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Restricted open-shell Hartree–Fock �ROHF� theory is formulated as a projected self-consistent
unrestricted HF �UHF� model by mathematically constraining spin density eigenvalues. This
constrained UHF �CUHF� wave function is identical to that obtained from Roothaan’s effective
Fock operator. The � and � CUHF Fock operators are parameter-free and have eigenvalues �orbital
energies� that are physically meaningful as in UHF, except for eliminating spin contamination. This
new way of solving ROHF leads to orbitals that turn out to be identical to semicanonical orbitals.
The present approach removes ambiguities in ROHF orbital energies. © 2010 American Institute of
Physics. �doi:10.1063/1.3503173�

Restricted open-shell Hartree–Fock �ROHF� theory was
formulated by Roothaan some 50 years ago.1 A major draw-
back of this model is the lack of a unique effective Fock
operator.2 Even though the ROHF wave function and total
energy obtained from different coupling schemes are the
same, the resulting orbitals and orbital energies are different
and lead to post-ROHF results that generally depend on
them. The interpretation and physical picture emerging from
Roothaan’s open-shell theory have always been somewhat
blurry. Attempts to resolve these ambiguities, as well as
many paradoxes resulting from them, are well documented in
the literature.3–6

On the other hand, the physical picture of unrestricted
HF �UHF� is clear.7 It is a single-determinant wave function
with well-defined � and � orbital energies obeying Koop-
mans’ theorem. It is straightforward to use it in post-UHF
calculations by simply treating the � and � orbitals explicitly
and separately. The notorious problem in UHF, however, is
spin contamination: the wave function is not an eigenfunc-
tion of S2. This weakness is ubiquitous and a serious detri-
ment when bonds are stretched. If the UHF wave function
suffers from severe spin contamination, as is the case when
strong static correlation is present, then UHF is no longer a
good starting reference point for post-UHF treatments of cor-
relation or excited states. Once lost, good quantum numbers
are hard to recover, so when possible, it is preferable to use
ROHF as a starting point despite the ambiguities regarding
its associated Fock operator.

As a spin off of recent work on strong correlations,8,9 we
have realized that the UHF energy can be written as a func-
tional of the charge density matrix P= ���+��� /2 and the
spin density matrix M= ���−��� /2, where �� and �� are the
� and � density matrices, respectively. This connection turns
out to be enlightening for formulating ROHF as a con-
strained UHF �CUHF� theory. The resulting constrained
UHF scheme here presented leads to well-defined � and �
Fock operators with straightforward interpretation and no

spin contamination. The ROHF wave function, energy,
charge, and spin densities remain the same; only the ROHF
Fock operator is replaced by two UHF-like counterparts. As
shown in benchmarks below, the meaning of the resulting
orbitals and orbital energies is much more physical than in
Roothaan’s approach and provide a base for treatments of
electron correlation and excited states. At convergence of the
iterative procedure, the orbitals resulting from our optimiza-
tion procedure are the same as the semicanonical orbitals
previously proposed in the literature.10–12 Our results give
further justification to the use of these semicanonical orbit-
als.

Theory: The familiar energy expression in ROHF is

EROHF = 2�
i

f ihii + �
ij

f if j�2ai
j�ij�ij	 − bi

j�ij�ji	� , �1�

where hij are one-electron integrals, �ij �kl	 are two-electron
integrals in Dirac’s notation, ai

j and bi
j are the coupling coef-

ficients, and f i are the orbital occupations: 1 for core �doubly
occupied, c� and 0 for virtual �unoccupied, v� orbitals. In the
case of high-spin open-shell systems under consideration, a
=1, b=2, and f =1 /2 for open-shells orbitals �singly occu-
pied, o�. Roothaan’s effective Fock operator is defined as

FROHF = 
Rcc Fco
� Fcv

cs

Foc
� Roo Fov

�

Fvc
cs Fvo

� Rvv
� core�c�

open�o�
virtual�v� ,

�2�

where F� and F� are UHF � and � Fock matrices and Fcs

= �F�+F�� /2. At self-consistent field �SCF� convergence, all
off-diagonal FROHF terms become zero. The choice of the
diagonal elements in Eq. �2� is completely arbitrary within a
set of A and B coupling parameters,

Rcc = AccFcc
� + BccFcc

� , �3a�

Roo = AooFoo
� + BooFoo

� , �3b�a�Electronic mail: guscus@rice.edu.
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Rvv = AvvFvv
� + BvvFvv

� . �3c�

Different values for these parameters have been suggested in
the literature.2 Although they do not affect the ROHF wave
function and energy, they affect orbital energies whose
physical meaning is obscured because of this dependence.
Choices guided to determine “canonical” sets that satisfy
Koopmans’ theorem may result in violations to the aufbau
principle.4,6 In this paper, these problems are resolved by
abandoning the use of a single Fock operator. We will obtain
the ROHF wave function by projecting the UHF wave func-
tion self-consistently. Spin contamination in UHF is given
by9

�s = �S2	 − Sz�Sz + 1� = N� − Tr������ , �4�

where Sz= �N�−N�� /2 and N� ��=� ,�� is the number of �
electrons in the system. The previously proposed spin-
constrained UHF �SUHF� approach13 introduces a Lagrange
multiplier � in UHF to enforce �s=0. However, this is exact
only in the limit of �→�. In this limit, the effective SUHF
Fock matrices remain in the form of Eq. �2�.14 Recently,
Glushkov15 has suggested a similar approach. We here pro-
pose an alternative method based on restricting natural occu-
pations and spin density eigenvalues via finite Lagrange mul-
tipliers.

In UHF, the natural occupations n are eigenvalues of P;
they can be 0, 1, 1

2 , or appear in “corresponding pairs”
�n ,1−n�.16 This is a rigorous mathematical result following
from P being the half sum of two idempotent density
matrices.17 In high-spin systems, the number of 1

2 occupa-
tions is N�−N�=Ns �we assume N��N� always�. Note that
Tr P= �N�+N�� /2=Ne /2, where Ne is the number of elec-
trons. For clarity, we discuss below only the case where the
number of orbitals N is greater than Ne but our results hold
for N	Ne too. The UHF �� are block-diagonal in the NO
basis,

�� =

�1

�

�

�Ncp

�

1

0
� ,

�5�

�� =

�1

�

�

�Ncp

�

0

0
� ,

where Ncp is the number of corresponding pairs and

�i
� = � ni + mi

+ mi 1 − ni
, �i

� = � ni − mi

− mi 1 − ni
 , �6�

and mi=�ni−ni
2. The identity matrix in �� accounts for un-

paired electrons, traces to Ns, and is substituted by a corre-
sponding zero matrix in ��. The other zero matrix has di-

mension Nv=N−Ns−2Ncp and corresponds to virtual �n=0�
unpaired orbitals. In the NO basis, M is

M =

M1

�

MNcp

1

2
· 1

0

� , �7�

where, from Eq. �6�, Mi= ��i
�−�i

�� /2 is

Mi = � 0 mi

mi 0
 , �8�

which is traceless with eigenvalues 
mi. The full spectrum
of M also includes 1

2 and 0 eigenvalues, thus tracing to Ns /2.
Using the idempotency of �� and ��, we get

Tr������ =
Ne

2
− 2 Tr M2. �9�

Considering Eqs. �7� and �8�, it is evident that

Tr M2 = 2�
i

Ncp

mi
2 +

Ns

4
, �10�

and hence

�s = N� − Tr������ = 4�
i

Ncp

mi
2. �11�

This readily means that to eliminate spin contamination in
UHF all mi should be zero. Therefore, we propose to formu-
late ROHF as a constrained UHF scheme that enforces all mi

to be zero. From Eq. �6�, mi=0 implies that corresponding
pair occupations become constrained to values of 1 and 0,
thus effectively creating core �c� and virtual �v� orbital
blocks with multiple degeneracies within themselves. To en-
force these constraints, we introduce Lagrange multipliers �ij

and then write

ECUHF = EUHF + �
ij

��ijMij , �12�

where the prime on the summation restricts it to cv and vc
blocks. M is unconstrained in the oo block and zero in other
blocks. We next derive equations for �ij.

The UHF energy is normally written as a functional of
�� and ��. In our recent paper,9 we have shown that the
UHF energy expression can be alternatively written as a
functional of P and M,

EUHF = Ecs�P� + Ec�M� , �13a�

Ecs = 2�
ij

hijPij + �
ijkl

�2�ij�kl	 − �ij�lk	�PikPjl, �13b�

Ec = − �
ijkl

�ij�lk	MikMjl. �13c�

Ecs is the closed-shell type energy expression given in terms
of P, while Ec is a “correlation energy” given in terms of M.
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The derivatives of Ecs with respect to �� and �� yield the
usual closed-shell Fock matrix,

�Ecs

��ij
� =

�Ecs

��ij
� =

1

2

�Ecs

�Pij
� Fij

cs. �14�

On the other hand, the derivatives of Ec are

−
�Ec

��ij
� =

�Ec

��ij
� = �

kl

�ik�lj	Mkl � �ij
UHF. �15�

Hence,

F� = Fcs − �UHF, �16a�

F� = Fcs + �UHF, �16b�

which are the usual UHF Fock matrices. Now, the CUHF
Fock matrices additionally require the derivatives of the con-
straints in Eq. �12� with respect to �� and ��, which are
trivially �ij /2 and −�ij /2, respectively. Defining �CUHF as

�ij
CUHF ���ij

UHF −
�ij

2
if�i � c ∧ j � v�

or�i � v ∧ j � c�
�ij

UHF otherwise
� �17�

yields the CUHF � and � Fock matrices,

F̃� = Fcs − �CUHF, �18a�

F̃� = Fcs + �CUHF. �18b�

The CUHF equations to solve are �F̃a ,���=0 and �F̃� ,���
=0. Subtracting these two SCF conditions and dividing it by
2 yields

FcsM − MFcs − �CUHFP + P�CUHF = 0. �19�

Partitioning these matrices into core, open, and virtual blocks
gives

Fco
cs + �co

CUHF = F̃co
� = 0, �20a�

Fvo
cs − �vo

CUHF = F̃vo
� = 0, �20b�

�cv
CUHF = 0, �20c�

where we have used Pcc=1, Pvv=Pcv=Pco=Pvo=0, and
Poo=Moo= 1

21. Together with Eq. �17�, Eq. �20c� implies that
�cv=2�cv

UHF at convergence. During the iterative procedure,
we choose this same value for �cv because it reduces
�s at each SCF cycle. Note that Eqs. �20� yield the SCF
conditions for Roothaan’s ROHF. Finally, our CUHF � and
� Fock matrices are

F̃� = 
Fcc
� Fco

� Fcv
cs

Foc
� Foo

� Fov
�

Fvc
cs Fvo

� Fvv
� � F̃� = 
Fcc

� Fco
� Fcv

cs

Foc
� Foo

� Fov
�

Fvc
cs Fvo

� Fvv
� � . �21�

These CUHF Fock matrices are different from the UHF ones
only in the cv and vc blocks and are different from
Roothaan’s effective Fock matrix of Eq. �2�. Our CUHF pro-
cedure yielding ROHF is surprisingly straightforward: one

simply performs UHF with Fock matrices replaced by Eqs.
�21�. These Fock matrices eliminate ambiguities arising in
ROHF theory and produce a more physical UHF-like picture.
In open-shell molecules, � and � electrons feel different po-

tentials; our F̃� and F̃� operators are different from each
other and yield � orbitals different from � orbitals that are
true “canonical orbitals” obtained by diagonalization. How-
ever, unlike UHF, they have no spin contamination, which is
removed by Lagrangian constraints. Their eigenvalues i

� are
physical orbital energies in the sense that they are associated
with individual � and � orbitals, satisfy Koopmans’ theorem,
and the aufbau principle,18 as opposed to many ROHF ca-
nonicalizations of Eq. �2�.6 As mentioned above, the CUHF
orbitals have previously been proposed in the literature as
semicanonical orbitals for MP2.11,12 Our present work shows
that the Fock matrices for which these orbitals are eigenfunc-
tions appear naturally from a constrained UHF optimization
that eliminates spin contamination.

Results: We have implemented CUHF in the Gaussian
suite of programs19 and verified that our procedure converges
to the ROHF energy. Unlike many ROHF schemes, CUHF
presented no issues with SCF convergence in a large set of
benchmark cases.20 This is undoubtedly related to the obser-
vance of the aufbau principle in our method. Since Koop-
mans’ theorem is valid for CUHF,12 orbital energies approxi-
mate ionization potentials �IPs� and electron affinities. In
Table I we summarize the mean �ME� and mean absolute
errors �MAE� of first IPs estimated via highest occupied mo-
lecular orbital �HOMO� energies �HOMO� for 24 open-shell
compounds selected from the G2 set.21 Molecular geometries
are optimized with B3LYP/6–31G�2df,p�. CUHF results with
a 6-311++G�3df,3pd� basis are compared to UHF and the
default ROHF implementation in Gaussian �parameters of
McWeeny and Diercksen,22 denoted as MD�. In all systems,
the CUHF HOMO captures the right physics yielding IPs
comparable to those of UHF yet preserving the correct �S2	
expectation value.

We have compared our CUHF orbital energies with
those obtained by Eq. �2� with parameters recently suggested
by Plakhutin et al.2 and Davidson and Plakhutin.5 These pa-
rametrizations are chosen to obey Koopmans’ theorem. How-
ever, both schemes usually yield poor SCF convergence.20

Therefore, as a simple remedy to obtain Plakhutin–Gorelik–
Breslavskaya �PGB� and Davidson–Plakhutin �DP� results in
this paper, we have used the converged ROHF wave function
and then diagonalized Eq. �2� with PGB and DP parameters
in a single shot. The eigenvalues thus obtained are identical
to those from the self-consistent PGB and DP schemes. For
most systems, CUHF gives first IPs very similar to PGB.20 In

TABLE I. Mean and mean absolute errors of ionization potentials �−HOMO

in eV� of 24 open-shell systems �Ref. 20�.

ROHF

CUHF UHFMD PGB

ME �7.38 0.57 0.54 0.68
MAE 7.38 0.64 0.61 0.71
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Table II, we present valence orbital energies for a model high
spin transition metal complex MnCl2�H2O�2 in C2v symme-
try. This is an example where ionization from closed shells is
easier than ionization from ROHF open-shells.23 CUHF
poses no convergence problems20 and the orbital energies are
in fair agreement with those of PGB and DP. Additional data
for O2 and NO2 are presented in the Supplementary
Material.20

Last, we present excitation energies of five small open-
shell molecules calculated with time-dependent HF �TDHF�
based on UHF and CUHF with a 6-311++G�3df,3pd� basis.
The bond-lengths for BeF and CO+ �not included in the G2
set� are 1.355 and 1.078 Å, respectively. For TD-CUHF, we
have used CUHF orbitals and orbital energies in the TD-
UHF procedure. Although this TD-CUHF scheme is not rig-

orous �one should calculate the linear response of F̃ instead
of F�, this simple approximation turns out to be quite reason-
able as shown in Table III. When UHF spin contamination
��s� is small, TD-UHF and TD-CUHF give very similar re-
sults. As �s becomes larger, however, TD-UHF greatly over-
estimates the excitation energies. On the other hand, by re-
taining a spin projected reference ��s=0�, TD-CUHF gives
more reasonable excitation energies outperforming TD-UHF
in spin contaminated situations.

In closing, we would like to make clear that the optimum
method for solving ROHF is unrelated to how the orbitals
will be used. The convergence method should be optimized
and then the orbitals can be transformed in many ways for
different purposes.
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MO

PGB+DP CUHF

� � � �

b2 �11.310 �11.079 �10.807 �11.079
a2 �11.415 �11.159 �10.909 �11.159
a1 �11.362 �11.168 �10.910 �11.168
b1 �11.327 �11.162 �11.195 �11.162
b2 �12.083 �11.676 �11.741 �11.676
a1 �13.112 �12.405 �11.684 �12.405

3dx2−y2
Mn

�15.748 �15.742
b1 �16.470 �16.319 �16.635 �16.319
3dyz

Mn �16.552 �17.262
a1 �16.613 �16.417 �17.728 �16.417
3dzx

Mn �16.658 �15.811
3dxy

Mn �16.701 �17.129

3dz2
Mn

�16.924 �17.095
a1 �18.942 �18.665 �19.257 �18.665

TABLE III. TDHF valence �V� and Rydberg �R� excitation energies �in eV�
of open-shell molecules. Numbers in parentheses are UHF spin contamina-
tion �s.

System State CUHF UHF Exptl.a

BeF V 2� 4.19 4.20 4.14
�0.001� R 2�+ 6.33 6.34 6.16

R 2�+ 6.54 6.54 6.27
BeH V 2� 2.64 2.69 2.48
�0.002� R 2� 6.25 6.26 6.32
CH3 R 2A1� 6.23 6.54 5.73
�0.012� R 2A2� 7.34 7.73 7.44
CO+ V 2� 4.84 6.93 3.26
�0.141� V 2�+ 9.81 11.10 5.82
CN V 2� 0.85 4.11 1.32
�0.397� V 2�+ 1.62 5.41 3.22
ME 0.41 1.43
MAE 0.81 1.44

aTaken from Ref. 24.
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