algebraic equations, Proc. Roy. Sot. Edinburgh 46 (1926) 

289-305. 
[13] J. Todd, Motivation for working in numerical analysis, in J. Todd (ed.), Survey of numerical analysis (McGraw-Hill, 

New York, 1962), pp. l-26. 
[14] E.E. Kummer, Eine neue Methode, die numerischen Summen langsam convergirender Reihen zu berechnen, J. 

Reine Angew. Math. 16 (1837), 206-214. 
[15] D. Shanks, Non-linear transformations of divergent and slowly convergent sequences, J. Math. and Phys. 

(Cambridge, Mass.) 34 (1955), l-42. 
[16] P. Wynn, On a device for computing the e,(S,,) transformation, Math. Tables Aids Comput. 10 (1956), 91-96. 
[17] J.R. Schmidt, On the numerical solution of linear simultaneous equations by an iterative method, Philos. Mag. 32 

(1941) 369-383. 
[18] G.A. Baker, Jr., Essentials of Pad& approximants (Academic Press, New York, 1975). 
[19] C. Brezinski, Acceleration de la convergence en analyse numerique (Springer-Verlag, Berlin, 1977). 
[20] C. Brezinski, Aigorithmes d’acceleration de la convergence- Etude numdrique (Editions Technip, Paris, 1978). 
[21] C. Brezinski, Pad&type approximation and general orthogonal polynomials (Birkhauser Verlag, Basel, 1980). 
[22] G.A. Baker, Jr., and P. Graves-Morris, Pade’ approximants. Part I: Basic theory. Part ZZ: Extensions and 

applications (Addison-Wesley, Reading, Mass., 1981). 
[23] J. Wimp, Sequence transformations and their applications (Academic Press, New York, 1981). 
(241 C. Brezinski, Convergence acceleration methods: The past decade, J. Comput. Appl. Math. 12 & 13 (1985), 19-36. 
[25] P. Wynn, On a Procrustean technique for the numerical transformation of slowly convergent sequences and series, 

Proc. Camb. Phil. Sot. 52 (1956) 663-671. 
[26] C. Brezinski, Acceleration de suites a convergence logarithmique, C. R. Acad. SC. Paris 273 (1971), 727-730. 
[27] C. Brezinski, Some new convergence acceleration methods, Math. Comput. 39 (1982), 133-145. 
[28] D. Levin, Development of non-linear transformations for improving convergence of sequences, Int. J. Comput. 

Math. B 3 (1973), 371-388. 
[29] D.A. Smith and W.F. Ford, Acceleration of linear and logarithmic convergence, SIAM J. Numer. Anal. 16 (1979) 

223-240. 
[30] D.A. Smith and W.F. Ford, Numerical comparison of nonlinear convergence accelerators, Math. Comput. 38 

(1982), 481-499. 
[31] C. Brezinski, A general extrapolation algorithm, Numer. Math. 35 (1980), 175-180. 
[32] T. Havie, Generalized Neville type extrapolation schemes, BIT 19 (1979), 204-213. 
[33] B. Germain-Bonne, Transformations de suites, Rev. Franqaise Automat. Informat. Rech. Operat. 7 (R-l) (1973), 

84-90. 
[34] W. Magnus, F. Oberhettinger, and R.P. Soni, Formulas and theorems for the special functions of mathematical 

physics (Springer-Verlag, New York, 1966). 



E.J. Weniger / Nonlinear sequence transformations 369 

[35] W.D. Clark, H.L. Gray, and J.E. Adams, A note on the T-transformation of Lubkin, J. Res. Natl. Bur. Stand. B 

73 (1969) 25-29. 
[36] C. Brezinski, Algorithm 585: A subroutine for the general interpolation and extrapolation probIems, ACM Trans. 

Math. Software 8 (1982) 290-301. 
[37] P. Wynn, On the convergence and the stability of the epsilon algorithm, SIAM J. Numer. Anal. 3 (1966) 91-122. 
[38] P. Wynn, A note on programming repeated applications of the E -algorithm, R.F.T.I.-Chiffres 8 (1965) 23-62. 
[39] P. Wynn, Singular rules for certain non-linear algorithms, BIT 3 (1963) 175-195. 
[40] S. Lubkin, A method of summing infinite series, J. Res. Natl. Bur. Stand. 48 (1952), 228-254. 
[41] R.R. Tucker, The S* process and related topics, Pacif. J. Math. 22 (1967), 349-359. 
[42] R.R. Tucker, The S* process and related topics ZZ, Pacif. J. Math. 28 (1969), 455-463. 
[43] F. Cordellier, Sur la regularitk des procedes 6* dilitken et W de Lubkin, in L. Wuytack (ed.), Pad6 approximation 

and its applications (Springer-Verlag, Berlin, 1979), pp. 20-35. 
[44] G.E. Bell and G.M. Phillips, Aitken acceleration of some alternating series, BIT 24 (1984) 70-77. 
[45] A.J. MacLeod, Acceleration of vector sequences by multi-dimensional AZ-methods, Commun. Appl. Numer. Meth. 

2 (1986) 385-392. 
[46] J.E. Drumrnond, Summing a common type of slowly convergent series of positive terms, J. Austral. Math. Sot. B 19 

(1976), 416-421. 
[47] P. Bjarstad, G. Dahlquist, and E. Grosse, Extrapolations of asymptotic expansions by a modified Aitken 

S*-formula, BIT 21 (1981) 56-65. 
[48] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical recipes (Cambridge University 

Press, Cambridge, 1986). 
[49] P. Hillion, Methode d’Aitken itereepour les suites oscillantes d’approximations, C. R. Acad. SC. Paris A 280 (1975) 

1701-1704. 

[50] P.J. Davis, Interpolation and approximation (Dover, New York, 1975). 
[51] D.C. Joyce, Survey of extrapolation processes in numerical analysis, SIAM Rev. 13 (1971), 435-490. 
[52] E.H. Neville, Iterative interpolation, J. Indian Math. Sot. 20 (1934), 87-120. 
[53] L. F. Richardson, The deferred approach to the limit. Z. Single lattice, Phil. Trans. Roy. Sot. London A 226 

(1927) 229-349. 
[54] A. Cuyt and L. Wuytack, Nonlinear methods in numerical analysis (North-Holland, Amsterdam, 1987). 
[55] T.N. Thiele, Znterpolationsrechnung (Teubner, Leipzig, 1909). 
[56] A. Sidi, Convergence properties of some nonlinear sequence transformations, Math. Comput. 33 (1979) 315-326. 
[57] T. Fessler, W.F. Ford, and D.A. Smith, HURRY: An acceleration algorithm for scalar sequences and series, ACM 

Trans. Math. Software 9 (1983) 346-354. 
[58] I.M. Longman, Difficulties of convergence acceleration, in M.G. de Bruin and H. van Rossum (eds.), Pad& 

approximation and its applications Amsterdam 1980 (Springer-Verlag, Berlin, 1981), pp. 273-289. 
[59] Sister M.C. Fasenmyer, Some generalized hypergeometric potjnomials, Bull. Amer. Math. Sot. 53 (1947) 

806-812. A good discussion of Sister Celine’s technique can also be found in chapter 14 of E. D. Rainville, 
Special functions (Chelsea, New York, 1960). 

[60] A.J. Thakkar, A Technique for increasing the utility of the Wigner-Kirkwood expansion for the second virial 
coefficient, Mol. Phys. 36 (1978), 887-892. 

[61] A.C. Tanner and A.J. Thakkar, Discrete and continuum contributions to multipole polarizabilities and shielding 

factors of hydrogen, Int. J. Quantum Chem. 24 (1983) 345-352. 
[62] E.J. Weniger, J. Grotendorst, and E.O. Steinborn, Some applications of nonlinear convergence accelerators, Int. J. 

Quantum Chem. Symp. 19 (1986), 181-191. 

[63] J. Grotendorst and E.O. Steinbom, Use of nonlinear convergence accelerators for the efficient evaluation of GTO 
molecular integrals, J. Chem. Phys. 84 (1986), 5617-5623. 

[64] J. Grotendorst, E.J. Weniger, and E.O. Steinborn, Efficient evaluation of infinite-series representations for overrap, 
two-center nuclear attraction, and Coulomb integrals using nonlinear convergence accelerators, Phys. Rev. A 33 
(1986), 3706-3726. 

[65] I.S. Gradshteyn and I.M. Ryzhik, Table of integraIs, series, andproducts (Academic Press, New York, 1980). 
[66] H.E. Salzer, A Simple method for summing certain slowly convergent series, J. Math. and Phys. (Cambridge, 

Mass.) 33 (1954), 356-359. 



370 E.J. Weniger / Nonlinear sequence transformations 

[67] H.E. SaIzer, Formulas for the partial summation of series, Math. Tables Aids Comput. 10 (1956), 149-156. 
[68] H.E. Salzer and G.M. Kimbro, Improved formulas for complete and partial summation of certain series, Math. 

Comput. 15 (1961), 23-39. 
[69] J. Wimp, Some transformations of monotone sequences, Math. Comput. 26 (1972), 251-254. 
[70] A. Sidi, An algorithm for a special case of a generalization of the Richardson extrapolation process, Numer. Math. 

38 (1982), 299-307. 
[71] N.E. Norlund, Vorlesungen iiber Differenzenrechnung, (Chelsea, New York, 1954). 
[72] L.M. Mime-Thomson, The calculus of finite differences (Chelsea, New York, 1981). 
[73] A. Sidi, Some properties of a generalization of the Richardson extrapolation process, J. Inst. Math. Appl. 24 (1979) 

327-346. 
[74] W.F. Ford and A. Sidi, An algorithm for a generalization of the Richardson extrapolation process, SIAM J. 

Numer. Anal. 24 (1987) 1212-1232. 
[75] D. Levin and A. Sidi, Two new classes of nonlinear transformations for accelerating the convergence of infinite 

integrals and series, Appl. Math. Comput. 9 (1981), 175-215. 
[76] A. Sidi and D. Levin, Rational approximations from the d-transformation, IMA J. Numer. Anal. 2 (1982) 

153-167. 
[77] N. Nielsen, Die Gammafunktion (Chelsea, New York, 1965). 
[78] N.E. Niirlund, Leqons sur les series d’interpolation (Gautier-Villars, Paris, 1926). 
[79] E. Borel, Lecons sur les series divergentes (Gamier-Villars, Paris, 1928). Reprinted by Editions Jacques Gabay, 

Paris, 1988. 
[80] W. Wasow, Asymptotic expansions for ordinary differential equations (Dover, New York, 1987). 
[81] S. Iseki and Y. Iseki, Asymptotic expansion for the remainder of a factorial series, Mem. Natl. Defense Acad. 

Japan 20 (1980), l-6. 
[82] E. Landau, ober die Grundlagen der Theorie der Fakultiitenreihen, Sitzungsb. Konigl. Bay. Akad. Wissensch. 

Miinchen, math.-phys. RI. 36 (1906) 151-218. 
[83] G.N. Watson, The transformation of an asymptotic series into a convergent series of inverse factorials, Rend. Circ. 

Mat. Palermo 34 (1912), 41-88. 
[84] A. Sidi, A new method for deriving Pad; approximants for some hypergeometric functions, J. Comput. Appl. Math. 

7 (1981), 37-40. 
[85] C.M. Bender and T.T. Wu, Anharmonic oscillator, Phys. Rev. 184, (1969), 1231-1260. 
[86] B. Simon, The anharmonic oscillator: A singular perturbation theory, in D. Bessis (ed.), Cargese lectures in physics 

(Gordon and Breach, New York, 1972), Vol. 5, pp. 383-414. 
[87] B. Simon, Large orders and summability of eigenvalue perturbation theory: A mathematical overview, Int. J. 

Quantum Chem. 21 (1982), 3-25. 
[88] J. Ciiek and E.R. Vrscay, Large order perturbation theory in the context of atomic and molecular physics- Interdis- 

ciplinary aspects, Int. J. Quantum Chem. 21 (1982) 27-68. 
[89] H.J. Silverstone, J.G. Harris, J. Ciiek, and J. Paldus, Asymptotics of high-order perturbation theory for the 

one-dimensional anharmonic oscillator by quasisemiclassical methods, Phys. Rev. A 32 (1985), 1965-1980. See p. 
1966, Eq. (l), p. 1977, Eq. (69), and p. 1979, Eq. (71). 

[90] J. Ciiek, R.J. Damburg, S. Graffi, V. Grecchi, E.M. Harrell II, J.G. Harris, S. Nakai, J. Paldus, R.Kh. Propin, 
and H.J. Silverstone, l/R expansion for Hz+: Calculation of exponentially small terms and asymptotics, Phys. Rev. 
A 33 (1986) 12-54. See p. 13, Eq. (2), p. 15, Eqs. (28) and (29), p. 36, Eq. (229) p. 37, Table IV, pp. 38-39, Eq. 
(232), p. 43, Eq. (236), and p. 45, Eq. (238). 

[91] G. Alvarez, Coupling-constant behavior of the cubic anharmonic oscillator, Phys. Rev. A 37 (1988) 4079-4083. See 
p. 4079, Eq. (4), p. 4081, Eq. (24). 

[92] J.E. Drummond, A formula for accelerating the convergence o/a general series, Bull. Austral. Math. SOC. 6 (1972) 

69-74. 
[93] E.H. Moore and H.L. Smith, A general theory of limits, Amer. J. Math. 44 (1922), 102-121. 
[94] A.M. Gleason, Fundamentals of abstract analysis (Addison-Wesley, Reading, Mass., 1966). 
[95] 0. Perron, Die Lehre von den Kettenbriichen, Band II: Analytisch-funktionentheoretische Kettenbriiche, (Teubner, 

Stuttgart, 1957). 
[96] H.S. Wall, Analytic theory of continued fractions, (Chelsea, New York, 1973). 



E.J. Weniger / Nonlinear sequence transformations 371 

[97] B. Simon, Coupling constant ana[yticity for the anharmonic oscillator, Ann. Phys. 58 (1970), 76-136. 
[98] M. Reed and B. Simon, Methods of modern mathematicalphysics IV: Analysis of operators (Academic Press, New 

York, 1978). 
[99] P. Wynn, Upon the Pad& table derived from a Stieltjes series, SIAM J. Numer. Anal. 5 (1968), 805-834. 

[loo] A.K. Common, Pad& approximants and bounds to series of Stieltjes, J. Math. Phys. 9 (1968) 32-38. 
[loll G.D. Allen, C.K. Chui, W.R. Madych, F.J. Narcowich, and P.W. Smith, Pad& approximation of StieItjes series, J. 

Approx. Theor. 14 (1975), 302-316. 
[102] J. Karlsson and B. von Sydow, The convergence of Pad6 approximants to series of Stieitjes, Ark. Matem. 14 

(1976), 43-53. 
[103] A. Sidi, Bore1 summability and converging factors for some everywhere divergent series, SIAM J. Math. Anal. 17 

(1986) 1222-1231. 
[104] L.J. Slater, Generalized hypergeometric functions (Cambridge University Press, Cambridge, 1966). 
[105] A. Sidi, Analysis of convergence of the T-transformation for power series, Math. Comput. 35 (1980) 833-850. 
[106] The NAG Library, Mark 5 (1975), Numerical Analysis Group, NAG Central Office, Oxford, UK. 
[107] E.J. Weniger and E.O. Steinborn, Nonlinear sequence transformations for the efficient evaluation of auxiliary 

functions for CT0 molecular integrals, in M. Defranceschi and J. Delhalle (eds.), Numerical determination of the 
electronic structure of atoms, diatomic and polyatomic molecules (Kluwer, Dordrecht, 1989) pp. 341-346. 

[108] R.A. Levy, Principles of solid state physics (Academic Press, New York, 1968). 
[109] J. Killingbeck, Quantum-mechanical perturbation theory, Rep. Prog. Phys. 40 (1977), 963-1031. 
[llO] J.P. Delahaye and B. Germain-Bonne, The set of logarithmically convergent sequences cannot be accelerated, 

SIAM J. Numer. Anal. 19 (1982), 840-844. 
[ill] J. Todd, The Iemniscate constants, Commun. ACM 18 (1975), 14-19. 
[112] E. Filter and E.O. Steinbom, The three-dimensional convolution of reduced Bessel functions and other functions of 

physical interest, J. Math. Phys. 19 (1978), 79-84. 
[113] E.O. Steinbom and E. Filter, Translations of fields represented by spherical-harmonic expansions for molecular 

calculations III. Translations of reduced Bessel functions, Slater-type s-orbitals, and other functions, Theor. Chim. 
Acta 38 (1975), 273-281. 

[114] E.J. Weniger and E.O. Steinborn, Numericalproperties of the convolution theorems of B functions, Phys. Rev. A 28 
(1983), 2026-2041. 

[115] E. Grosswald, Bessel polynomials (Springer-Verlag, Berlin, 1978). 
[116] H.E. Salzer, Note on the Dorev-Grosswald asymptotic series for generalized Bessel polynomials, J. Comput. Appl. 

Math. 9 (1983) 131-135. 

[117] F. Beleznay, Estimations for asymptotic series using a modified Romberg algorithm: Z. Finite-size scaling 
calculations, J. Phys. A 19 (1986), 551-562. 

[118] C.-M. Liegener, F. Beleznay, and J. Ladik, Application of a modified Romberg algorithm to Hartree-Fock 
calculations on periodic chains, Phys. Lett. A 123 (1987), 399-401. 


