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We propose a method to locate the solutions to the self-consistent field (SCF) equations, using an

approach based upon metadynamics. We define a distance function between density matrices. Within an

SCF calculation, when a solution is found, a biasing potential based on distance from the solution is added

to the energy to avoid reconvergence to the same solution. Multiple solutions can therefore be relatively

easily found. Using this method we locate all known solutions and one unknown solution of the H4 model.

The set of restricted Hartree–Fock (RHF) solutions for the nitrogen molecule is located, and a broken-

symmetry solution lower in energy than the symmetric RHF solution is found corresponding to

dissociation into doublet fragments.
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Within electronic structure theory, the solution of the
self-consistent field (SCF) equations is a crucial matter,
both in density functional theory (DFT) and in Hartree–
Fock (HF) Theory. The SCF equations are nonlinear in the
electron density, and the solutions are given by the sta-
tionary points of the energy functional with respect to
changes in the density. The well-established methods of
solution are based on iterative methods, which have been
honed to converge rapidly on a solution via a number of
acceleration techniques. The nonlinearity of the equations
presents a challenge mathematically, as, for a given sys-
tem, the number of solutions is not known. Upper and
lower bounds have been placed by Fukutome [1], both of
which increase exponentially with system size. Further-
more, the space of solutions has no well-defined properties
(such as the orthogonality of eigenfunctions of a linear
operator) which enable the use of projection methods to
solve the equations.

The variational principle places the lowest energy solu-
tion as an upper bound to the true energy of the system, but
there is no way to guarantee that any solution found is a
global rather than a local minimum. However, with a
suitable initial guess, most molecular systems will quickly
converge to a solution which behaves physically, and is
similar to the observed ground state of the molecule. As the
use of electronic structure theory has become more wide-
spread, interest has turned to more pathological systems
where there is more than one low-lying electronic state. In
such cases there may be many low-lying SCF solutions,
and the solution found is heavily dependent on both the
initial conditions and the convergence method. Conse-
quently, the practice has arisen of using a number of differ-
ent initial conditions and convergence methods, and select-
ing the lowest obtained solution.

Recently de Andrade et al. [2,3] have used a simulated
annealing approach to combat this problem, using it to
reliably locate the lowest RHF and Unrestricted Hartree–
Fock (UHF) minima in some simple molecules. While this
stochastic technique has proved very successful at sam-
pling multidimensional spaces, there is the possibility that
the minima found are not the lowest.
We propose an alternative method, inspired by the

method of metadynamics [4] which is used to explore
energy surfaces in molecular dynamics simulations by
adding biasing potentials to ‘‘fill in’’ minima whenever
they are found, and thus avoiding the simulations being
trapped in any one well. While this still gives no guarantee
of locating the lowest solution, it locates a number of
solutions by biasing against any previous solutions found
to avoid converging to them.
To manipulate the nonorthogonal basis of atomic spin-

orbitals, j��i, we shall use the tensor notation of Head-

Gordon et al. [5] where subscripts denote covariant quan-
tities, and superscripts contravariant quantities. These may
be interconverted by use of the metric, in this case the

overlap matrix S�� ¼ h��j��i, and its inverse, S�� ¼
ðS�1Þ��. The molecular orbitals (MOs), jc ii are defined

in terms of the atomic orbital basis, jc ii ¼ j��iC�
�i . Here

and after we have used the Einstein summation convention
where repeated indices give rise to an implicit summation
over that index. We will use the standard notation i; j; . . .
for occupied orbital indices which we shall here restrict to
real orthogonal canonical molecular orbitals. From the
occupied MOs, we form the density matrix, P�� ¼
C�
�iC��

i , which is contravariant. The SCF equations are
converged when the energy, E, is stationary with respect
to occupied-virtual orbital rotations,
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E ¼ ðh�� þ 1
2ðJ�� � K��ÞÞP��; (1)

where J contains Coulomb interactions, and K the ex-
change (and correlation in DFT), which both depend on
the density. The Fock matrix is the derivative of the energy
with respect to the density matrix,

F�� ¼ @E

@P�� (2)

¼ h�� þ J��ðPÞ � K��ðPÞ: (3)

Each SCF solution may be uniquely described by its
density matrix, P��, and we will describe a set of such
solutions as wP��; xP��; . . . . Considering the space of den-
sity matrices as a vector space, we may define an inner
product,

2hwP; xPi ¼ wP��S��
xP��S�� (4)

¼ wP�� xP��: (5)

The square norm may therefore be defined kxPk2 ¼
hxP; xPi. We define the square distance between two solu-
tions, d2wx ¼ kwP� xPk2 ¼ N � 2hwP; xPi, as the trace of
each density is the number of electrons, N. This definition
is equivalent to the following more intuitive definition,
d2wx ¼ hw�jw�̂� x�̂jw�i, where w� is a Slater determi-
nant formed from the orthonormal orbitals, w�i, of solution
w, and w�̂ is the one-particle density operator for w�. This
may be expanded as

d2wx ¼ hw�jðjw�iihw�ij � jx�iihx�ijÞjw�i (6)

¼ N � wP�� xP��: (7)

Clearly d2ww ¼ 0, and wP�� xP�� ¼ hw�ijx�jihx�jjw�ii
is bounded by 0 and N, so the square distance is positive
semidefinite, and has as a maximum the number of elec-
trons, N. d2wx gives a very intuitive measure of distance
between solutions, the density matrices from two configu-
rations differing by a single spin-orbital have d2wx ¼ 1,
while the overlap between the many particle wave func-
tions would vanish and give no information about configu-
rations which differ by more than a single excitation. While
d2wx has the formal quality of a square distance, its bounds
make it naturally have the units of number of electrons, and
we shall use it as a distance measure.

This concept of distance in density matrix space proves
very useful to characterize and distinguish between solu-
tions. In a manner analogous to classical metadynamics, to
bias against the set of previously located solutions, x, we
create a new Lagrangian,

~E ¼ EþX

x

Nxe
��xd

2
0x ; (8)

where 0 represents the present density. From this we may
derive a new effective Fock matrix,

~F�� ¼ F�� þ
X

x

xP��Nx�xe
��xd

2
0x : (9)

This may be used with very little modification within a
standard DIIS procedure [6] to locate multiple solutions.
When close to a new solution, the biasing potential can be
removed so the location of that solution is not affected by
it. We have found starting with values �x ¼ Nx ¼ 1, with
the biasing parameters being automatically increased if the
bias proves insufficient to avoid convergence to the same
minimum. To perform calculations, we have implemented
this method in a modified version of Q-CHEM [7]. Orbital
isosurfaces were generated with VMD [8].
To our knowledge, the only complete enumeration of

Hartree–Fock states of a system is by Kowalski and
Jankowski [9], where the Hartree–Fock equations were
parameterized by the coefficients of the density matrix,
and homotopy-following used to locate the solutions of the
resulting equations. This method was applied to the H4
model [10] (Fig. 1) with parameter 	 ¼ 0:005. Without
using any information as to their whereabouts, we have
located all of their solutions [11], and in addition have
located an extra solution [12] of energy�0:123 495Eh. It is
possible that this solution was missed because of the finite
step size used in the homotopy following method. We have
also found a double degeneracy for solutions 3, 7, and 9
(where the solutions differ by only the signs of some
coefficients). After locating the solutions, a stability analy-
sis [13,14] was performed, revealing that only the two
lowest energy solutions are minima, the remainder having
at least one negative orbital Hessian eigenvalue.
In Fig. 2, we plot the set of solutions against quasidege-

neracy parameter, 	. Starting at 	 ¼ 0:005 (90.9�), by
using a previous geometry’s located solutions’ densities
as initial guesses, we have been able to follow the solutions
with changing 	. We note that as the quasidegeneracy
decreases (	 increases), a number of solutions coalesce
and then cannot be located. There also seems to be very
little relationship in number or energy between the 1A1 Full
CI solutions and the excited state RHF solutions, aside
from the FCI lowest and highest solutions being lower
and upper bounds for the respective RHF solutions.
The dissociation of the nitrogen molecule has been

much studied in quantum chemistry, and the breaking of
the triple bond is regarded as a extremely difficult problem,
even for the most sophisticated of correlated methods [15–
22]. While the RHF solution may appear a poor starting

H

φ

H

H H

FIG. 1. The geometry of the H4 model. Measured in degrees,
� ¼ 90þ 90	. All bond lengths are 2a0.
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position, the tantalizing simplicity of single-reference
methods still make it the first choice to build upon.
Unlike the UHF solution, it suffers no spin contamination,
giving, like the Full CI solution, a pure singlet throughout
the binding curve.

Working in Dunning’s cc-pVDZ basis [23], we have
applied our method to the nitrogen molecule binding curve.
At positions along the binding curve, many RHF solutions
were enumerated, and the lowest of them were tracked
along the binding curve with steps of 0.05 Å or smaller.
These have been plotted in Fig. 3. The curves end where it
has not been possible to further follow the solutions. What
is commonly regarded as the RHF solution (shown thick
solid), is not always the lowest possible RHF solution.
While it minimizes the energy when the orbitals are re-
stricted to transform with the point group of the molecule,
if no spatial symmetry is taken into account, as the bond is
stretched beyond 1.4 Å, it becomes a saddle point with
negative orbital Hessian eigenvalues. The lowest overall
solution at these distances is a symmetry-broken solution
whose orbitals and orbital energies are shown in Fig. 4(b).
It is apparent from these plots that the symmetry breaking

allows the molecule to localize two electrons in an orbital
on each of the nitrogen atoms, leaving only one pair of
electrons delocalized in a �-bond. This reduced electro-
static effects result in a lowering of the overall energy. At
separation, it appears the fragments are approaching a
singlet coupled pair of doublet nitrogen atoms, rather
than the quartet atoms achieved with Full CI. We note
that this solution has very recently been used as a starting
point in coupled-cluster calculations [21]. In the general
case of multiple-bond breaking, it seems likely that such
symmetry-broken solutions exist and are of lower energy,
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FIG. 3 (color online). Some of the lowest RHF stationary
states of the N2 molecule: the lowest symmetric (thick solid),
the lowest broken-symmetry (thick dotted), a third solution
breaking off from the RHF (thin dot dash), and others (thin
solid).
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FIG. 4 (color online). The dissociation of N2 using a cc-pVDZ
basis. (a) The distance, d2, between minima. The dotted line is
the distance between symmetric and broken-symmetry RHF
solutions. The solid lines correspond to a third solution which
breaks off the symmetric solution at 1.7 Å. The lower line is the
distance from the symmetric solution, and the upper the distance
from the broken-symmetry solution; (b) the orbital energies.
Solid lines represent the symmetric RHF solution, and dotted
lines the symmetry-broken solution. Thick lines indicate a
double degeneracy. Superimposed on the plot are isosurface
plots of the symmetry-broken orbitals at bond lengths 1.5, 1.7,
and 3 Å, as indicated by the vertical lines. The symmetric
orbitals take forms very close to those at 1.5 Å throughout the
binding curve.
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FIG. 2 (color online). The located closed-shell RHF solutions
of the H4 model (solid); the 1A1 Full CI solutions (dotted).
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and may be suitable as a starting place for correlation
treatments. As the bond length increases, the distance
between the symmetric and symmetry-broken solution
approaches 2 electrons [Fig. 4(a)]. This may be understood
as each
u orbital creating a linear combination with its
g

counterpart, resulting in a distance of half an electron. As
there are two doubly occupied orbitals, the total distance is
2 electrons, as the remaining orbitals are relatively
unaffected.

As a further illustration of the distance between solu-
tions, we have also investigated a third solution which
breaks off from the symmetric RHF solution at about
1.7 Å. This solution breaks the degeneracy of the 
u

orbitals by mixing one in with the p�u, and the comple-
mentary 
g with the p�g. At large separations this results

in the orbitals shown in Fig. 5. This similarly reaches a
distance of 2 electrons from the symmetry-broken SCF for
the same reasons as above, but three electrons from the
symmetry-broken solution as the three highest MOs have
contributions from both an occupied and a virtual MO from
this solution.

In conclusion, we have developed the notion of a dis-
tance between density matrices which is a quantity mea-
sured in electrons and recovers the intuitive values of the
distance between configurations whose orbitals differ. We
demonstrated that, with a simple modification of the SCF
procedure to include a biasing potential based upon this
distance measure, it is possible to enumerate a number of
different solutions to the SCF equations. While to locate
these solutions requires more steps than an ordinary SCF
calculation, confirming their existence and energies can
give an increased confidence that a given solution is the
required lowest solution, and in the search for reaction
intermediates. Owing to the nonlinearity of the Hartree–
Fock equations, there is still, however, no guarantee that
the lowest solution has been found. While in molecules
composed of first row elements it is unlikely that around
equilibrium geometries incorrect local minima are being
found, we expect this method to be a useful tool in tran-
sition metal systems, where there are many states close in
energy. In the dissociating nitrogen molecule we have
found a lower energy symmetry-broken RHF state corre-
sponding to the dissociation into doublet fragments, at a
geometry stretched by only 30% from equilibrium.

Although we have limited this paper to RHF calcula-
tions, the method is equally applicable to Unrestricted

calculations as well as to Kohn-Sham theories. In the
context of DFT, ensuring that the located state is the global
minimum is perhaps more important, as it is upon the
variational nature of this state that the Hohenberg-Kohn
theorems are based.
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FIG. 5. 3 highest occupied and 3 lowest unoccupied MOs for
the third minimum found in Fig. 4(a) at bond length 3 Å, labeled
by eigenvalue (in Hartrees). The remaining occupied orbitals are
very similar to those found in the symmetric RHF solution.
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