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ABSTRACT: We propose two different schemes for second-
order perturbation theory with spin-projected Hartree−Fock.
Both schemes employ the same ansatz for the first-order wave
function, which is a linear combination of spin-projected
configurations. The first scheme is based on the normal-
ordered projected Hamiltonian, which is partitioned into the
Fock-like component and the remaining two-particle-like
contribution. In the second scheme, the generalized Fock
operator is used to construct a spin-free zeroth-order
Hamiltonian. To avoid the intruder state problem, we adopt
the level-shift techniques frequently used in other multireference perturbation theories. We describe both real and imaginary
shift schemes and compare their performances on small systems. Our results clearly demonstrate the superiority of the second
perturbation scheme with an imaginary shift over other proposed approaches in various aspects, giving accurate potential energy
curves, spectroscopic constants, and singlet−triplet splitting energies. We also apply these methods to the calculation of spin
gaps of transition-metal complexes as well as the potential energy curve of the chromium dimer.

1. INTRODUCTION
In electronic structure theory, the Schrödinger equation is
almost always unsolvable because of the exponential growth of
the Hilbert space with system size; therefore, the equation is
frequently approximated by a computationally solvable model.
Such an approach has turned out to be fairly effective for
computing many chemically important properties if the model
used is well suited to the problem. In most cases, a single
determinantal wave function of Hartree−Fock (HF) represents
a qualitatively correct wave function at zeroth order and is
employed as a starting point to add the remaining dynamical
correlation effects by accounting for a large number of single-
and double-electron substitutions (SD), each with a small
contribution. There are many such single-reference (SR)
methods, including Møller−Plesset perturbation theory
(MP),1 configuration interaction (CI), and coupled cluster
(CC).2,3 However, there are certain systems where multiple
determinants have significant weights in the exact wave
function. As a result, HF can introduce tremendous error by
neglecting static correlation, which is a different type of electron
correlation than dynamical correlation. To capture static
correlation, one has to consider a multiconfiguration (MC)
wave function, and significant effort has been made to develop
multireference (MR) methods that can treat both dynamical
and static correlation effects simultaneously.
The recent advancements and developments in MR

methods have been largely based on the complete-active-
space self-consistent field (CASSCF). Arguably, one of the
most prominent approaches is CASPT2 (i.e., second-order
perturbation theory (PT2) with a CASSCF wave function).4,5

CASPT2 has been applied extensively to various applications

because of its relatively low computational cost compared to
that of MRCI6,7 and MRCC.8,9 Still, CASPT2 requires the
construction of a CASSCF wave function and the diagonaliza-
tion of a three-particle reduced density matrix (3RDM) within
the active space, both of which can often become computa-
tional bottlenecks with a large active space.10

There are other paths to obtaining MC wave functions, and
one possibility is symmetry-projected HF (PHF).11 It has been
well known for a relatively long time that a broken-symmetry
determinant |Φ0⟩ effectively contains multiple determinants as
a mixture of states with different symmetries. Among several
symmetries, spin symmetry is considered to be the most
essential symmetry that HF violates in order to introduce a
static correlation. Hence, applying a spin-projection operator P̂
to unrestricted HF (UHF) makes it possible to generate a
compact MC wave function P̂|Φ0⟩. In practice, molecular
orbitals in |Φ0⟩ are relaxed self-consistently in the presence of
P̂ by minimizing its energy, and as a result, P̂|Φ0⟩ can be
regarded as a relatively efficient and reasonable MCSCF wave
function. This method is referred to as spin-projected UHF
(SUHF) and is expected to offer a suitable platform for
subsequent dynamical correlation treatment.
It should be noted that the concept of spin projection

emerged in the seminal work of Löwdin in the mid-1950s.12

However, the difficulty of handling the many-body nature of a
spin-projection operator has long hindered the development of
its extension to treating dynamical correlation.13,14 The first
post-PHF method was proposed by Schlegel in 1986,15,16

Received: September 6, 2019
Published: October 29, 2019

Article

pubs.acs.org/JCTCCite This: J. Chem. Theory Comput. 2019, 15, 6688−6702

© 2019 American Chemical Society 6688 DOI: 10.1021/acs.jctc.9b00897
J. Chem. Theory Comput. 2019, 15, 6688−6702

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
O

X
FO

R
D

 o
n 

N
ov

em
be

r 
24

, 2
02

0 
at

 1
6:

01
:3

3 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

pubs.acs.org/JCTC
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jctc.9b00897
http://dx.doi.org/10.1021/acs.jctc.9b00897


followed shortly after by Knowles and Handy,17,18 where spin-
unrestricted MP2 (UMP2) was approximately spin-projected.
Only recently has spin-extended MP2 (EMP2) been
introduced, which performs numerically exact spin projection
onto an MP1 wave function constructed from the underlying
broken-symmetry determinant |Φ0⟩ of SUHF (rather than
UHF).19 Since then, various post-SUHF methods have been
developed, including time-dependent SUHF,20 CI,21,22 and
CC.23−28 These methods have been shown to generally
outperform their restricted and unrestricted variants, especially
when static correlation plays a key role. However, in the course
of numerous test applications of the developed methods, we
have found that the improvements the original EMP2 has to
offer are somewhat limited, given the considerable improve-
ments of spin-projected CI over unrestricted CI.21,22 For
instance, while the original EMP2 works well for biradicals,
such as single-bond dissociation, its accuracy becomes
substantially worse for more complicated cases, such as double
and triple bond breaking, as will be discussed below.
Furthermore, the predetermined nature of the first-order
wave function does not allow the corresponding Hylleraas
functional to be defined,29,30 which would be useful in
developing the geometry optimization method.31,32 Given
that perturbation theory is not unique and its performance is
greatly dependent on the choice of the zeroth-order
Hamiltonian, we believe it is desirable to continue exploring
the possibility of more appropriate perturbation schemes for
SUHF.
To this end, in this article we propose and test two

perturbative corrections on SUHF. The first one is regarded as
a generalization of the original EMP2 of Tsuchimochi and Van
Voorhis,19 which will be referred to as EMP2(0) hereafter to
distinguish it from the newly developed EMP2 in the present
work. It is based on the normal-ordered Hamiltonian
introduced for the nonorthogonal determinants that appear
in the integration of spin projection.24 In the second scheme,
which we call SUPT2, the so-called generalized Fock matrix is
used as a starting point, as in CASPT2.4,5 Consequently,
SUPT2 shares many common properties as well as limitations
with CASPT2. Indeed, it will be demonstrated below that the
notorious intruder state problem is also inevitable in SUPT2,
and we therefore also develop the level-shift technique
frequently used in CASPT2.33−35 In this work, their perform-
ances are compared by using simple test systems as well as
transition-metal complexes.
This article is organized as follows. Section 2.1 presents an

overview of SUHF. In Section 2.2, we apply the Rayleigh−
Schrödinger perturbation theory with an SUHF reference and
consider two possible ansaẗze for the first-order wave function.
Section 2.3 reviews EMP2(0) and proposes the generalized
EMP2, and Section 2.4 describes the SUPT2 theory. We
introduce real and imaginary level shifts in Section 2.5, the
latter of which requires some elaboration. Section 4 first
presents a comparison among several methods tested for the
HF, H2O, and N2 molecules and discusses the intruder state
problem in SUPT2. It also presents the results for the
spectroscopic constants of N2, singlet−triplet splitting energies
of various systems including transition metal complexes, and
the potential energy curve of the Cr2 molecule. In Section 5,
we discuss the main cause of the different behaviors between
EMP2 and SUPT2. Finally, conclusions are drawn in Section 6.

2. THEORY
2.1. Spin-Projected Unrestricted Hartree−Fock. Here,

we briefly review SUHF and define some quantities that will be
required in the following sections. Below, i, j, k, and l will
represent occupied spin orbitals in |Φ0⟩, and a, b, c, and d will
represent virtual spin orbitals. General spin orbitals are
denoted by p, q, r, and s. Because our approach is based on
spin-unrestricted orbitals, in some cases, we will use σ = α,β to
specify the spin of orbitals. Capital letters are used for spin-
restricted orbitals.
In this work, a spin-projection operator P̂ is given by the

following form

∫
π

̂ = + Ω Ω ̂ Ω
Ω

P
S

w R
2 1

8
d ( ) ( )2 (1)

where Ω = (α, β, γ) are the Euler angles, w(α, β, γ) are
Wigner’s D-matrix elements representing f ixed weights, and

α β γ̂ = α β γ− ̂ − ̂ − ̂R( , , ) e e eS S Si i iz y z (2)

are the spin-rotation operators. Accordingly, R̂(Ω)|Φ0⟩ gives a
different determinant that is not orthogonal to |Φ0⟩. Discretiz-
ing P̂ with Ng grid points labeled by g, we write an SUHF wave
function as

∑|̂Φ ⟩ = ̂ |Φ ⟩P
N

w R
g

g

g g0 0
(3)

which is regarded as a linear combination of nonorthogonal
determinants. Because P̂ is idempotent, Hermitian, and
commutable with the nonrelativistic Hamiltonian Ĥ, the
SUHF energy is simply given by

=
⟨Φ | ̂ |̂Φ ⟩
⟨Φ | |̂Φ ⟩

E
HP
PSUHF

0 0

0 0 (4)

The variational principle applied to SUHF gives the
generalized Brillouin theorem

⟨Φ | ̂ ̂ − |̂Φ ⟩ =a H E P( ) 0a
i

0 SUHF 0 (5)

where aq̂
p represents a single excitation operator from the qth to

pth orbital.
It will prove useful later to introduce the normal-ordered

products {···}g for two nonorthogonal determinants |Φ0⟩ and
R̂g|Φ0⟩,

21,22 meaning

⟨Φ |{···} ̂ |Φ ⟩ ≡R 0g g0 0 (6)

Using this definition, it is easy to show that the second-
quantized Hamiltonian Ĥ can be written as24

∑ ∑̂ = ̂ + ⟨ || ⟩ ̂H h a pq rs a
1
4pq

pq q
p

pqrs
rs
pq

(7)

∑ ∑= + { ̂ } + ⟨ || ⟩{ ̂ }E a pq rs aF( )
1
4g

pq
g pq q

p
g

pqrs
rs
pq

g
(8)

for any g, where ⟨pq||rs⟩ are the standard antisymmetrized two-
electron integrals and

=
⟨Φ | ̂ ̂ |Φ ⟩

⟨Φ | ̂ |Φ ⟩
E

HR

Rg
g

g

0 0

0 0 (9)
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∑= + ⟨ || ⟩
⟨Φ | ̂ ̂ |Φ ⟩

⟨Φ | ̂ |Φ ⟩
h pr qs

a R

R
F( )g pq pq

rs

s
r

g

g

0 0

0 0 (10)

are the transition energy and transition Fock matrix,
respectively. The required matrix elements in this work can
be easily derived using the Wick theorem extended to the
nonorthogonal representation.21 For further details, the reader
can refer to refs 11, 21, and 22.
2.2. Perturbation Theory. In the Rayleigh−Schrödinger

perturbation theory, the Hamiltonian is partitioned as

λ̂ = ̂ + ̂H H V0 (11)

and the exact FCI wave function and its energy are expanded
as

ψ λ ψ λ ψ|Ψ⟩ = | ⟩ + | ⟩ + | ⟩ + ···0 1
2

2 (12)

λ λ= + + + ···E E E E0 1
2

2 (13)

The choice of Ĥ0 is left arbitrary and will thus be determined
later. As is well known, the order-by-order expansion of the
Schrödinger equation results in

ψ ψ̂ | ⟩ = | ⟩H E0 0 0 0 (14)

and

∑ψ ψ ψ ψ̂ − | ⟩ + ̂ | ⟩ = | ⟩ +
−

| ⟩−
=

−H E V E
n

E( )
1

n n n
k

n k k0 0 1 0
1

(15)

In this work, we wish to formulate a perturbation theory
using an SUHF wave function as the reference zeroth-order
wave function:

ψ| ⟩ ≡ |̂Φ ⟩P0 0 (16)

To do so, first we have to develop an ansatz for |ψ1⟩ for the
second-order energy E2. Generally, higher-order wave
functions have to be cleanly separated from the reference
state. This means that they are orthogonal to each other:

ψ ψ⟨ | ⟩ = 00 1 (17)

This can be accomplished by defining the projection operator
that projects onto the reference space

ψ ψ
ψ ψ

̂ ≡
| ⟩⟨ |
⟨ | ⟩

=
|̂Φ ⟩⟨Φ | ̂

⟨Φ | |̂Φ ⟩
P P

P0
0 0

0 0

0 0

0 0 (18)

and its complementary projector

̂ = − ̂10 0 (19)

Using ̂
0, |ψ1⟩ can be generally expanded as

∑ψ| ⟩ = ̂ |Ω⟩
Ω

Ωt1 0
(20)

where the basis {|Ω⟩} spans the first-order interacting space of
|ψ0⟩ and tΩ represents the amplitude coefficients. The form of
{|Ω⟩} needs to be determined.
As in standard MRPT2 schemes, a natural choice for {|Ω⟩}

would be internally contracted configurations with respect to
an SUHF wave function. In this case, only the singles and
doubles spaces are needed, although the former does not

contribute to the second-order energy if the Brillouin theorem
is satisfied. Therefore, the unitary-group-generator ̂

Ω may be
used to produce such a basis

|Ω⟩ = ̂ |̂Φ ⟩ΩP 0 (21)

Viewing SUHF as a type of MCSCF, it has an incomplete
active space, where all Ne electrons are correlated in Ne active
orbitals, while there is an intrinsic secondary space whose
occupations are strictly zero.22 Thus, there are fewer double
excitation sub-blocks to be considered than in other MRPT2
schemes, and they can be categorized as one of the following
sub-blocks: fully internal, semi-external, and external excita-
tions, where zero, one, and two electrons are excited to the
virtual space, respectively. The fully internal excitations are
those within the active space, and they are neglected in
CASPT24,5 under the assumption that a CAS does not change
in the presence of dynamical correlation. This type of
excitation is also missing in other MRPT2 theories that use
an incomplete model space36−38 because it would give rise to
significant complication or a large number of intruder states.
The exclusion of fully internal excitations may be valid if the
incomplete active space is almost complete. However, this is
far from the case for SUHF. Therefore, one must consider
excitations into almost fully occupied orbitals or from nearly
empty ones, introducing significant redundancies. Given this
fact, this “excitation-after-projection” scheme, as given in eq 21,
is not advantageous because it is likely to introduce significant
complication into the derivation whereas most fully internal
excitations are redundant.
The above difficulty can be avoided by exploiting the

compact representation of the SUHF wave function. Namely,
in the “projection-after-excitation” ansatz, we write

|Ω⟩ = ̂ ̂ |Φ ⟩ΩPa 0 (22)

where broken-symmetry excitation operator aΩ̂ generates a
series of excited determinants with respect to |Φ0⟩, such as
|Φi

a⟩ and |Φij
ab⟩, which are then projected by P̂. Because there is

a clear distinction between occupied and virtual orbitals in
|Φ0⟩, all |Ω⟩ are realistic with a large norm. Nevertheless, we
should note that the projection-after-excitation basis is still
slightly redundant due to the nature of P̂, which includes not
only excitations but also de-excitations.27

Using the shorthand |Φμ⟩ = aμ̂|Φ0⟩, we write the first-order
wave function as

∑ψ| ⟩ = ̂ |̂Φ ⟩
μ

μ μP t1 0
(23)

It should be stressed that in the above equation, only projected
singles and doubles are essential for expanding |ψ1⟩. The
projected-excited determinants of higher rank could be
included in |ψ1⟩ because they in fact interact with P̂|Φ0⟩
through Ĥ. However, it is expected that their contributions
should be negligible or even nonexistent as it can be easily
shown that {P̂|Φi

a⟩,P̂|Φij
ab⟩} spans exactly the first-order

interaction space with respect to P̂|Φ0⟩.
22 It is also noteworthy

that the projected singles and doubles include the space
corresponding to the fully internal excitations of the excitation-
after-projection scheme and are thus potentially capable of
relaxing the SUHF (incomplete) active space.
Using eq 23, the second-order energy can be given by

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.9b00897
J. Chem. Theory Comput. 2019, 15, 6688−6702

6690

http://dx.doi.org/10.1021/acs.jctc.9b00897


∑ψ ψ= ⟨ | ̂ | ⟩ = ⟨Φ | ̂ ̂ ̂ |̂Φ ⟩
μ

μ μE H PH P t
SD

2 0 1 0 0
(24)

which, noting that there is no contribution from singles due to
the Brillouin theorem (eq 5), becomes

∑ ∑= ⟨Φ | ̂ − |̂Φ ⟩
> >

E H E P t( )
i j a b

ij
ab

ij
ab

2 0 SUHF
(25)

It should be pointed out that this expression is identical to that
of the second-order energy of EMP2(0).19 The amplitudes t
are determined by projecting the first-order equation (eq 15)

with the manifold { ̂ |̂Φ ⟩}μP0

∑ ⟨Φ | ̂ ̂ ̂ − ̂ |̂Φ ⟩ + ⟨Φ | ̂ ̂ ̂ |̂Φ ⟩ =
ν

μ ν ν μP H E P t P HP
SD

( ) 00 0 0 0 0 0

(26)

which can be simplified to

∑ + =
ν

μν ν μA t v
SD

0
(27)

with

= ⟨Φ | ̂ ̂ ̂ − ̂ |̂Φ ⟩μν μ νA P H E P( )0 0 0 0 (28)

= ⟨Φ | ̂ − |̂Φ ⟩μ μv H E P( )SUHF 0 (29)

Thus, the linear equation depends on the choice of zeroth-
order Hamiltonian Ĥ0. It is noteworthy that eq 27 resembles
the amplitude equations of other MR methods. In these
methods, the matrix that corresponds to A is often
diagonalized in each excitation sub-block, which is feasible if
3RDM can be diagonalized.5,36,37 The linear dependence is
also removed through this procedure.4 On the contrary, in our
projection-after-excitation scheme, there appears to be no such
separable sub-blocks of excitations, so A cannot be
diagonalized. However, A is generally sparse regardless of the
choice of Ĥ0

22 if the orbital set used is biorthogonal between α
and β spins.39 Also, the linear dependence in A shows up in v
in exactly the same manner,27,40 so it need not be removed in
practice. Thus, linear equations (eq 27) can be directly solved.
We note that singles should be explicitly treated when

solving eq 27. Otherwise, convergence is usually not obtained.
This is because the projected singles and doubles are not
orthogonal to each other (due to the redundancy in our
scheme), and the linear dependence would not be treated
correctly if without singles. In any case, the singles space is
trivial in size and is required when the generalized Brillouin
theorem is not satisfied, which is often the case in our
illustrative calculations below. Therefore, we always include
single excitations throughout this work.
It is well known that perturbation theory can be formulated

as a variational problem.29,30 Namely, one can define the
Hylleraas functional

ψ ψ ψ ψ= ⟨ | ̂ − | ⟩ + ⟨ | ̂ | ⟩H E H( ) 21 0 0 1 1 0 (30)

whose stationary point corresponds to the second-order energy
E2. Equation 26 appears as a consequence of the variational
principle of with respect to the amplitudes. With , it is
rather straightforward to adopt the standard derivative
methods.41,42

Now that we have established a general perturbation theory
with SUHF based on the projection-after-excitation scheme,
only a definition of Ĥ0 is now required, which is somewhat
arbitrary. Nevertheless, it is widely known that the choice of Ĥ0
significantly affects the final performance, and it should
therefore be carefully chosen. To end this section, we remark
on a few preferable conditions that Ĥ0 should hold:

(1) It must have |ψ0⟩ = P̂|Φ0⟩ as its eigenstate. In this work,
we employ a spin-free zeroth-order Hamiltonian so that
[Ĥ0, P̂] = 0, which allows for a considerable
simplification, although this is by no means a requisite
condition.

(2) It should be chosen such that the perturbation V̂ is
sufficiently small.

(3) It should be composed of one-electron operators for
ease of derivation and computation.

(4) It should reduce to the standard Fock operator in the
absence of P̂ so as to reproduce the MPn energies.

In the following sections, we will consider two possibilities
for the form of Ĥ0 based on these guidelines.

2.3. EMP2. The original EMP2(0) also starts with the same
ansatz for |ψ1⟩, i.e., eq 23.19 Without explicitly defining Ĥ0, its
first-order wave function is fixed to the spin-projected MP1
wave function. The amplitudes are obtained by semi-
canonicalization of spin-contaminated UHF-like Fock matrices,
where one separately diagonalizes the occupied−occupied and
virtual−virtual blocks of the spin-dependent Fock matrices
computed with broken-symmetry |Φ0⟩.

43 This circumvents
iterative calculations when solving eq 26, which are otherwise
necessary because Ĥ0 is generally not diagonal in the working

basis { ̂ |̂Φ ⟩}μP0 . While EMP2(0) does go back to standard
MP2 when P̂ is neglected, it remains largely unclear with
respect to what energy t is optimized; hence, the derivation of
analytical derivatives would become complicated.
A somewhat more general formalism can be derived by using

the normal-ordered Hamiltonian in eq 8. The idea is to write
the projected Hamiltonian ĤP̂ as

̂ ̂ = ̂ + ̂HP 0 (31)

with

i

k

jjjjjjj
y

{

zzzzzzz∑ ∑̂ = ̂ + { ̂ } ̂
N

w E R a RF( )
g

g

g g g
pq

g pq q
p

g g0
(32)

i

k

jjjjjjj
y

{

zzzzzzz∑ ∑̂ = ⟨ || ⟩{ ̂ } ̂
N

w pq rs a R
1
4g

g

g
pqrs

rs
pq

g g
(33)

In our previous study on spin-extended CISD (ECISD),22 it
was found that the contribution of ̂ is typically small
compared to that of ̂

0; thus, the latter was used as
preconditioning in the iterative diagonalization of the ECISD

Hamiltonian. This indicates that ̂
0 is reasonable for a zeroth-

order component of the projected Hamiltonian. Because ̂
0

does not have P̂|Φ⟩ as its eigenstate in general, one can
formally define the following zeroth-order Hamiltonian for
EMP2:

̂ = ̂ ̂ ̂ + ̂ ̂ ̂H0
EMP2

0 0 0 0 0 0 (34)
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However, because ̂
0 is not spin-free, the matrix elements of

̂ ̂ ̂P P0 , including the zeroth-order energy

=
⟨Φ | ̂ ̂ |̂Φ ⟩

⟨Φ | |̂Φ ⟩
E

P P
P0

EMP2 0 0 0

0 0 (35)

become cumbersome to evaluate; the required number of grid
points becomes Ng

3, which adds considerable computational
overhead. To alleviate this problem, we simply introduce the
following approximation:

⟨Φ | ̂ ̂ |̂Φ ⟩ ≈ ⟨Φ | ̂ |Φ ⟩μ ν μ νP P0 0 (36)

We deem this approximation to be reasonable because ̂
0

itself plays the role of approximate spin projection. In fact, if ̂
is negligible, which is our assumption in EMP2, then ̂ ≈ ̂ ̂HP0
and therefore eq 36 certainly holds. One caveat is that the
perturbation series would not converge to the correct limit, eq
13.
With eq 36, the zeroth-order energy E0 is simply the SUHF

energy. By absorbing ESUHF in ̂
0 and defining

i

k

jjjjjjj
y

{

zzzzzzz∑ ∑̃̂ = − ̂ + { ̂ }
N

w E E R aF( ) ( )
g

g

g g g
pq

g pq q
p

g0 SUHF
(37)

the amplitude (eq 26) becomes
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ

∑ ⟨Φ | ̃̂ |Φ ⟩ − ⟨Φ | ̃̂ |Φ ⟩ Φ | |̂Φ ⟩ − ⟨Φ | |̂Φ ⟩⟨Φ |

̃̂ |Φ ⟩ + ⟨Φ | ̂ − |̂Φ ⟩ =

ν
μ ν μ ν μ

ν ν μ

P P

t H E P( ) 0

SD

0 0 0 0 0 0

0 SUHF 0
(38)

which means the matrix A can be expressed as

= ⟨Φ | ̃̂ |Φ ⟩− ⟨Φ | ̃̂ |Φ ⟩⟨Φ | |̂Φ ⟩

− ⟨Φ | |̂Φ ⟩⟨Φ | ̃̂ |Φ ⟩

μν μ ν μ ν

μ ν

A P

P

EMP2
0 0 0 0

0 0 0 (39)

Incidentally, we note that the EMP2(0) amplitudes can be
obtained as a special case by assuming no rotation is done (R̂g
= 1̂) in eq 38, i.e., no spin projection is performed. In such a
case, one can easily find an orbital basis that diagonalizes the
matrix elements in the first term of the equation: the semi-
canonical orbital basis. On the other hand, this generalized
EMP2 (eq 38) is nonorthogonal and contains off-diagonal
elements; thus, it is solved iteratively as described in the
previous section. The Hylleraas functional for EMP2 is
straightforward to derive using these approximate matrix
elements.
2.4. SUPT2. While the derivation of EMP2 in the previous

section is largely specific to the nonorthogonal structure of P̂, it
is also interesting to incorporate and combine the conventional
wisdom of established MR perturbation theories. To this end,
we will closely follow the approach taken by CASPT2.4,5 This
perturbation scheme is therefore called SUPT2, and it is based
upon the spin-average generalized Fock operator

∑̂ = ̂ + ̂α
α

β
βF f a a( )

PQ
PQ Q

P
Q
P

(40)

where the generalized Fock matrix f is given in the same
manner as in CASPT2, i.e., through the 1RDM D of the
reference wave function,

Ä

Ç
ÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑ∑= + ⟨ | ⟩ − ⟨ | ⟩f h D PR QS PR SQ

1
2PQ PQ

RS
SR

(41)

Then, a zeroth-order Hamiltonian may be defined as

̂ = ̂ ̂ ̂ + ̂ ̂ ̂H F F0 0 0 0 0 (42)

The important point here is that [F̂, P̂] = 0, which allows for
the desired eigenvalue equation,

̂ |̂Φ ⟩ = |̂Φ ⟩H P E P0 0 0 0 (43)

where the zeroth-order energy is

∑= ⟨Φ | ̂ |̂Φ ⟩ =E FP f D
PQ

PQ QP0 0 0
(44)

Using ̂ ̂ ≡ ̂H E0 0 0 0, it is easy to show that the A matrix in
eq 29 is

= − − −

− −
μν μν μν μ ν ν

μ μ ν

A F E S S F E S

F E S S

( ) ( )

( )

SUPT2
0 0 0 0 0

0 0 0 0 (45)

with the projected matrix elements

= ⟨Φ | ̂ |̂Φ ⟩μν μ νF FP (46)

= ⟨Φ | |̂Φ ⟩μν μ νS P (47)

which can be straightforwardly evaluated.
2.5. SUPT2 with a Shift Operator. In our preliminary

calculations, it was found that SUPT2 suffers from intruder
states. This happens whenever some eigenvalues of Ĥ0 in the
orthonormal space, in which the overlap metric is diagonal, are
nearly degenerate with E0. The so-called intruder state problem
is notoriously common in CASPT2, especially if the active
space is small, and the de facto standard for ameliorating this
issue is to shift the zeroth-order Hamiltonian by a real constant
ϵ:33

̂ → ̂ + ϵ ̂H H0 0 0 (48)

A typical choice for ϵ in CASPT2 is 0.2−0.3 hartree (EH). It is
also straightforward to use the above level-shifted Ĥ0 for
SUPT2. E2 of the real-shifted SUPT2 (rSUPT2) is under-
estimated because of the positive shift ϵ, but this is usually
corrected by using the Hylleraas functional (eq 30) instead:

ψ ψ= − ϵ⟨ | ⟩ErSUPT2
2 1 1 (49)

As will be shown below, such a level shift mitigates the ill-
behaved energy profiles of SUPT2. However, a real level shift
merely moves the positions of singularities as the eigenvalues
are likely to continuously change between negative and
positive values when moving along a potential surface.
Therefore, there is always a chance for divergence because
the shifted eigenvalues can still be accidentally close to E0.
Prior to calculations, one does not know how large ϵ should be
to guarantee that all eigenvalues are above E0. Also, the level-
shift corrected energy (eq 49) is not stationary with respect to
the amplitudes, and its derivative requires appropriate
Lagrange multipliers. One could simply use the uncorrected
E2, but it increasingly deteriorates with larger ϵ.
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It is more appealing to use an imaginary level shift iϵ, which
completely removes the singularities at the cost of a slight
distortion in the potential surface.34 With an imaginary level
shift, the poles are shifted toward the imaginary axis and never
appear on the real axis, on which one evaluates the energy.
Another advantage of the imaginary level shift is that, away
from the poles, the energy change induced by iϵ is much
smaller than that with the real level shift ϵ.32,34 However, a
disadvantage is that applying an imaginary shift to SUPT2 is
not as straightforward because the original implementation for
CASPT2 assumes an orthonormal basis, which is not tractable
to compute in SUPT2. Below, we therefore formulate an
imaginary level shift scheme in a slightly different way.
Suppose that we have successfully diagonalized the A matrix

(which we never do in practice) and have obtained eigenvalues

∑ = Δ
ν

μν νμ μ μμ∼ ∼ ∼A U U
SD

(50)

Note that in solving eq 50, linearly dependent solutions are
discarded. Also, note that exactly the same redundancy is
shared by vμ. The unitary matrix U transforms {|Φμ⟩} to
{|Φ̃μ̃⟩} with

∑|Φ∼ ⟩ = |Φ ⟩μ
μ

μ μμ∼ ∼U
SD

(51)

which thus gives the following diagonal representation:

δ⟨Φ∼ | ̂ ̂ ̂ − ̂ |̂Φ∼ ⟩ = Δμ ν μ μ ν∼ ∼ ∼ ∼∼P H E P( )0 0 0 0 (52)

Importantly, the projected basis { ̂ |̂Φ∼ ⟩}μ∼P0 is not orthonor-
mal. In other words, we skip the orthogonalization step
employed in CASPT2 and direct ly diagona l i ze

̂ ̂ ̂ − ̂ ̂P H E P( )0 0 0 0 as a whole.
The amplitudes Tμ̃ in this diagonal basis are simply given by

= −
Δμ

μ

μ
∼

∼

∼
T

V

(53)

where

∑= ⟨Φ∼ | ̂ ̂ ̂ |̂Φ ⟩ = *μ μ
μ

μμ μ∼ ∼ ∼V P HP U v0 0
(54)

Nearly zero Δμ̃ (those not caused by the linear dependency)
obviously gives rise to a divergence in the amplitudes and thus
in the second-order energy. In the proposed imaginary-shifted
SUPT2 (iSUPT2), the denominator is directly regularized by
iϵ instead of changing the zeroth-order Hamiltonian like in eq
48

→ −
⟨Φ∼ | ̂ ̂ ̂ |̂Φ ⟩

Δ + ϵμ
μ

μ
∼

∼

∼
T

P HP

i
0 0

(55)

where only the real part is used for the evaluation of the
second-order energy in order to avoid complex algebra.
Namely, our imaginary-shifted amplitudes are def ined as

≡ −
⟨Φ∼ | ̂ ̂ ̂ |̂Φ ⟩Δ

Δ + ϵμ
μ μ

μ
∼

∼ ∼

∼

P HP0 0
2 2

(56)

which are apparently singularity-free. To obtain the working
amplitude equation, we back-transform eq 56 using eqs 50 and
51 to get

∑ ∑+ + ϵ =
λν

μλ λν ν
ν

μν ν μA A t A v t 02

(57)

where we have used the unitarity of U. The iSUPT2 energy is
obtained by substituting the converged t into the Hylleraas
functional. Again, such an energy is not stationary with respect
to the amplitudes. The equation is quadratic in A, but this can
be easily handled by forming Ax twice, i.e., At followed by
A(At+v). Hence, the computational cost is doubled, which is
still much better than diagonalizing the entire matrix to
compute Δμ̃ explicitly.
We should stress that the above approach is different from

the use of the modified zeroth-order Hamiltonian ̂ + ϵ ̂H i0 0.
The former is deemed to be more beneficial because it does
not require the diagonalization of the overlap matrix to obtain
an orthonormal basis whereas the latter does. Nonetheless, this
difference results in a very minor change in the final energy in
our experience.
Finally, we note that EMP2 is almost always free from the

intruder state problem because A is thought of as an
approximation of the ECISD Hamiltonian, neglecting two-
particle-like operator ̂ . Hence, if the ground state is
represented well by the reference SUHF at zeroth order,
then the eigenvalues of A are expected to always be positive
except for those resulting from redundancies.

3. COMPUTATIONAL DETAILS
In this section, we describe computational details. Symmetry-
projected calculations were performed with the GELLAN suite
of programs,44 and SR (MP2, CCSD, and CCSD(T)) and
CASPT2 calculations were carried out with Gaussian45 and
Molpro,46 respectively. Since we deal with unrestricted
determinants (i.e., eigenstates of Ŝz), the integrations of α
and γ can be performed analytically.11,22 Hence, all calculations
presented used Ng = 4 grid points only for the β rotations,
which was found to be sufficient for obtaining numerically
exact ⟨Ŝ2⟩. Spatial symmetry is ensured by performing one-shot
symmetry projection. For triplet calculations, typically high-
spin states are found to be slightly more favorable than low-
spin states, although the difference is usually negligible. In
some cases, they cannot represent the correct spatial
symmetry, and low-spin states are therefore used.
In EMP2 and SUPT2, we often employ the frozen core

approximation, where core electrons are not correlated. This
can be achieved by constrained SUHF (cSUHF),22,47,48 where
natural orbitals with the largest occupation numbers are
obtained as doubly occupied closed-shell orbitals. To correctly
specify the desired doubly occupied orbitals in the energetical
order, we then form the generalized Fock matrix and
diagonalize only in this closed-shell space. Note that the
generalized Brillouin theorem is no longer satisfied for these
orbitals, so single excitations are included in the evaluation of
the second-order energy.
The linear equations of EMP2 and SUPT2 are solved with

the direct inversion of iterative subspace (DIIS).49,50 In each
iteration, the computational complexity scales as N N N( )g o

2
v

3 ,
where No and Nv are the numbers of occupied and virtual
orbitals, respectively. Currently, we simply use diagonal
elements for preconditioning, although this is not an optimal
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choice. Therefore, the DIIS convergence is somewhat slow
with the present implementation. Nevertheless, other pre-
conditioning schemes are available to improve the convergence
behavior,24 and we will test and report their performances in a
separate paper.

4. ILLUSTRATIVE CALCULATIONS
4.1. Single-Bond Dissociation: HF. We use the HF

molecule as our first test case. The 6-31G basis set is used,51

and the F 1s orbital is frozen. Figure 1 shows the energy

differences of several methods against FCI. As is well known,
UMP2 gives a sharp derivative discontinuity at the Coulson−
Fischer point, where a HF determinant breaks the spin
symmetry. Passing this point, broken-symmetry UMP2 gives a
substantial error and becomes completely unreliable. Interest-
ingly, EMP2 and EMP2(0) are very similar in energy to each
other, showing almost no improvement of the former. This
similarity is also seen in many other cases, indicating that the

broken-symmetry Fock matrix already well represents ̃Ĥ0 used
in EMP2. Still, in general, EMP2(0) gains more correlation
energy around the equilibrium bond length (ca. 0.95 Å), while
both EMP2(0) and EMP2 tend to become less accurate when
a molecule is stretched. Therefore, overall, the potential energy
curve of EMP2 is more parallel to FCI. As a matter of fact, the
nonparallelity error (NPE), which is defined as the difference
between the maximum and minimum errors from FCI, is 2.7
mEH for EMP2 and 5.0 mEH for EMP2(0).
Although EMP2 and EMP2(0) both outperform SUHF,

whose NPE is 13.8 mEH, their improvements are not
impressive given that CASPT2 with the minimal active space
of (2e, 2o) for single-bond breaking is even more accurate with
an NPE of 1.2 mEH. Because CASSCF (2e, 2o) is a subset of
SUHF,22,48 it is expected that a PT2 from SUHF is comparable
to or better than CASPT2 (2e, 2o). This is indeed the case for
SUPT2, which gives fewer errors along the dissociation path.
Although the SUPT2 curve looks encouraging, it turns out to
be discontinuous at approximately 2.05 Å. To inspect the
sudden change in energy, the eigenvalues Δμ̃ of A are plotted
in Figure 2. As can clearly be seen, one of the eigenvalues
becomes negative at the said point, responsible for the
divergence in the second-order energy. It is noteworthy that
a negative denominator (Δμ̃ < 0) itself does not cause any
problem but an eigenvalue crossing zero is what is at stake.
The characteristic of this nearly zero eigenvalue is different

from that of other essential zero eigenvalues, which are caused
by redundancies and can be easily removed because the
corresponding Vμ̃ values are also exactly zero in eq 53.
Since CASPT2 (2e, 2o) does not show such a divergence for

this simple molecule, it is most likely that the intruder state in
SUPT2 corresponds to fully internal excitations (ones within
the active space) in CASPT2. In this sense, the intruder state
problem seems more severe in SUPT2 than in CASPT2
because we never distinguish excitation classes in the former.
To remove this intruder state from SUPT2, either a real level
shift of ϵ ≈ 0.2EH or an imaginary level shift was required;
otherwise, the energy divergence persists. In passing, as
mentioned above, neither EMP2(0) nor EMP2 suffers from
intruder states. Although the performance of SUPT2 is
relatively satisfactory when the amplitudes are stable, the
intruder state problem is a significantly unfavorable feature. In
the next section, we will investigate this problem in more detail
and show that the imaginary shift scheme appears to be the
best compromise.

4.2. Multiple Bond Dissociation: H2O and N2. In this
section, we focus on the symmetric dissociation of H2O and
the triple-bond breaking of N2 as more complicated cases.
Again, we use the 6-31G basis set and freeze the 1s orbitals of
O and N as in the previous section.
In Figure 3, the energy error against FCI is plotted every

0.01 Å from RO−H = 0.8 to 3.0 Å for the symmetric dissociation
of H2O. Most of the conclusions we drew in the previous
section still hold here. The second-order energies computed
with EMP2 and EMP2(0) are basically the same, but the latter
is slightly larger at short bond lengths. Clearly, there are many
more intruder states in SUPT2 compared to the case of the HF

Figure 1. Energy difference E − EFCI in mEH for several perturbation
schemes in the HF potential energy curve computed with the 6-31G
basis.

Figure 2. Eigenvalues Δμ̃ of A for HF in SUPT2.

Figure 3. The same as for Figure 1 but for H2O.
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molecule, making its potential curve very unstable. Again, they
can be understood as a divergence in amplitudes. To see this,
the eigenvalue profile of A in SUPT2 for H2O is plotted in
Figure 4. Note that the discontinuous positions of SUPT2 in
Figure 3 exactly correspond to the points where one of Δμ̃

crosses zero in Figure 4.

At this point, a remedy is indispensable to obtaining
meaningful potential curves with SUPT2. We have tested real
and imaginary level shifts with ϵ = 0.1EH, 0.2EH, 0.3EH, and
0.4EH to alleviate the ill-behaved potential curve, and Figure 5

shows their energy differences from FCI, where the level-shift
corrected energy is evaluated according to eq 30. As expected,
introducing a real level shift tends to quench the singularities as
ϵ becomes larger, and it appears that ϵ = 0.3 is sufficient to
obtain a smooth curve for the present case. The second-order
energy becomes slightly less accurate with ϵ, but this happens
to a similar extent at all bond distances. In Table 1, we have
tabulated the NPEs for the H2O curves computed with the
uncorrected and corrected second-order energies, E2 and
(eqs 24 and 30). The level-shift correction is essential to
retaining the qualitative results of rSUPT2. As such, we will
report only the level-shift corrected energy below, if not
mentioned otherwise. However, for ϵ = 0.1 and 0.2, the use of

does not cure the intruder state problem at all, and the
divergent behavior is often amplified because ⟨ψ1|ψ1⟩ ≫ 1.
Unfortunately, it is not possible to estimate a value that

removes all singularities in potential energy surfaces a priori;
therefore, a trial-and-error approach is required.
In this regard, the imaginary shift scheme is more promising.

It can be shown that, away from the singularities, the energy

error induced by real ϵ is on the order of ϵ
Δμ∼( ) for Δμ̃ ≫ 1,

whereas that for imaginary iϵ is ϵ
Δμ∼( )

4

.32,34,52 Furthermore, the

imaginary level shift is singularity-free. All of these features are
illustrated in Figure 5, where the results for iϵ = 0.1i, 0.2i, 0.3i,
and 0.4i are all continuous and smooth. The energy error does
not grow with an increase in ϵ as significantly as for the real
shift. As a result, NPEs are all reasonable for different iϵ values
with iSUPT2 (Table 1). Still, as can be seen, ϵ should not be
too small or too large in the imaginary shift scheme, and the
recommended value range is iϵ = 0.3i−0.5i.
Now we turn our attention to N2. This molecule is more

challenging than HF and H2O and has been used to
benchmark several MR methods.21,34,53−56 The upper panel
of Figure 6 shows the potential energy curves computed by

Figure 4. The same as for Figure 2 but for H2O.

Figure 5. Energy difference E − EFCI in mEH for several level-shift
values in the symmetric dissociation of H2O. Red curves are real
shifts, and blue curves are imaginary shifts. The second-order energy
is corrected with eq 30.

Table 1. NPEs of Level-Shifted SUPT2 for the Symmetric
Dissociation of H2O (mEH)

uncorrected E2 corrected

ϵ/EH real imag. real imag.

0.1 a 4.6 a 5.2
0.2 a 4.3 a 4.6
0.3 9.7 4.6 5.3 4.2
0.4 11.1 5.0 5.9 4.1
0.5 12.4 5.6 6.4 4.2
0.6 13.6 6.1 7.0 4.3

aDiverged.

Figure 6. (Upper panel) Potential energy curves of N2 computed with
several methods using the 6-31G basis. (Lower panel) Energy error
from FCI.
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FCI and different PT2 schemes, where we have used an active
space of (6e, 6o) for CASPT2 and employed ϵ = 0.3, 0.4 and iϵ
= 0.4i for the level shift in SUPT2. We omit EMP2(0) because
its energy is almost identical to that of EMP2. For the real-
shifted SUPT2, ϵ = 0.4 is needed to remove all singularities.
Therefore, with a real shift of ϵ = 0.3, SUPT2 produces
pronounced peaks. Once an appropriate value is used to
eliminate singularities, real- and imaginary-shifted SUPT2 are
similar in performance, and their potential energy curves are
almost indistinguishable from each other. In the lower panel of
Figure 6, we have plotted the energy differences from FCI for
N2. For ϵ = 0.4 and iϵ = 0.4i, the errors of SUPT2 in
considerably smaller than those in EMP2. The correlation
energies obtained with these level shifts are akin to those of
CASPT2, giving a satisfactory description of triple-bond
breaking.
Finally, we close this section by summarizing the NPEs of

HF, H2O, and N2 for each method with 6-31G in Table 2.
From the table, the remarkable strength of SUPT2 should be
clear; although it requires a proper treatment of singularities,
the level-shifted SUPT2 rivals CASPT2 in accuracy. For N2,
SUPT2 even outperforms ECISD at only a fractional
computational cost, indicating its potential. In particular,
iSUPT2 is more advantageous than rSUPT2 in that it is
capable of removing all singularities independently of ϵ.
4.3. Spectroscopic Constants of N2. While we have seen

that both EMP2 and SUPT2 can treat both static and
dynamical correlation effects reasonably well and can describe
molecular dissociations, it is also important for them to be able
to predict molecular properties, such as spectroscopic
constants. For this purpose, we continue to use the N2
molecule as the test system. We employed the aug-cc-pVQZ
basis57 to compute the equilibrium bond length Re, vibrational
frequency ωe, and dissociation energy De and compared the
results with experiments.58 Although De is calculated by the
supermolecular approach (i.e., De = E[100 Å] − E[Re]), the
size-consistency errors (E[100 Å] − 2E[atom] where quartet
spin-projection is performed for atoms) are less than 0.02 kcal/
mol for all methods. The almost negligible size-consistency
errors might come as a surprise but are attributed to the
character of the underlying broken-symmetry UHF determi-
nant |Φ0⟩ at the dissociation limit, which is a mixture of singlet,
triplet, quintet, and septet, all nearly degenerate in energy.
Since UHF is known to be size-consistent for the N2
dissociation into two quartet atoms, which have almost no
spin contamination, the singlet SUHF energy is naturally very
close to the sum of the septet spin-projected atoms. This is
how SUHF breaks valence bonds in general.
As shown in Table 3, as expected, CCSD(T) is most

accurate and achieves “chemical accuracy” for all constants.59

Although MP2 shows improvements over HF, it turns out that
it overestimates the correlation energy (E[Re] =
−109.39369EH), as is evident from the CCSD energy (E[Re]
= −109.38684EH). Consequently, the equilibrium bond length

and dissociation energy are also overestimated by 0.013 Å and
8.1 kcal/mol, respectively. The vibrational frequency ωe is
largely underestimated by 137 cm−1. From these results, it is
concluded that the MP2 level of theory is insufficient to
describe the equilibrium of N2.
It is found that both SUHF and CASSCF (6e, 6o) yield

results far better than those of HF, indicating that it is quite
advantageous to treat N2 with a multideterminant wave
function, even at equilibrium. SUHF is still less accurate
than CASSCF (6e, 6o) because it lacks some dynamical
correlation within the incomplete active space. This fact is
directly reflected in their energy difference, which is more than
60 mEH. However, SUPT2’s ability to treat fully internal
excitations means that it is able to capture the missing
dynamical correlation at zeroth order; with a level shift of 0.4i,
SUPT2 delivers a total energy very similar to that of CASPT2.
The computed spectroscopic constants are in excellent
agreement between these methods. They also resemble
CCSD, although ωe predicted by CCSD is inferior to those
by predicted by iSUPT2 and CASPT2 (6e, 6o). We find that
rSUPT2 with ϵ = 0.25 also gives almost the same results as
these methods, including the total energy; however, its
potential curve contains a few singularities, rendering its
applicability somewhat questionable.
EMP2(0) and EMP2 produce smaller correlation energies at

equilibrium than SUPT2 and CASPT2, by ca. 10mEH;
however, at the dissociation limit, their energies are even
more underestimated, and the computed De’s therefore happen
to be in better agreement with the experimental value.
Nonetheless, it is clear that their descriptions are not
satisfactory for Re, which show almost no improvement over
SUHF. The computed ωe are even worse than that of SUHF.
Overall, SUPT2 with an appropriate level shift prevails over
EMP2(0) and EMP2 in predicting the spectroscopic constants
of N2.

4.4. Singlet−Triplet Splitting Energies. Excitation
energy is an important quantity. There are approaches to

Table 2. Comparison of Several Methods for NPEs of HF, H2O, and N2 with Respect to FCI (mEH)

UMP2 CASPT2a SUHF EMP2(0) EMP2 rSUPT2b iSUPT2c ECISD

HF 39.3 1.2 13.8 5.0 2.7 1.1 1.1 0.9
H2O 66.2 2.6 67.9 14.7 12.8 5.3 4.1 3.8
N2 100.2 6.9 104.1 38.0 35.1 8.0 8.2 15.6

aActive space: (2e, 2o) for HF, (6e, 5o) for H2O, and (6e, 6o) for N2.
bLevel-shift values: 0.2, 0.3, and 0.4 for HF, H2O, and N2, respectively.

cLevel-
shift value: 0.4i for all molecules.

Table 3. Spectroscopic Constants of N2 Computed with the
aug-cc-pVQZ Basis Set

method Re/Å ωe/cm
−1 De/kcal mol−1 E[Re]/EH

HF 1.066 2729 122.0 −108.99493
MP2 1.111 2202 236.5 −109.39369
CCSD 1.093 2434 214.4 −109.38684
CCSD(T) 1.100 2355 223.5 −109.40724
SUHF 1.090 2410 159.1 −109.06489
EMP2(0) 1.090 2471 223.4 −109.37420
EMP2 1.092 2453 222.4 −109.37291
rSUPT2 (0.25) 1.102 2330 214.5 −109.38428
iSUPT2 (0.4) 1.102 2317 214.5 −109.38589
CASSCF (6e, 6o) 1.102 2351 205.4 −109.12770
CASPT2 (6e, 6o) 1.101 2334 215.1 −109.38520
exp 1.098 2359 228.4
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treating excited states based on the PHF framework, such as
linear-response theory20 and nonorthogonal CI.60 However,
since our PT2 methods are currently formulated in a state-
specific way, it is not straightforward to apply them to excited
states. Having said that, it is relatively easy to calculate the
lowest state of a given spin symmetry.
Recently, Rivero et al. benchmarked singlet−triplet splitting

energies with several PHF methods, including SUHF.61 They
showed that while SUHF’s results are reasonable, further
improvements can be achieved by breaking and restoring a
variety of other symmetries, such as Ŝz. This means that a
balanced treatment of static and dynamical correlation effects
is important for predicting accurate singlet−triplet gaps.
Hence, it is interesting to ask how much advantage our
second-order perturbation theories bring about in computing
this quantity.
4.4.1. Atoms and Diatomic Molecules. We first compute

the ST splitting energies of atoms (C, O, and Si) and diatomic
molecules (NH, OH+, O2, and NF). We use the aug-cc-pVQZ
basis and the experimental geometries for the molecules.62 All
electrons are correlated in our calculations. For these atoms,
the ground state is a triplet 3P state, whereas the lowest singlet
state is 1D. For the molecules, we compute the adiabatic
excitation energies of 3Σ → 1Δ. The biradical nature of these
systems poses a challenge for SR methods because their singlet
states are qualitatively represented by two determinants,
meaning very demanding triples are required for quantitative
accuracy. Consequently, standard post-HF methods, such as
MP2 and CCSD, significantly overestimate the ST gaps.19

Table 4 presents the calculated ST gaps together with the
mean errors (MEs) and mean absolute errors (MAEs) against
the experimental values. We have used two active spaces for
CASPT2: (2e, 2o) and full-valence (FV) spaces. The former is
the minimum space required to treat (two-determinant)
biradical systems, and triplet states are simply a single
determinant of restricted open-shell HF. From the table, it is
immediately clear that this small active space is not sufficient
for the ST gap of O2; the predicted value is 15.4 kcal/mol, and
the error against the experimental value (22.6 kcal/mol) is 7.2
kcal/mol. The rather large error is ascribed to the fact that
both singlet and triplet states are overly correlated in this
system with CASPT2 (2e, 2o). This imbalance was not fixed by
a level shift; CASPT2 (2e, 2o) with ϵ = 0.25 still gave an ST
gap of 15.8 kcal/mol. On the other hand, CASPT2 with full-
valence active space (12e, 8o) yields an excellent result of 22.8
kcal/mol. Overall, the MAE of FV-CASPT2 is 0.6 kcal/mol,
whereas that of CASPT2 (2e, 2o) is 1.6 kcal/mol. However, it
is apparent that it might not always be feasible to employ a full-
valence active space. It is important to select active orbitals that
are physically relevant, but they depend on various factors such

as geometry and chemical reactions in question. After all, it still
remains difficult to construct an appropriate active space,
although many authors have suggested practical ways to ease
this task.63−68

SUHF does not usually require an active space to be chosen
(except for the specification of core orbitals) and is therefore
more flexible in this sense. For these rather simple examples,
we found that all PT2 schemes based on SUHF delivered
similarly accurate descriptions. The difference between
EMP2(0) and EMP2 is almost negligible, as was seen in the
previous sections, and both achieved accuracies similar to that
of FV-CASPT2. The maximum errors were obtained for O2,
but they are less than those of CASPT2 (2e, 2o): +2.6 and +2.3
kcal/mol for EMP2(0) and EMP2, respectively. The chief
difference between SUHF and CASSCF (2e, 2o) in this system
is that the antibonding πg orbitals are fractionally occupied in
the former. The natural occupation numbers of SUHF are
0.012 and 0.031 for the singlet and triplet, respectively,
implying that there is some contribution to the static
correlation that the minimum active space was not able to
capture in CASSCF (2e, 2o).
For the tested systems, the SUPT2 amplitudes are stable

without a level shift, and we can thus investigate the accuracy
that the original SUPT2 potentially has to offer. For
comparison, we have carried out SUPT2 calculations with
three different level-shift conditions: ϵ = 0, 0.25 and iϵ = 0.4i.
As can be seen from Table 4, SUPT2 without a level shift
provides results as accurate as EMP2. Evidently, the accuracy
of SUPT2 is almost unchanged when a level shift is introduced.
The energy deviation caused by a level shift occurs in a
balanced manner between singlet and triplet states (less than a
few mEH in all cases) such that the influence on the calculated
excitation energy is negligible.
Overall, both EMP2 and SUPT2 can successfully predict the

ST gaps for the systems tested here, while CASPT2 is also
accurate if the active space is properly chosen. However, for
more complicated systems, EMP2 and SUPT2 show different
trends, as will be demonstrated below.

4.4.2. Transition-Metal Complexes. Transition-metal com-
plexes are challenging not only for SR methods but also for
MRPT2 because the results typically depend on the choice of
active orbitals. Here, we report the results of our methods on
ferrocene Fe(C5H5)2 and [Fe(NO)(CO)3]

− and compare the
ST gaps with strongly contracted N-electron valence state PT2
(NEVPT2).71−73 The geometries were taken from refs 74 and
70, respectively. We used the cc-pVTZ basis set and froze the
1s orbitals of C, N, and O and the 1s, 2s, 2p, 3s, and 3p orbitals
of Fe in the PT2 calculations. Relativistic effects were not
accounted for in this study because it has been reported that
they do not significantly affect the results.68

Table 4. Computed Singlet−Triplet Gaps of Small Systems in kcal/mol

method C O Si NH OH+ O2 NF ME MAE

CASPT2 (2e, 2o) 29.1 45.5 17.5 36.5 49.8 15.4 32.0 −1.3 1.6
CASPT2 (FV) 29.1 45.5 17.4 37.0 50.2 22.8 32.2 −0.1 0.6
SUHF 22.3 38.7 8.3 32.7 45.2 26.0 31.6 −4.3 5.3
EMP2(0) 29.1 45.4 17.2 35.8 49.3 25.2 34.4 0.2 0.6
EMP2 29.1 45.3 17.3 35.7 49.1 24.9 33.9 0.1 0.7
SUPT2 29.7 46.2 17.8 36.7 50.5 24.3 34.1 0.6 0.7
rSUPT2 (0.25) 29.6 46.2 17.5 36.7 50.5 24.6 34.2 0.6 0.7
iSUPT2 (0.4) 29.7 46.2 17.6 36.8 50.5 24.2 34.2 0.6 0.6
exp 29.1 45.2 17.3 35.9 50.5 22.6 34.3
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For ferrocene, the singlet state is dominated by a single
configuration of Fe d6. The lowest triplet state is doubly
degenerate 3E1″, mainly characterized as the d−d transitions
from (dxy, dx2−y2) to (dxz, dyz).

75 Symmetry breaking and
restoration within SUHF results in a triplet state that is
dominantly 3E1″ but is slightly mixed with E2′ spatial symmetry.
We performed SUHF followed by spin-constrained SCF
calculations (cSUHF), where we optimized SUHF orbitals
such that the lowest 42 and 43 orbitals were doubly occupied
in the singlet and triplet states, respectively.
For complex anion [Fe(NO)(CO)3]

−, both the singlet
ground state and lowest triplet state (3A1) are strongly
correlated. A previous study indicated that the strong electron
correlation arises from two degenerate bonding and antibond-
ing orbital pairs, mainly composed of Fe d and NO π*.76 In
particular, the 3A1 state cannot be described by a single
determinant in principle. We used a low-spin representation of
SUHF to treat this triplet state. Constrained optimization was
conducted to yield 37 doubly occupied orbitals.
Table 5 lists the ST gaps computed with various methods.

As mentioned above, ferrocene may be reasonably treated with

SR methods.74,75 Indeed, although the predicted ST gap is
much too small at the mean-field HF level of theory (0.02 eV),
the MP2 dynamical correlation brings about significant
improvement, yielding 1.98 eV, which is in good agreement
with the experimental value of 1.74 eV.69 However, [Fe(NO)-
(CO)3]

− requires a multireference treatment, and we were not
able to obtain an ST gap with these methods.
Several active spaces were tested for CASSCF and NEVPT2

in ref 68, to which the reader is referred for more details about
the active spaces used. As can be seen, the NEVPT2 results are
mostly accurate, except for [Fe(NO)(CO)3]

− with (14e, 9o),
which results in a gap of 3.40 eV (the reference value of MRCI
+Q is 2.32 eV). This indicates the importance of selecting
appropriate active orbitals.
For mean-field theory, SUHF drastically improves the ST

gap of ferrocene on HF. We found that SUHF gains some
portion of dynamical correlation, especially in the singlet
ground state, resulting in a good opening of the ST gap (2.03
eV). However, as SUHF overestimates the gap by approx-
imately 1 eV for the [Fe(NO)(CO)3]

− complex, a balanced
description between static and dynamical correlations is
necessary. The dynamical correlation effects of EMP2 and

SUPT2 tend to close the gap of SUHF. This is in contrast with
the correlation effect of MP2 and NEVPT2, both of which
predict larger gaps than their zeroth-order treatments. For both
systems, EMP2 overcorrects the gap from SUHF, especially for
[Fe(NO)(CO)3]

−, where the gap is underestimated by more
than 1 eV. On the other hand, SUPT2 with an imaginary shift
of 0.4i offers accurate gaps compared to both SUHF and
EMP2. Its results are also comparable to those of the highly
sophisticated NEVPT2 approach. Finally, we have not tested
EMP2(0) and rSUPT2, but we expect their results to be
similar to those of EMP2 and iSUPT2, respectively.

4.5. Chromium Dimer. Describing the electronic structure
of Cr2 is notoriously challenging not only because it requires a
considerable amount of static correlation at equilibrium but
also because dynamical correlation plays a significant role. For
this reason, only by highly sophisticated methods can its
potential energy curve be computed with qualitative
accuracy.10,33,77−85 It is well known that the experimental
potential energy curve of Cr2 has a double-well structure;

86 the
first deep minimum corresponds to 3d−3d bonding, and the
shallow, shelf-like region is ascribed to the dissociation of the
4sσ bond. Therefore, it is critical for a zeroth-order reference
wave function to be capable of capturing these different
bonding effects.
Whether a method can describe such bonding effects is

ensured by computing natural occupation numbers. The left
and right panels of Figure 7 show the natural occupation

numbers of CASSCF (12e, 12o) and SUHF, respectively,
computed with cc-pVQZ as a function of bond length. In both
methods, the occupation numbers of the 4sσg and σu orbitals
slowly decay to one (which corresponds to bond dissociation),
while those of the 3d bonding and antibonding orbitals show a
rapid decay. Thus, SUHF gives a qualitatively correct
description. Seemingly, the 3d occupation numbers of SUHF
are more fractional (closer to one) than those of CASSCF at a
short distance. This is attributed to the dynamical correlation
effect captured within the CAS, which is mostly neglected in
SUHF. For instance, the SUHF energy at R = 1.6 Å is higher
than the CASSCF energy by 143 mEH, which is nevertheless
reasonable given the N2 case where SUHF misses a dynamical
correlation energy of 60 mEH (Section 4.3). Importantly, it is
expected that the fully internal excitations in post-SUHF
should exert their effectiveness for the missing dynamical
correlation. Hence, with an appropriate post-SUHF scheme,

Table 5. Lowest Singlet−Triplet Excitation Energies for
Transition-Metal Complexes (eV)

ferrocene [Fe(NO)(CO)3]
−

3E1″ 3A1

HF 0.02
MP2 1.98
CASSCFa 0.97b, 1.91c 2.27d, 1.76e, 2.44f

NEVPT2a 1.88b, 2.09c 2.63d, 3.40e, 2.43f

SUHF 2.03 3.30
EMP2 1.47 1.25
iSUPT2g 1.59 2.63
ref 1.74h 2.32i

aTaken from ref 68. bActive space of (10e, 7o). cActive space of (18e,
15o). dActive space of (10e, 8o). eActive space of (14e, 9o). fActive
space of (16e, 14o). gImaginary shift of 0.4i EH.

hExperimental value
from ref 69. iMRCI+Q with an active space of (14e, 9o), consisting of
Fe d orbitals and the NO π and π* orbitals.70

Figure 7. Natural occupation numbers of Cr2 with CASSCF (12e,
12o) (left) and SUHF (right).
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one can expect to obtain a qualitatively correct potential
energy curve of Cr2.
In Figure 8, the potential energy curves of Cr2 are plotted for

several methods using the cc-pVQZ basis set. Here, 3p and 3d

electrons are correlated, and no relativistic effect is taken into
account. For spin-projection methods, we used 18 doubly
occupied orbitals. As expected, the SUHF curve is dissociative,
meaning that a proper treatment of dynamical correlation is
indispensable. The results of UCCSD(T), EMP2, and ECISD
+Q are all disappointing, and they fail to predict the first
minimum. On the other hand, it is intriguing that, unlike
EMP2, the imaginary-shifted SUPT2 with iϵ = 0.4i accounts
for a large amount of dynamical correlation near the
experimental equilibrium bond length Re = 1.68 Å, producing
the global minimum. Although the predicted bond distance is
underestimated (Re = 1.60 Å), the double-well shape is well
captured, and the computed dissociation energy of De = 1.36
eV is also comparable to the experimental estimate of 1.45−
1.56 eV.10,87−89 For a more detailed comparison, it is highly
desirable to include the relativistic effect and to investigate the
convergence in basis set size, which we plan to report in future
work.
Finally, it is argued that CASPT2 (12e, 12o) is not sufficient

enough for Cr2, and an active space of (12e, 28o) is needed for
a quantitative description.10 The limitation of SUPT2 is that its
zeroth-order reference SUHF is not systematically improvable,
unlike CASSCF, and our SUPT2 results therefore certainly
cannot be made comparable to those of highly accurate
CASPT2 (12e, 28o). However, it is highly probable that the
use of spin-projected generalized HF (SGHF), in which further
symmetry breaking and restoration of Ŝz is carried out, will
bring significant improvements over SUPT2, and it is thus
interesting to pursue this direction in the future. In any case,
the above results for Cr2 clearly indicate the superiority of
SUPT2 compared to EMP2 and CI.

5. DISCUSSION
That EMP2 becomes inferior for more strongly correlated
systems is indicative of the fact that the excitations relevant to
entangled (most symmetry-broken) orbitals are not treated as
properly as in SUPT2. To investigate this implication, we have
carried out the energy decomposition analysis for EMP2 and
SUPT2 based on the double-excitation class. To this end, we
separate the SUHF natural orbital space into core (c), active
(a), and virtual (v) spaces using appropriate occupation-

number thresholds. Although the nonorthogonal nature of
these excitations may not allow for the rigorous quantification
of their contributions because one cannot completely separate
them in principle (especially if the Hylleraas functional is used
to evaluate the energy), it is helpful to point out, even roughly,
where the main difference between EMP2 and SUPT2 comes
from.
In cases where an SUHF wave function is a better ansatz

than that of CASSCF, SUPT2 is expected to offer more
accurate results than CASPT2. We have already seen this for
the HF molecule in Section 4.1 (CASSCF(2e, 2o) is a subset of
SUHF). In this system, there are two active orbitals, and the
energy contribution from the fully internal double excitation,
(a, a) → (a, a), is found to be negligible in both EMP2 and
SUPT2 as expected. The total energy difference of 2−4 mEH
between the two methods is mainly attributed to the following
two excitation classes: (c, a) → (v, a) and (c, a) → (v, v). For
other excitations, either the energy contribution is virtually
zero or EMP2 and SUPT2 show almost identical energy
contributions.
In general, the active space of SUHF is incomplete and is

thought of as an approximation to CAS. Therefore, the fully
internal excitations in EMP2 and SUPT2 should play a vital
role, perturbatively correcting the active space of SUHF. We
argue that such a correction can be valid if the character of the
SUHF active space is reasonably close to CAS. However,
whether the correction is accurate also depends on the choice
of the zeroth-order Hamiltonian. We found that, in most cases
such as N2, there is an appreciable difference between EMP2
and SUPT2 in the treatment of the fully internal excitations.
While these excitations capture a reasonable amount of
correlation effects in SUPT2 and offer an improved
approximation to CAS, they are not properly accounted for
in EMP2. Although the contributions of other excitations such
as (c, a) → (v, a) are also constantly underestimated in EMP2
compared to in SUPT2, they are relatively insignificant. The
different treatments of the perturbative correction within the
active space are the dominant contribution to the total energy
difference, and it is concluded that the rather inferior behavior
of EMP2 is attributed to the less accurate description of fully
internal excitations.

6. CONCLUSIONS
In this article, we described second-order perturbation schemes
with respect to spin-projected HF. The zeroth-order
Hamiltonian of EMP2 was prepared as the Fock-like
component of the projected Hamiltonian at each spin-rotation
angle, whereas SUPT2 employed the generalized Fock
operator constructed from the SUHF density matrix. The
latter method almost always suffers from the intruder state
problem, and we have discussed how one can remove
singularities in practice by applying the level shift approach,
especially with an imaginary shift value. These methods,
together with the previously developed PT2, EMP2(0), were
tested for several systems, including transition-metal com-
plexes. In general, the imaginary-shifted SUPT2 showed the
best performance. It yielded potential curves that are
reasonably parallel to those of FCI, and the computed
singlet−triplet gaps were in good agreement with experimental
values. We were also able to obtain a qualitative description of
the Cr2 molecule with SUPT2. On the other hand, the
description of the fully internal space in EMP2 is not
satisfactorily accurate for difficult cases, such as multiple

Figure 8. Potential energy curves of Cr2.
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bond dissociations and the spin gap of [Fe(NO)(CO)3]
−. We

therefore conclude that EMP2 is likely best for biradicaloid
systems and that SUPT2 stands as a preferable perturbative
correction to SUHF.
With the good performance of SUPT2 demonstrated in this

work, it is interesting to ask whether its accuracy still holds for
the prediction of molecular properties. Our initial results for
the spectroscopic constants of N2 are encouraging and support
the validity of the SUPT2 method for such calculations.
Computing molecular properties generally involves the relaxed
density matrix and thus the derivatives of the total energy.
Unfortunately, the level-shifted SUPT2 energy is not stationary
with respect to the amplitudes. However, it is expected that the
energy derivatives can be straightforwardly obtained by
constructing an appropriate Lagrangian.32,90 We are currently
working on this task.
To achieve further quantitative accuracy, SUPT2 can be

straightforwardly extended to SGPT2, second-order perturba-
tion theory with SGHF. It has been shown that SGHF fixes
many problems inherent in SUHF and produces more accurate
wave functions and energy.11,61 However, there are some
additional complications that have to be addressed carefully,
such as the treatment of the more general form of P̂ in SGHF11

as well as the convergence of linear equations (eq 27) with A
that is presumably dense in SGPT2.
Other important developments include the generalization of

our methods to excited states. In the present work, ground and
excited states were treated separately in a state-specific manner.
This clearly has a limitation in treating higher excited states
and quasi-degenerate states, for which a multistate formulation
is required. Because SUHF uses a single (broken-symmetry)
determinant, the single-particle picture is not completely lost.
Indeed, we have exploited this fact when constructing the first-
order wave function ansatz in this work. Hence, we are hopeful
that it is not difficult to extend our schemes to excited states by
combining with existing SR approaches, such as a second-order
perturbative correction on CIS.91
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