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Abstract The problem of partitioning in perturbation theory is reviewed starting 
from the classical works by Epstein and Nesbet or by M0ller and Ples
set, up to optimized partitionings introduced recently. Equations for 
optimal sets of level shift parameters are presented. Attention is paid 
to the specific problems appearing if the zero order solution is not a 
single Slater determinant. A special formalism for multi-configurational 
perturbation theories is outlined. It is shown that divergent pertur
bation series, like that of an anharmonic oscillator, can be converted 
to a convergent series by an appropriate redefinition of the zero order 
Hamiltonian via level shifts. The possible use of effective one-particle 
energies in many-body perturbation theory is also discussed. Partition
ing optimization in a constant denominator perturbation theory leads 
to second order correction familiar from connected moment expansion 
techniques. Ionization potentials, computed perturbatively, are found 
sensitive to the choice of partitioning, and ordinary approximations are 
improved upon level shift optimization. 
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1. Introduction 

In his series of seminal papers entitled "Studies in Perturbation The
ory" [1-12], Per-Olov Lowdin has summarized a vast amount of knowl
edge accumulated in perturbation theory at that time, with many ideas 
originating in his own studies, but incorporating lots of information 
about results obtained by former and contemporary researchers. The 
guideline of these papers was certainly to present fundamental aspects, 
and not be lost in particular details of technical problems. 

The present appendix aims to augment the fundamental papers of 
Per-Olov Lowdin with a detailed discussion on the partitioning problem. 
While it could have been viewed formerly as a small detail, several recent 
results indicate the conceptual importance of this subject. Of course, 
the present review can only be considered as a foot-hill of Per-Olov's 
papers of everlasting value. 

To begin with our discussion, a few general words are due on pertur
bation theory (PT). Students in physics and chemistry nowadays usually 
meet this theory in course of their studies in quantum mechanics, when 
learning Rayleigh-Schrodinger PT (RSPT). However, it is worth to recall 
that PT is a much older discipline: it was developed centuries ago for 
treating small disturbances of planetary motions caused by the mutual 
interaction between planets in the solar system, a problem which cannot 
be solved exactly thus needing a refine able approximate method. The 
Latin word 'perturbo, perturbare' (Le., to 'annoy', 'trouble', 'bother', or 
'disturb') refers to this origin. Moreover, it is also worth mentioning that 
the title of Rayleigh's book, which is most often referred to when citing 
RSPT, is "The Theory of Sound 1 " [13] - indicating that this mathemati
cal theory can be applied to a variety of physical problems. The present 
quantum mechanical formalism of RSPT is due to Erwin Schrodinger 
[14, 15] in 1926. Although PT has soon become one of the fundamen
tal tools of quantum theory, its mathematical backgrounds have only 
been studied in sufficient detail considerably later[16-19]' many of these 
studies being summarized in the comprehensive book by Kato[20]. 

Perturbation theory is a mathematical method to account for small 
disturbances. It is usually assumed that the solution of the unperturbed 
problem is known, and the aim of PT is to give formulae describing the 
effect of small perturbations. Although in some mathematical studies 
researchers are interested in large perturbations as well, this should be 
considered as a (sometimes very interesting) mathematical curiosity and 
it is quite far from the original spirit of PT. 

lThe first edition of this book dates back to 1877 (MacMillan &Co., London) 
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Since its introduction in 1926, quantum mechanical formulation of 
PT has been studied in great detail. Nevertheless, we are still facing 
several unsolved problems. To name a few, we do not know the necessary 
and sufficient conditions for the convergence of the PT series, we do 
not have a general and robust method to deal with the case of quasi
degenerate zero order, and there is no established method to fix the best 
partitioning. In addition, in many-body PT (MBPT), the handling of 
multi-reference zero order state(s) is an open issue[21-33], just like a 
clear and general theory to correct coupled-cluster type wave functions 
perturbatively[34-45]. The handling of symmetry in PT can also be a 
difficult task, especially when the zero order problem has lower symmetry 
than the perturbed problem, a situation one meets e.g. when studying 
molecular interactions [12, 46-56]. Among all these problems, we shall 
be concerned here with that of the partitioning. 

The organization of this review is as follows. After briefly introduc
ing the concept of partitioning, we discuss the standard (or traditional) 
partitionings as used in quantum chemistry. Then level shifts will be 
used to modify these standard partitionings, after which an ingenious 
method, the so called Feenberg scaling will be reviewed. The concept of 
the optimal partitioning, as introduced in our laboratory as well as used 
by other authors, will be next outlined in some detail, including its appli
cations to energy calculations in single- and multi-reference cases. In the 
context of many-body perturbation theory, the choice of optimal orbital 
energies and optimal orbitals will also be mentioned. Then a further 
criterion for establishing level shifts is discussed - the minimization of 
norm of operator RTV. A somewhat peculiar, but useful, version of per
turbation theory that uses constant denominators will also be treated, 
in connection with partitioning optimization. Finally we consider the 
application of the optimal partitioning to the calculation of ionization 
potentials. 

2. The concept of partitioning 

Let us be concerned with the time-independent Schrodinger equation 
kw = Ew, having the form of an eigenvalue problem of the Hamil
tonian iI. To approximate the solutions to this equation, we split the 
Hamiltonian as 

iI = iI(O) + TV, (1.1) 

where iI(O) is supposed to be close to iI, so that TV is small in some 
sense. This splitting of the Hamiltonian is called the partitioning. It 
is usually supposed that the Schrodinger equation for the zero order 
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Hamiltonian iI(O) 
iI(O)\II~) = Efj)\II~) 

can be solved, and that one may develop the exact solutions E and \II 
in terms of the zero order solutions and the perturbation operator W. 
It is also customary to insert a perturbation parameter A in front of W, 
i.e., instead of (1.1) one may write 

iI = iI(O) + AW. (1.2) 

Then, the exact wave functions and energies, i.e., eigenvectors and eigen
values of iI, are looked for in form of a power series of A: 

and 
EK = Efj) + AE~) + A2 E~) ... 

The perturbation parameter may have three interpretations. It can be 
just a formal parameter merely guiding our eyes when deriving n-th 
order corrections that are proportional to An, and, after getting the 
results, one substitutes A = 1 into the final formulae. Oppositely, if A W 
is considered a physical perturbation, like an external field acting on a 
molecule, then A measures the field strength which can have any real 
value. Finally, A can be considered as a mathematical parameter scaling 
a given W; the Hamiltonian iI(A) as well as its eigenvalues become A
dependent in this interpretation, with iI(O) = iI(O). In this latter case A 
can even be complex, which leads to a powerful tool to study convergence 
properties of the PT expansion via investigating the analyticity of the 
complex function E(A)[20, 57]. 

From our point of view, it is the second case when we may speak about 
a natural partitioning of the problem. A good example is a molecule in 
a weak external field. In this case iI(O) is the in vacuo Hamiltonian, 
and AW describes the interaction between the molecule and the field. A 
related example is a weakly anharmonic oscillator: 

with a small A scaling the anharmonic (quartic) term. Here the 'natural' 
partitioning of the problem is fI(O) = -2!np2 + !kq2 (the Hamiltonian 
of the harmonic oscillator), while Aq4 constitutes the perturbation. 

The above two examples are quite instructive since they remind us 
that a partitioning that seems very natural from the physical point of 
view may be quite unfortunate mathematically. In fact, the PT series of 
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the quartic oscillator never converges in the above partitioning[58, 59], 
even for infinitesimally small A values. However, good convergence can 
be achieved by a more appropriate partitioning[60] or resummation tech
niques[61-63]. Similarly, the PT series for the Hydrogen atom embed
ded in a small magnetic field is also known to be divergent at any field 
strength[61, 64], while an external electric field brings the H atom un
stable[61, 65]. These observations underline the essential importance of 
investigations of the problem of partitioning in PT. 

3. Traditional partitionings in quantum 
chemistry 

3.1 Epstein-Nesbet partitioning 

A natural way of partitioning a matrix, whose eigenvalues are to be 
approximated by PT, is to collect its diagonal elements to form a zero 
order (diagonal) matrix, and let all off-diagonals to constitute the per
turbation. All diagonal elements of the perturbation are zero in this 
case, which is usually referred to as the Epstein-Nesbet (EN) partition
ing[66, 67] in quantum chemistry. In the language of operators, the EN 
partitioning is defined just by requiring that all diagonal matrix elements 
of the perturbation operator, WKK = (W~)IWIW~\ are zero. Note that 
the EN partitioning cannot be formulated without explicit reference to 
the basis {W~)}. 

The EN partitioning has several advantages and disadvantages. One 
advantage is that it can be defined at any level of theory, i.e. it is not 
bound to, say, the many-body problem. In the case of the anharmonic os
cillator EN is quite different from the natural partitioning quoted above, 
where one does have diagonal perturbations. In fact, it gives much bet
ter results than the 'natural' partitioning [68] , since it reassigns at least 
the diagonal elements of the perturbation operator to the zero order. 
The absence of diagonal perturbations is clearly an advantage. How
ever, there's a big price to pay: the values of matrix elements WKK are 
basis set dependent, i.e., the partitioning is not invariant against uni-
tary transformations of the basis set {W~)}. This means that the EN 
partitioning is not well defined. Quoting an example from many-body 
theory: if the electron correlation is to be accounted for by PT, then the 
EN partitioning yields different results if one deals with pure determi
nants as zero order excited states, or with spin-adapted configurations 
thereof. Moreover, the EN partitioning is not invariant against chang
ing the spin adaptation scheme: having more than one singlet e.g. in a 
configuration, the EN partitioning is again ill-defined. 
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Numerical experience with the EN partitioning is mingled. Very good 
results have been obtained in some cases[69-71J, while in other cases an 
overestimation of low-order contributions and bad convergence proper
ties have been reported [70, 72, 73]. A successful compromise between 
using pure determinants and spin-adapted configurations is represented 
by the barycentric expression introduced in Malrieu's group[74]. 

An important question about any partitionings is whether it obeys 
the requirement of size-extensivity. This involves that the energy of 
two noninteracting subsystems, as computed by the given method, is 
equal to the sum of energies of the two isolated systems computed sep
arately. It is sometimes quoted that the EN partitioning is not size
extensive [75 , 76]. However, a closer look into the problem reveals that 
it does not necessarily violate this important principle. The problem 
is quite delicate; it is connected to the ill-defined nature of the EN 
partitioning. Let us check the example of a configuration interaction 
(CI) matrix, having the elements (KIHIL), with K and L denoting two 
Slater-determinants. Using EN partitioning, the perturbation denom
inators will be (KIHIK) - (OIHIO) where 10) is the reference determi
nant. Extensivity can be met if, upon infinite separation of the two 
subsystems, the excited determinant IK) is factorized in a way that one 
subsystem remains unexcited, symbolically: IK) = IKAOB) (note that 
anti-symmetrization becomes irrelevant at infinite separation). When 
constructing the excited determinants, this can easily be achieved if the 
molecular orbitals remain localized on the constituting fragments A and 
B. Since the orbitals of separated systems may be degenerate (they 
necessarily are, if the two subsystems are identical), localization may 
not be fulfilled automatically. Therefore, if a second order calculation is 
performed for a dissociating system in terms of canonical orbitals, the 
results are expected to be arbitrary and can violate the extensivity re
quirement. However, localization can be ensured e.g. by applying any 
of the well-known localization criteria[77-82]. 

The situation is illustrated in Figs. 1.1-1.6 on the example of the 
potential curve of the Helium dimer computed in 6-311G** basis set. For 
comparison, the full-CI (FCI) potential curve is shown in Fig. 1.5, and 
PT results in the M0ller-Plesset (MP) partitioning (vide infra) in Fig. 
1.6. Choosing the Hartree-Fock solution as zero order, the second order 
results obtained in the EN partitioning with canonical orbitals are shown 
in Fig. 1.1. Here the EN partitioning was made without spin-adaptation, 
i.e., in a determinantal basis. The resulting curve is very erratic: it 
has an (exaggerated) minimum at a wrong distance (just above 2 A), 
then it tends to be saturated at an extensivity-violating limit up to 8 A, 
when it exhibits an unphysical sudden jump with unphysical oscillations, 
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finally ending at the correct infinite limit. The jumps and oscillations 
appear due to the non-invariance of the EN partitioning with respect 
to rotating degenerate levels. The situation is similar (although not the 
same), if canonical orbitals but a spin-adapted configuration basis is used 
to make the EN partitioning (see Fig. 1.3). If the orbitals are a priori 
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localized by Boys' criterion, a more smooth curve is obtained with the 
correct (extensive) dissociation feature, but one still may observe small 
oscillations along the curve due to the numerical problems that appear 
in course of the localization procedure (see Figs. 1.2 and 1.4). Note that 
these latter two curves are also different, indicating the dependence of 
the EN partitioning on the spin-adaptation scheme. 

In concluding, the EN partitioning, in spite of its simplicity, does not 
represent a reliable PT method in the many-body problem. The main 
shortcomings are due to the lack of orbital invariance and the invariance 
against altering the spin adaptation scheme. All of this underlines the 
importance of a detailed study of the partitioning problem in perturba
tion theory. 

3.2 Adams partitioning 

Adams defined[83] the following zero order Hamiltonian: 

II(O) = olIo + plIp 

leading to the perturbation 

where 0 and P are two Hermitian projectors satisfying 0 + P = 1. 
In matrix language this means that one partitions the full space into 
two parts; the full matrix will then be separated into four blocks. The 
two diagonal blocks will be considered as the zero order and the two 
off-diagonal ones give rise to the perturbation. This partitioning has a 
conceptual value. To apply it in practice, one has either to diagonal
ize the two diagonal blocks to get a diagonal II(O) , or one has to deal 
with a non-diagonal resolvent. An interesting property of the Adams 
partitioning is that all odd-order energy corrections are zero[83]. 

3.3 Mf2jller-Plesset partitioning 

In the many-body problem, especially in evaluating the electron cor
relation energy, the most widely used partitioning is due to Moller and 
Plesset [84] (MP). It can be defined as 

(1.3) 

where F is the Fockian operator, playing the role of the zero order Hamil
tonian. It is apparent that this partitioning is formulated within the 
framework of many-body theory, thus lacks the generality of EN parti
tioning which can be formulated at the level of quantum mechanics. To 
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give an example, it would be difficult to define an MP-type partitioning 
for the anharmonic oscillator. On the other hand, the MP partitioning 
is defined with the aid of operators without any reference to any partic
ular basis sets, thus it is basis-independent. If one works with canonical 
molecular orbitals (MOs) !.pi which diagonalize the Fockian, the latter 
can be specified as 

where Ci-S are orbital energies, and the superscripts ± on !.pi indicate 
creation and annihilation operators. The many-electron eigenstates of 
this zero order operator are Slater-determinants with various excitation 
levels from the ground-state determinant, thus the PT denominators in 
this partitioning have the form 

for singly excited states, 

for doubles, etc. (We adopt the convention that letters a, b, ... denote 
occupied orbitals while p, q, . .. stand for virtual labels. Letters from the 
middle of the alphabet (i,j, ... ) indicate generic indices.) 

The MP partitioning is free from the problems discussed above in con
nection with the EN partitioning. The MP results are invariant against 
spin adaptation and against orbital transformations among degenerate 
MOs. Usually, since the EN denominators are smaller than the cor
responding orbital energy differences, low order MP results are mostly 
smaller in absolute value than EN ones. Apart from rare cases, MP2 
underestimates the true correlation energy of the given basis set. The 
error of an MP2 calculation is rather systematic, thus this method forms 
a basis of a stable, reliable tool in quantum chemistry. It can be usually 
improved by going to higher orders (MP3, MP4). The 4th order results 
are often quite accurate, although rather expensive to compute. This 
is because (unlike MP2 and MP3 which need only double substitutions) 
MP4 requires three- and four-fold excitations to evaluate. 

If one wants to compute MPn results in orbital sets other than the 
canonical one, care should be taken to the fact that in those basis sets the 
Fockian is not diagonal. The actual expressions for the energy and wave 
function corrections will therefore be changed. This is not a conceptual 
but merely a technical problem, and efficient formulations have been 
reported to evaluate second and higher order results with non-diagonal 
zero order[85-87]. Evaluation of the correlation energy in terms of 10-
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calized molecular orbitals is a typical example when such a formulation 
is needed. 

Up to this point the discussion about MP referred to the case when 
the zero order wave function is a single Slater determinant (using the 
standard terminus technic us: the case of 'single reference'). This is an 
acceptable approximation at around equilibrium geometries of closed
shell systems. Energetics of dissociating covalent bonds, however, cannot 
be studied in this partitioning. Generalization of the MP partitioning 
for multi-reference cases, that can also describe dissociating bonds, will 
shortly be discussed later. 

Eq.(1.3) defines the MP partitioning in a strict sense. Speaking about 
a generalized MP partitioning one may think about either a different 
expression for the Fockian (such as the generalized Fockian in a multi
reference theory, see Section 1.10) or, using a partitioning in which the 
PT denominators are constituted by the differences of some effective one
particle energies, different from canonical Ci-S. Examples to this latter 
case will be provided in section 1.8. 

4. Level shifts 

4.1 Basic definition 

A given partitioning of the Hamiltonian, fI = fI(O) + TV, can always 
be changed by adding and subtracting an operator that is diagonal in 
the basis of the eigenvectors of fI(O): 

if = if(O) + L 1]KIK)(KI + TV - L 1]KIK)(KI (1.4) 
K K 

~------v~------~ 
fI(O)' 

"----..... v,----~ 
~ , 

W 

where 1]K-S are arbitrary parameters called level shifts (here and further 

on, the shorthand IK) = IW~») is used). One usually sets 1]0 = 0 to fix 
the energy origin. Level shifts obviously do not modify the zero-order 
wave functions, they merely affect the zero-order energy levels. 

Level shift parameters have been applied in a number of works with 
various purposes [26, 88-93], among which the removal of (quasi)de
generacies from the zero order spectrum is an important issue. 

The second order energy correction in the shifted partitioning becomes 

E(2)' = - L (OITVIK)(KITVIO) 
Klo Efj) - E~O) + 1]K 

(1.5) 

Note that the second order numerator does not depend on 1]-s. This in
duces an ambiguity for the second order expression: by the 1]-dependence 
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of the denominator one can arrive at any second order result by changing 
level shift parameters. The E(2)' (7]K) function is not even bounded. At 
the third order, numerators become also 7]-dependent: 

E(3)' = L (OIWIK)(KIW - Woo + 7]KIL)(LIWIO) 

K,L(-I0) (E<:) - E6°) + 7]K) (E10) - E6°) + 7]d 
which causes that the third order results are less ambiguous. 

4.2 Connection between MP and EN 

Evaluating the correlation energy of an N -electron system perturba
tively in the MP and EN partitionings, we find that the numerators of 
the second order terms, 1(0IWIK)1 2 , are the same in both cases. This 
is because these numerators (unlike higher order ones) do not contain 
diagonal elements of W. The denominators, however, are different: 

EN A A MP 
L1K = HK - Ho = L1K + 7]K, 

where L1WP -s are orbital energy differences, while 7]K - s can be inter
preted as level shifts. Conversely, starting from the MP partitioning, 
one may prove that a resummation of certain terms appearing in the 
higher orders of MP, namely those having contributions from diagonal 
perturbations, is equivalent to a suitable modification of the energy de
nominators[69, 94, 95]. 

4.3 Complex level shifts 

One may in principle choose complex or imaginary values for the level 
shift parameters 7]K. This results that finite order corrections will not 
be necessarily real, and additional assumptions have to be introduced 
to extract real numbers that may solely have a physical interpretation. 
One possibility is to take the modulus (absolute value) of each term[96-
98]. Optimization of complex level shift parameters have not yet been 
reported, merely ad hoc formulae for setting imaginary parameters were 
proposed[96-99]. The formula 

E(2) __ '"'" IWOKI 2 

damped - ~. / L1 + 1M?; 12 
K-I0 V K OK 

corresponds to taking the term-by-term absolute value of an imaginarily 
shifted second order expression and requiring that it be exact for a two
level system in the fully degenerate (L1K = 0) limit. This formula was 
tested for molecules[96] and polymers[98]. It has also been compared to 
other, non-perturbative formulae[100-103]. Imaginary shifts in multi
reference PT have also been considered[99]. 
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5. Feenberg scaling 

Feenberg and Goldhammer[104, 105] have investigated the effect of 
introducing a single scaling parameter in front of the first order wave 
function, which is equivalent to the repartitioning 

fI = .!.fI(O) + (w + J-l- 1 fI(O)) 

~ , ~ , 

(1.6) 

fI(O)' W' 

discussed also by Amos[106]. . Requiring that the third order energy 
correction in this new partitioning vanishes leads to 

( E(2))2 
(2)' _ 

E - E(2) _ E(3) (1.7) 

which proved to be considerably successful[104, 105]. It was noted[107-
109] that Feenberg's procedure is equivalent to a Pade approximation2 

scheme [116] , as the above equation indeed suggests. 
An important question is whether the extensivity is maintained by the 

above modification, for which affirmative answers were already published 
[117,118]. However, a closer look into the problem reveals that Eq.(1.7) 
is separable for non-interacting subsystems only if the latter are identical 
[119]. 

In the recent studies by Goodson[118, 120, 121], connection between 
Pade approximants and Feenberg scaling has further been exploited. 
Goodson has used quadratic Pade approximants[121], the denominators 
of which may exhibit not only poles, but also branching points. He sug
gested to determine the Feenberg scaling parameter J-l from the condition 
that the first branching point is pushed apart from the origin to the max
imum possible extent, thereby maximizing the convergence radius of the 
PT series. (For convergence radii, see e.g. [113].) 

Feenberg scaling has been extensively studied by several other au
thors, too[108, 109, 122-124, 112]. Cremer et al. [117, 125] generalized 
Feenberg's procedure to any (odd) orders and studied the convergence 
of the original and the generalized series. 

6. Optimized partitioning 

It is apparent from Eq.(1.6) that the Feenberg scaling can be viewed 
as a special level shift: all zero order energies are divided by a factor, 

2Pade approximants represent a useful tool, widely studied in quantum theory[1l0-1l5]. 
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and the perturbation is modified just by a diagonal operator. The suc
cess of the optimal selection of J1 suggests that it is useful to consider 
a more general case, when all level shift parameters are varied inde
pendently. This section is devoted to discuss some possibilities for an 
optimal selection of the 'f]K parameters introduced in (1.4). 

6.1 General formulation 

In order to set the level shift parameters 'f]K, one may proceed in the 
following way. Parameters 'f]K affect individual terms of the perturbation 
series, but not the converged sum. One may expect even for approximate 
wave functions that the 'best' 'f]K values are those for which the energy 
is stationary. This can be expressed by the variational like condition 

a (w[l]'IHlw[ll') 
O'f]K (w[l]'lw[l]') = 0 K= 1,2, ... (1.8) 

where W[l]' = w(O) + W(l)' is the first order Ansatz for the wave function. 
To set the connection to PT, let us expand the Rayleigh-quotient as 

(w[ll'IHlw[ll') (0)' (1)' (2)' (3)' 

(w[ll'lw[ll') = E + E + E + E + 0(4) (1.9) 

(cf. Wigner's 2n + 1 rule). Neglecting 0(4) terms, the variational re
quirement takes the form 

a ((2)' (3)') 
~ E +E = 0, K=1,2, ... 
U'f]K 

(1.10) 

Here we left out the zero and first order terms since E(o), + E(l)' = 

(OIHIO) is independent of level shifts. Substituting the expressions of 
E(2)' and E(3)' into Eq.(1.10), and carrying out the variation one finds 

(OIWR'IK)(KIW'il'WIO)-Woo(OIWR'IK)(KIR'WIO) = 0 K = 1,2, ... 
(1.11) 

where the reduced resolvent of the shifted zero order is 

R' = - 2: 11)(11 
NO b..~ 

with the shifted denominators b..~ = E}O) - E6°) + 'fJI. Equation (1.11) 
defines the level shifts in the new partitioning. 

This system of equations can be brought to the form [68] 

1 2: AKJ b..' = 1 , 
Ji'o J 

K= 1,2, ... (1.12) 
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where 
A -;;: (E(O) E(O) TXT) + WKJWJO 

KJ - UKJ J - 0 - YVOO TXT 
YVOK 

(1.13) 

showing that, if matrix A is nonsingular, nonzero energy denominators 
b..'x are uniquely determined as the solution of an inhomogeneous linear 
system of equations. Those shifts, which do not emerge in the expan
sion of the first order wave function are not defined by Eq.(1.12). The 
simplest choice is to set these parameters zero. 

6.2 Properties of the optimized partitioning 

6.2.1 Vanishing of the third order correction. One can 
easily show that in the optimal partitioning the third order energy is 
zero. Putting down the third order RSPT formula 

E(3)' (OIW.R'W'R'WIO) - Woo (OIWR'2WIO) 

2: Ej/ 
K",O 

and writing out the reduced resolvents explicitly, one has 

E(3)' = WOK ('" WKIWIO _ (-W; ) WKO) 
K b..' ~ b..' 00 + 'f]K b..' 

K 1",0 1 K 
(1.14) 

Substituting R' and the shifted perturbation operator W' into Eq.(l.l1), 

one finds that its left hand side equals E~)'. That is, Eq.(1.11) is equiv
alent to the requirement 

K= 1,2, ... 

The fact that E(3)' vanishes in the optimized partitioning points back 
to the Feenberg scaling discussed in Sect.1.5. Having a closer look to 
the Feenberg procedure it turns out that setting E(3)' = 0 is equivalent 

to the requirement 0 (E(2)' + E(3)') /Of-L = 0 in the one-parameter 

optimization scheme, too[106, 117]. In fact, the original idea of Feenberg 
for choosing the single scaling parameter f-L was just this latter condition. 

6.2.2 Consequences on the higher orders. Vanishing of 
all E~)' -s has important consequences for higher orders, too. All terms 
containing the expression 

(KI(W' - Woo)R'WIO) (1.15) 
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will be zero for all states K which contribute to E(3)', i.e., which directly 
interact with the ground state. In particular, of the fifth order formula 

(5)' 
E (OIW il' (W' - Woo)il' (W' - woo)il' (W' - woo)il'WIO) 

2E(2)' (OIW il,2(W' - Woo)R'wIO) 

E(3)' (0IWil,2WI0), 

the last term is zero due to vanishing of E(3)" while the second term 
is zero due to Eq.(1.15). Consequently, merely the first term may con
tribute to E(5)'. Similar considerations apply for higher orders, too. 

6.2.3 Extensivity. The repartitioning with level shift parame
ters obtained from Eqs.(1.12)-(1.13) preserves size extensivity. Consider 
two noninteracting subsystems A and B, characterized by the equations 

fI = fI1°)+fI~), W = WA+WB, 10) = 10AOB). Taking a look at the 
second order correction, e.g., in the new partitioning [ef. Eq.(1.5) ], one 
finds that repartitioning preserves extensivity of the initial series if in the 
noninteracting situation any level shift can be assigned to the subsystem 
where that particular level belongs. Regarding the structure of matrix 
A in Eq.(1.13), it is apparent, that a nonzero inter-system element may 
only emerge in the case where (KI = (KAOBI and IJ) = IJBOA). 
This is because matrix elements of W of the type (KAJBIWIOBOA) are 
all zero. In the former special case, since 

WKJ = (KAIWAIOA)(OAIJB) + (OBIWBIJB)(KAIOA) = 0 

AKJ again proves to be zero. This means that matrix A is block-diagonal 
if subsystems A and B are infinitely apart, consequently level shifts are 
determined solely by expressions of one subsystem or another. 

6.2.4 Resummation ofRS-PT series. Substituting Eq.(1.13) 
into (1.12), one gets the following formula, suitable for an iterative treat
ment[68]: 

~~ = ~J W; _ ~OJWI.JWTO (I -=1= 0) (1.16) 
OJ 6..' 

J#O J 

where ~J = EJO) - E~O) is the unshifted denominator, and the condition 
Woo = 0 was used which can be set in the initial partitioning without 
loss of generality. Considering Eq.(1.16), it is not difficult to see that 
the second order guess to the energy, 

E(2)' = - 2: IWOII2 (1.17) 
NO ~~ 
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is equivalent to an infinite order partial resummation of the original 
partitioning. Substituting Eq.(1.16) into (1.17): 

- L IWOII 2 + L WOIWIKWKO 
NO!:J..I I,Klo !:J..I!:J..X 

(OIW RWIO) + (OIW RW R'WIO) . 

Here the first term is the original second order energy. The sec
ond term is of order 3, and it can be further expanded by substituting 
Eq.(1.16) repeatedly to yield 

E(2)' (OIW RWIO) + (OIW RW RWIO) + (OIW RW RW RWIO) + ... 
00 

L (OIW(RWtIO) (1.18) 
n=l 

which is clearly a part of the infinite order (exact) PT energy. More 
precisely, we see that all type of terms of the PT series have been summed 
up which would emerge also in Brillouin-Wigner (BW) theory [126, 127]. 
We may call these contributions BW type terms, which differ only from 
true BW results in that the reduced resolvent R is constructed from zero 
order excitation energies (E~) - E6°)) , and not from BW denominators 

(E~) - Eo) containing the exact energy Eo. 
To writAe this result more compactly, let us introduce the reaction 

operator T: 
(1.19) 

that satisfies a Lippmann-Schwinger type equation 
A A A A A 

T=W+WRT (1.20) 

since the iteration of (1.20) with t(O) = 0 leads to (1.19). Using (1.18), 

(OltIO) = Woo + E(2)' 

The formal solution of (1.20) is 

(1.21) 

indicating that the second order energy in the optimized partitioning 
can be compactly expressed as 

E(2)' = (OI(I-WR)-lWIO) - WOO 

(OIW (1 - RW) -1 RWIO) . (1.22) 
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The last equality can be seen by subtracting and adding the term 
(OIW(I- RW)-110). 

Let us recall at this point the damping procedure of Dietz et al.[124, 
128, 129], which leads to a second order correction (OIW(1 - A)RWIO), 
where A is an arbitrary damping operator. The authors proposition for 

A A [ A ( A )] -1 (0) A: 1 - A = 1 - R W - b.E with b.E = Eo - Eo clearly results 

in a formula closely related to Eq.(1.22). There are two major differences 
between the procedure of Dietz et al. and the optimized partitioning. 
Once, Dietz et al. use several model spaces to construct operator A 
in, while in the optimized partitioning those K-s are used for which 
WOK =1= O. Secondly, the infinite order correction, b.E does not appear in 
Eq.(1.22). Absence of b.E from the optimized reduced resolvent has the 
advantage that finite order PT corrections are extensive in the optimized 
partitioning. 

6.2.5 Derivation by projection operator technique. In 
the spirit of Lowdin's partitioning technique[2], the P-component of the 
wave function, i.e., its projection to the subspace orthogonal to the ref
erence (0-) space, is written as 

If one neglects the last term in this equation (which is justified if the 
energy correction is a second order quantity), and left multiplies with 

(1 - RW) -lone gets: 

(1.23) 

Expansion of the inverse in (1.23), yields 

IPw) = RWIO) + RWRWIO) + ... = RrIO). 

On substituting this result into the energy formula E = (OIBlw) one 
finds: 

E (OIBIO) + (OIW RrIO) 
(OIBIO) + (OIWRWIO) + (OIWRWRWIO) + ... 

in perfect agreement with (1.18). This derivation, of course, does not 
contribute to any new result as compared to the formulae of the previous 
sections, but it makes transparent how the resummation of BW-type 
terms emerges from Lowdin's partitioning technique. 
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6.3 The example of the anharmonic oscillator 

The Hamiltonian of the harmonic oscillator perturbed by a quartic 
term can be written in arbitrary units as 

(1.24) 

One may start off with the partitioning suggested by the physics of the 
problem, as discussed in Sect.1.2, with the solution of the zero order 

fI(O) In) = (n +~) In) . 

In this case there are only two levels that interact with the ground state, 
since 

WOK = ~(2 + 5K + 4K2 + (K + 1)2)8oK + ~JK(K -1)(K + 1)282K 

+ ~JK(K - 1)(K - 2)(K - 3)84K , 

leading to the first order wave function 

Iw[l]) = 10) - ~JI812) - ~y'2414) . 
2 + 1]2 4 + 1]4 

Level shifts 1]2 and 1]4 can be determined using Eqs. (1.12) and (1.13) in 
a straightforward way. 

Perturbative results up to fourth order, calculated in the partitioning 
of Eq.(1.24) and in the optimized splitting are plotted in Fig. 1.7 as a 
function of the strength of the perturbation. Standard partitioning of 
Eq.(1.24) is labeled by STND, OPT refers to the optimal partitioning. 

Computing higher than third order of PT, one faces the question of 
determining shifts, that are not set by optimization. These are 1]6 and 
1]8, in this special case, at fourth order. Calculating the curve labeled 
OPT4 in Fig.1.7, 1]6 and 1]8 were set zero, which means keeping the 
original partitioning for these levels. Inspecting Fig. 1. 7, it is apparent 
that the PT expansion in the STND partitioning diverges already for 
small A values, while the corrections in the OPT partitioning remain 
meaningful even at relatively large values of the coupling parameter. In 
concluding, for the problem of anharmonic oscillator the optimization of 
the partitioning in Rayleigh-Schrodinger PT extends its applicability to 
strong perturbations. 

7. Optimized partitioning in single reference PT 

Now we turn to the problem of calculating electronic (correlation) 
energies in atoms and molecules. Let us consider first a simple case, when 
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Figure 1.7. Ground state energy ofthe anharmonic oscillator as a function of the cou
pling strength .A in arbitrary units. Results of the standard partitioning are identified 
by STNDn. Optimized partitioning is referred to as OPT, for details see text. Exact 
result (solid line) was obtained by solving the Schrodinger equation numerically. 

the lowest eigenvector of fI(O) is a single Slater determinant, typically 
the Hartree-Fock solution. 

An interesting feature of the optimized partitioning is that, as ap
plied to the correlation problem in many-electron theory, the well known 
CEPA-O (equivalently: coupled pair many-electron theory (CPMET) 
[130, 131]' linearized coupled-cluster (LCCD)[132], or D-MBPToo[133-
135]) energy formula is recovered at the second order. This can be 
demonstrated in several ways, since the very same method has been de
scribed in literature in different manners. The CEPA-O equations [136] 

(~b denoting doubly excited configurations) originate from the varia
tional problem of the functional 

which upon substituting the first order Ansatz with shifted denomina
tors, can be expanded as 

F (01(1 + win (fI - Hoo) (R'W + 1)10) 

(OIWR'WIO) + (OIWR'W'R'WIO) - Woo (0IWR'2WI0) 
E(2)' + E(3)'. 
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This was just the functional we used in Eq.(1.10) to get the level shifts, 
which, if only doubles are taken into account, are just the free parameters 
in'll[l]. 

Equivalence of E(2)' and the CEPA-O correlation energy can also be 
inferred from the energy formula (1.22), which is clearly the same as the 
energy formula in the LCCD method [95, 132]. 

Based on the equivalence between the second order results and LCCD, 
a few properties of E(2)' are immediately evident. Namely, we get an 
energy which is, though not variational, size extensive, and invariant to 
unitary transformations among zero oder excited states. In particular, 
E(2)' (more generally, E(n)' if computed in the subspace present in 'lI[1]) 

is invariant to orbital rotations within the occupied MOs (and also to 
those within virtuals). This is an especially appealing feature as this 
makes it possible to perform the calculations, e.g., in terms of localized 
orbitals without affecting the PT formulae. This property markedly 
discerns the optimized partitioning from EN or MP, since the former 
is not orbital invariant at all, while the orbital invariant formulation of 
the latter [85, 86] requires the use of non-diagonal resolvents. In the 
optimized partitioning the same second order formula (1.17) gives the 
same result whatever orbitals (canonical or localized) are used. 

The equivalence between E(2)' and the LCCD energy holds only if one 
uses the Hartree-Fock wave function as the reference state 10). The op
timization of the partitioning by level shifts is, therefore, a more general 
procedure. 

An important advantage of this reformulation is that, once the new 
partitioning is defined, one may go beyond the second order in a straight
forward manner. 

Since the optimized partitioning is unique, it can be found by starting 
from any initial partitioning. One has to recall, however, that only 
levels of those states will be determined which directly interact with the 
reference state. Accordingly, when 4th and higher order results for the 
correlation energy are computed, the singles, triples and quadruples are 
treated in the original partitioning. This problem could be, in principle, 
circumvented by using a more accurate Ansatz instead of 'lI[1], but this 
method does not seem to yield equations that are easily tractable. 

Numerical results found in the optimal partitioning are presented in 
Table 1.1 and Figs. 1.8-1.10, comparing them with standard MPn values 
and the FCI benchmark. Note the parallelity of the OPT curves with 
the exact results and the improvement of the convergence features. 
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method inversion barrier 
ST03-G 6-31G** 6-311G** 

MP2 0.05240 0.02372 0.02027 
MP3 0.05306 0.02415 0.02075 
MP4 0.05323 0.02436 0.02087 

OPT2 0.05360 0.02425 0.02083 

CCSD 0.05361 0.02414 0.02074 
CCSDT 0.05339 0.02433 0.02098 

QCISD(TQ) 0.05343 0.02429 0.02081 
FCI 0.05341 

Table 1.1. Inversion barriers [a.u.] of the NH3 molecule 

~ 

::i 
~ 

J 

-1.145 

MP4 ···G .... 

-1.15 Fel .. -e- .. 
OPT4 -,0-, 

-1.155 

-1.16 

-1.165 

-1.17 

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 

R [Angstrom] 

Figure 1.8. Absolute energy at 
around equilibrium on the potential 
curve of the H2 molecule in [3s2p1d] 
basis set[137]' in MP and optimized 
partitioning 

0.01 
~ 

::i 0.008 

~ 
- 0.006 
(3 
II.. 

1 
w , 

J 

0.004 
___ ~---~----'\iP3-

0.00: ~~~~;:~.~i.-.~'~~i-~-~!~'::~!:~:~.;:~:~.;;; 
-0.002 '---'----'-_-'-----L.---"L--'-----L..:...PT~2 

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 

R [Angstrom] 

Figure 1.9. The same as in Fig. 1.8, 
but deviation from Full CI 

8. Using noncanoninal orbital energies in 
MBPT 

8.1 Davidson-Kapuy partitioning 

Assume that we work in an MO basis set in which F is non-diagonal, 
say a basis set of localized MOs (LMOs). Defining just the diagonal 
part of F as #(0) , one arrives at a partitioning, in which the off-diagonal 
elements of F give rise to a new kind of perturbation. This, in connection 
with using non-canonical MOs in MBPT, was introduced by Davidson 
[139, 140] and extensively used by Kapuy[141~145] (for a review, see 
[146]). To distinguish this second possibility from MP, we shall refer to 
it as the Davidson-Kapuy (DK) partitioning. In the DK partitioning the 
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Figure 1.10. Convergence of perturbation series estimating the total energy of the 
He atom in lOs2pld basis set[138] 

diagonals of the actual Fockian (say the energies ofLMOs) are considered 
as effective one-particle energies. The DK partitioning was reported to 
provide numerical results inferior to those of MP in the single-reference 
case [86] , but it has the advantage of computational simplicity. 

An example where the Davidson-Kapuy partitioning comes about nat
urally is the description of intermolecular interactions by PT. Consider 
a many-body PT to describe the interaction of two sUbsystems in the 
one-particle basis set formed by the canonical MOs of the isolated inter
acting partners. These MOs are strictly localized on the fragments thus 
they are not canonical for the dimer system. As a consequence, inter
fragment perturbation one-electron matrix elements appear both in the 
occupied and the virtual blocks, exactly like in the DK partitioning3. 

The performance of the DK partitioning in multi-reference PT (MRPT) 
theories is currently under investigation[147]. 

3 An extra complication in the intermolecular case is that the fragment MOs are neither 
orthogonal, nor satisfy the Brillouin theorem. 
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8.2 Dyson partitioning 

One may wonder, why the MP partitioning has proved to be more 
reliable than any other. Its success - the reason of which has not yet 
been completely understood - implies that there should be some physi
cal model behind. One may quote Koopmans' theorem [148J interpreting 
Ci-S as ionization potentials or electron affinities. A straightforward mod
ification of the partitioning emerges then by constructing the denomi
nators from correlated ionization potentials. General experience shows 
that the difference between ionization potentials and electron affinities 
is overestimated at the Hartree-Fock level: Koopmans gaps are usually 
too large. Using better ionization potentials and/or electron affinities in 
M011er-Plesset type expressions may, therefore, yield better correlation 
energies. This modification is all the more appealing as it preserves the 
size-extensivity of the perlurbative formulae. 

A simple improvement of one-particle energies can be obtained from 
the second order inverse Dyson equation [95J which in its spin-orbital 
form reads: 

Ei = Ci + ~ L [ipllabj2 +! L [iallpqJ2 
2.~+~-~-4 2~~+~-~-~ 

where the antisymmetrized two-electron integrals are written in [121112J 
convention and orbital occupancies are restricted as mentioned before. 
We identify the partitioning when Ei-S are used in MP-type denomina
tors as the Dyson (DY) partitioning. The structure of the second order 
(MP2) formula is not affected by such a change, while diagonal correc
tions appear at higher orders. For example, the term 

(1.25) 

has to be added to the usual third order formula, where fJi = Ei - Ci· 

To illustrate its effect, we present a potential curve of the H2 molecule 
in a 8s/5s basis set augmented with 2p 1d ( (pI = 0.46, (p2 = 1.39, 
(d = 1.0) [149J in Fig. 1.11. It can be seen that DY2 and DY3 remove 
the quasidegeneracy-induced divergence of the MP series, permitting a 
rough estimation of the dissociation energy. At the long range limit DY2 
covers at about 30% and DY3 55% of the correlation energy. 

As a second process we selected the dissociation of methane to a CH3 
radical and a H atom in 6-311G** basis (Fig. 1.12). For comparison, 
the potential curve calculated by a 2 electron-3 orbital CAS-SCF is also 
shown. The second and third order level shifted curves do not show 



152 

0.35 

0.30 
:; 
ai 0.25 
";. 
E!' 

0.20 Q) 
<: 
Q) 

.~ 0.15 

~ 0.10 

0.05 

0 
0.5 

D)'2 .. 
~ .................. . 

1.5 2 2.5 3 3.5 4 4.5 
RI Angslrom 

Figure 1.11. Potential curve of H2 
in Dyson and Ml1lller-Plesset partition
ings in comparison with full CI 

:; 
ai -,., 
E!' 
Q) 
<: 
Q) 

j 
!! 

0.30 seE 
0.25 

0.20 

0.15 

0.10 

0.05 

0 
2 2.5 3 3.5 4 4.5 

RI Angstrom 

Figure 1.12. CH4--4CH3 ... H dissoci
ation in Dyson and Ml1lller-Plesset par
titionings in comparison with a CAS
SCF curve 

considerable deviation from each other, they both yield a non-negligible 
part of the static correlation energy at long distance, and show the same 
effect as MPn at around equilibrium. 

The performance of the Dyson-partitioning for quantitative details of 
potential curves, such as geometries and spectroscopic constants, has 
not yet been investigated in sufficient detail. 

8.3 Optimized orbital energies in MBPT 
The standard MP, the Davidson-Kapuy and the Dyson partitionings 

all deal with some kind of effective one-particle energies, their differences 
being used in the energy denominators. In the spirit of the optimized 
partitioning, one may attempt to define effective orbital energies that 
are optimal in some sense. The most straightforward choice is again to 
minimize the third order energy with respect to the orbital energies. 

To develop the necessary formalism, we write 

(1.26) 

where F is the shifted Fockian 

F = LEi alai = L(ci + 1'/i) alai 

with the shifted quasiparticle energies Ei = Ci + 'fJi. The relation between 
perturbation operators TV and V is simply 

(1.27) 
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The unknown parameters of the theory are the level shifts 'fJi or, equiv
alently, the shifted quasiparticle energies Ei. One of them can be kept 
fixed to prevent an immaterial constant shift of the zero-order spectrum, 
the number of free parameters is therefore (Nbasis - 1). Following the 
philosophy of the optimized partitioning method[68, 150], we determine 
the level shifts from the equation 

(1.28) 

Actual expression for E(2) agrees with the standard MP2 formula, 
while E(3) differs from MP3 as a consequence of the diagonal perturba
tion in Eq.(1.27), giving rise to the term in Eq.(1.25). 

Having obtained the explicit functional, partial derivatives occurring 
in Eq.(1.28) can be derived in a lengthy but straightforward manner. 
The analytical solution of the resulting equations is formidable. We ob
tained numerical solutions using analytical gradients and diagonal Hes
sians to initiate a BFGS procedure. 

Quasiparticle energies determined in this way have the property that, 
given two noninteracting subsystems A and B, each Ei belongs either 
to system A or B. This follows from the extensivity of the functional 
[E(2) + E(3)] and ensures that repartitioning by the corresponding level 
shifts does not spoil size extensivity of the MBPT scheme. Of course, 
the dissociation behavior with a closed shell (RHF) reference state will 
not be correct, thus the results in this sense are not size-consistent. To 
achieve the latter, an unrestricted (UMP-type) formulation would be 
necessary. 

As an example, we show the effect of c-optimization on the correla
tion energy of the Be atom (Table 1.2). It seems that for this system 
the correlation energies drastically improve upon optimization, but the 
optimized results go somewhat below the FeI limit. 

Based on a model study of a two-state problem, Finley[151] suggested 
to define one-particle energies iuan MP type scheme that maximize the 
radius of convergence of PT. The numerical performance and feasibility 
of this approach is yet to be investigated. 

Note that optimization of one-particle energies in MP-type PT is a 
special case of a more general theory introduced by Davidson[139]. In 
this latter, one adds an arbitrary, general one-body operator and sub
tracts its two-electron counterpart regrouping in these manner the terms 
of the total Hamiltonian entirely. Eqs.(1.26-1.27) correspond to the spe
cial case when this one-body operator is diagonal. 
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basis 
6-311G** 
lOs5p1d 

MP2 
-41.555 
-57.120 

MP3 
-52.881 
-72.673 

c:-OPT2 c:-OPT3 FCl 
-64.718 -64.865 -61.502 
-80.433 -80.868 -78.109 

Table 1.2. Correlation energy of the Be atom in mHo Second and third order PT 
results are shown in two partitionings. Abbreviation c:-OPT refers to the partitioning 
optimized with respect to orbital energies. FCl is indicated for reference. 

Optimized orbitals in MBPT: Lindgren's approach. In a recent 
paper[152], Lindgren discussed an interesting possibility. He proposed to 
optimize the n-th order energy with respect to the orbitals themselves, 
not only just orbital energies. He argued that with increasing n the 
optimal orbitals will converge to Brueckner orbitals[153, 154], and the 
energies of these orbitals will be ionization potentials. The significance 
of these arguments is still under discussion, but it is evident that the 
idea has lead to a new kind of 'optimal' partitioning in PT. 

9. Zero order Hamiltonians with two-body 
terms 

The case we have considered so far is that of a zero order wave function 
consisting of a single Slater determinant, when fI(O) is naturally a one
body operator. If one aims to improve a multi-configurational wave func
tion via PT, one may define a zero order Hamiltonian possessing multi
configurational eigenfunctions. Such a Hamiltonian is either formally 
defined by means of appropriate projectors [24, 29] or it should contain 
explicit two-body terms of type Li<j hij or ~ L[p,vIAO']atata,Aaa. The 
pioneering work in this direction by Dyall[155] was followed in Malrieu's 
[76, 156] and Mukherjee's[157, 158] laboratories. In our group, we have 
developed[159-163] a specific PT to perturb the antisymmetrized prod
uct of strongly orthogonal geminal[164] (APSG) wave function, where 
the geminals are eigenfunctions of an effective two-body Hamiltonian. 
Inclusion of explicit two-body terms is conceptually an appealing feature, 
but complicates the formalism significantly. Very recently, a promising 
idea has been expressed by Rassolov[165] who suggested to keep only 
certain terms of a two-body operator to form fI(O) , leading to a much 
more effective construction of zero order excited states. 
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10.1 Multi-configurational perturbation theory 

For the perturbation of wave functions consisting of several Slater
determinants various MRPT approaches have been proposed[21-33]. We 
discuss here the one developed in our laboratory[147] which was termed 
multi-configurational perturbation theory (MCPT). Consider a normal
ized, multiconfigurational reference state 10) and the associated projec
tor 0 = 10)(01. The projector to the orthogonal complement space is 
P = 1 - O. Let us further introduce a set of determinants, denoted by 
IK), generated by applying single, double, etc. excitation operators on 
a Hartree-Fock-like determinant IHF), chosen as the 'principal' compo
nent of 10): 

10) = do IHF) + L dK IK). 
K=l 

Coefficient do needs not be close to 1, merely the singular case do rv 0 is 
excluded. 

The set of vectors 10) and IK) (K = 1,2, ... ) forms a basis in the full 
M-dimensional vector space. Since vectors IK) form an orthonormal 
basis in the M - 1 dimensional subspace, and the reference function 
does not lie in this subspace for do =1= 0, 10) and IK)-s together span the 
full space. 

One finds that 10) and IK) overlap. Projected determinants IK') = 
PIK) = (1 - O)IK) are orthogonal to the reference state, but overlap 
among themselves. The block structure of the full overlap matrix reads 

[ (010) (OI])IL) 1 [1 0] 
S = (KIPIO) (KIPIL) = 0 S 

with the overlap matrix S of the projected excited determinants 

SKL = (K'IL') = (KIPIL) = 5KL - (KIO)(OIL) = 5KL - dK dL. 

where we used the Hermiticity and idempotency of P. 
The inverse of matrix S can be found analytically as 

1 dKh dKdL 
(S- ) KL = 5 K L + 1 _ I: d'} = 5 K L + ~' 

J=l 
fa~ilitating a bi-orthogonal formulation through the reciprocal vectors 
(K'I: 

(1('1 = L(S-l)KJ(J'1 = (K'I + ~~ L dJ (J'I, 
J=l 0 J=l 
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and the definition of a non-Hermitian zero order Hamiltonian: 

iI(O) = EaO) 6 + L E~) IK')(K'I, 
K=l 

where EaO) = (OliIIO) is the energy of the reference state. The zero order 

excited state energies E~) are the parameters of the theory. 

This definition of iI(O) possesses the properties iI(O) 10) = EaO) 10) and 

iI(O)IK') = E~)IK'). One can also see that the left eigenvectors are the 

reciprocal projected determinants (K'I, and the bra reference state (01. 
The lowest order energy corrections, following standard bi-orthogonal 

perturbation theory, can be given as 

with the perturbation operator W = iI - iI(O) , 

etc. 
Accuracy of low-order approximations as well as the convergence prop

erties of the PT depend on how we choose the parameters E~). Several 
possibilities for choosing these parameters will be listed below. 

10.1.1 Generalized MP partitioning. Following a M(Zlller-
Plesset-like philosophy one may specify E~)-s as 

K = 1,2,3, ... (1.29) 

where !!),,cK are differences of suitably chosen one-particle energies: 

for singles, doubles, etc. Several authors have applied such excitation 
energies in their formulations of MP-type MRPT[23-25, 27, 28, 30, 72, 
74, 155, 166-170]. 
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One-electron energies may be obtained as eigenvalues of a one-electron 
operator called multiconfiguration Fockian, which can be defined in two 
alternative forms[171]: 

Fi} = (Ola} [ai, fI] _ 10) = L hikPkj + L[ikllm]r1m,jk (1.30) 
k kim 

or 

Fi] = (01 [a}, [ai, fI L] 10) = hij + L Pkl [iklljl] 
+ kl 

(1.31) 

where subscripts ± indicate commutator (-) or anticommutator (+), 
P and r denote the first- and second-order density matrices. The usual 
notations are used for the one-electron integrals hij . The two expressions 
are not equivalent in general. 

Both Fl and F2 have their own significance. Matrix Fl, called also 
the (negative) Koopmans matrix[171]' is non-symmetric in general, its 
antisymmetric part giving rise to orbital gradients in MC-SCF theory 
[57, 171]. Matrix F2 is always symmetric and can be considered as the 
generalization of the usual Fockian built up by the actual (correlated) 
density matrix P. The eigenvalues of both matrices can be interpreted as 
approximate ionization potentials[171]. Using the eigenvalues, we may 
speak about a generalized MP partitioning. 

10.1.2 Generalized DK partitioning. While the usual Fock
ian is diagonal in the MO basis set in HF theory, neither Fl nor F2 are 
diagonal in the multi-configurational case. It is hence also possible to 
use the diagonal elements of either Fl or F2 as one-particle energies. 
Defining just the diagonal elements as Ci-S, one arrives at a partitioning, 
which resembles the DK partitioning discussed in Sect.1.S.1 To identify 
this possibility, we shall refer to it as the generalized Davidson-Kapuy 
(GDK) partitioning. 

The advantage of the GDK partitioning from the computational point 
of view in the MC case is obvious. Namely, if using the eigenvalues of 
the Fockian (1.30) or (1.31), one has either to rewrite the reference state 
to the one-particle basis which diagonalizes these matrices, or deal with 
a non-diagonal fI(O), both of which is quite impractical. 

10.1.3 Generalized Dyson partitioning. A further possibil
ity is to substitute Koopmans-type orbital energies in the PT denomina
tors by correlation-corrected ionization potentials coming from, e.g., the 
Dyson equation in the MR case as well, in the same manner as described 
in section 1.8.2 for single reference PT. This interesting possibility has 
not yet been tested numerically. 
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Table 1.3. MCPT total energies of the Be atom in atomic units with various parti
tionings. Basis set: 6-311G**, reference state: APSG[164] 

HF -14.57187 
APSG reference state -14.59095 

Epstein-Nesbet GDK MCPT-Opt 
MCPT2 -14.61384 -14.62346 -14.63458 
MCPT3 -14.60565 -14.62993 -14.63458 
00 (FCI) -14.63337 

10.1.4 Generalized EN partitioning. Instead of following 
a MP-type philosophy, one may also specify Efl.) in the Epstein-Nesbet 
spirit [66, 67]. Several authors have investigated this possibility [70, 72, 
73, 172-178]. Then, an alternative to Eq.(1.29) is 

E~) = (KIHIK). 

However, in the spirit of the bi-orthogonal formulation of MCPT, it is 
more natural to define 

which can be characterized as the generalized EN partitioning. 

10.2 Optimized partitioning in multi-reference 
theories 

10.2.1 Optimized partitioning in MCPT. The zero order 
excitation energies E~), which are parameters in MCPT, can also be 
determined variationally by Eq.(1.10), as it was discussed in Section 
1.6.1. Alternatively, optimal E~) -s can be resulted from setting E~)/
s of (1.14) zero. These two conditions were shown to be equivalent 
for reference states constructed from a single configuration, while they 
give slightly different results in MCPT. The results of the partitioning 
optimization are illustrated in Table 1.3, where the latter condition was 
used. 

10.2.2 Witek-Nakano-Hirao approach. Witek et al.[179, 
180] have also presented an optimally partitioned PT applied to Hirao's 
MRPT formalism. They have also used the equation E~)' = 0 as the 
condition of optimization, and noted that this is equivalent to setting 
'11(2) = 0 in the new partitioning. They have shown that the second order 
result becomes identical to the multireference linearized coupled-cluster 
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(MR-LCCD) energy introduced by Laidig and Bartlett[181, 182]. This 
can be considered as the generalization of the theorem on the equivalence 
between optimal partitioning second order results and LCCD, shown in 
Section 1.7, to the MR case. It is worth to recall in this context that 
Davidson's Hylleraas variational MRPT[183] was also shown to be nearly 
equivalent to MR-LCCD. 

10.2.3 Freed's otirnization approach. A simple and practi
cal way of optimizing energy denominators in single- and multi-reference 
PT has been advocated by Freed and coworkers[184-186]. The essence 
of this approach is to consider a few low-lying states, solve the FCI prob
lem in the basis formed by them, and select optimal zero order energies 
that minimze 

IEFCI - E(3) I + IEFCI - E(4) I 

where all quantities E(4), E(3) and EFcI refer to the small model problem 
of low-lying states mentioned above. In a subsequent large calculation, 
the zero order energies corresponding to the small model space are se
lected as the optimized ones, while others, falling out of the model space, 
may correspond e.g. to the EN partitioning. This approach has been 
shown to work very well. 

A different philosophy of selecting an appropriate partitioning was 
followed by Davidson and coworkers in their OPTn schemes [72, 187]. 
In these works, the partitioning was tuned by selecting an appropriate 
orbital basis. 

Selecting suitable one-particle energies in an MP-type MRPT was also 
studied in Freed's group[188]. In their effective Hamiltonian method 
[21, 189-191], which belongs to the 'perturb then diagonalize' type ap
proaches4 , they have shown that high-preciosity results can be obtained 
starting from a MP type partitioning but introducing a democratic aver
age of valence orbital energies obtained from V N - 1 potentials[192-194]. 
The effective Hamiltonian method has been compared[188] to another 
'perturb then diagonalize' scheme, the so called intermediate Hamilto
nian method[195], in which the proper choice of zero order energies is 
also an important issue[196-200]. 

4The term 'perturb then diagonalize' expresses that one first forms an effective Hamiltonian 
of relatively low dimension by some perturbative approximation to Lowdin's partitioning 
technique, then diagonalizes this effective Hamiltonian to yield several eigenvalues. This 
approach can be contrasted to the 'diagonalize then perturb' schemes, which the CASPT
type methods belong to. The latter methods set up first an active space and solve the FCI 
problem in it, then consider PT corrections to account for the effect of external states. Both 
type of methods are markedly different from the 'single but multi' approach (a single reference 
state of multi-configurational character), such as MCPT. 
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11. Minimizing the norm of RW 

When repartitioning some original splitting of the Hamiltonian, one 
may think about utilizing the parameter for accelerating the convergence 
of the PT series. In fact, several repartitioning schemes have grown out 
of this idea, like that of Feenberg[105], Dietz et al. [128], or Goodson 
[121]. Here we present the idea emerged recently in our laboratory[60]. 

11.1 On the convergence of the PT series 

The theory of Green functions provides a sufficient condition for the 
convergence of the PT series[20]. To recall this, consider the operator 
called the resolvent or the Green function (GF): 

G(z) = (z - 1I)-1 

where z is a complex scalar variable. The GF is an analytical function 
of z except for points where z coincides with an eigenvalue of fI, where 
it has a simple pole. Eigenvalues of fI can be extracted from G(z) by a 
contour integration: 

E(O) = --1. f z Tr G(z) dz K 2m (1.32) 

where the integration has to be performed on a path which contains 
exclusively the K-th (isolated) eigenvalue. This statement can be proved 
by inserting the spectral resolution of fI and performing the integration 
via Cauchy's theorem for contour integrals. 

If one splits the Hamiltonian to a zero-order part and a perturbation 
and defines 

G(O)(z) = (z - fI(O))-1 

as the GF of fI(O) , than G(z) fulfills the relation 

(1.33) 

which is called the (simple form of) Dyson equation5 . This result is easily 
proved by multiplying Eq.(1.33) by the inverse of G(O)(z) (from the left) 
and the inverse of G(z) (from the right), when simply the definition of 
the partitioning fI = fICO) + W is recovered. 

5The true Dyson equation emerges after projecting Eq.(1.33) into a subspace; after this pro
jection the simple perturbation operator W has to be replaced by a much more complicated 
self-energy operator[201]. 
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The formal solution of Eq.(1.33) 

G = 1-G W G A ( A (0) A ) -1 A (0) 

can be expanded into a Taylor series to yield 

6 = 6(0) + 6(0)w6(0) + 6(0)w6(0)w6(0) + ... (1.34) 

Upon integrating this equation according to Eq.(1.32) on an appropriate 
contour term by term, one gets: 

Accordingly, the convergence of this series depends upon the validity of 
expansion (1.34) for all z values touched during the integration6 . At 
a given z value, the convergence of Eq.(1.34) is known to depend on 
the norm of operator 6(0)w: if and only if 116(0)(z)WII < 1, the se
ries is convergent. However, there is an infinite number of ways how 
an 'appropriate' contour can be set up, and finding the necessary and 
sufficient condition for convergence assumes that one has specified the 
most suitable path for the integration, which is usually unknown. There
fore, in practice, this observation yields only sufficient but not necessary 
criteria for the convergence of the PT series. The exact convergence 
conditions, necessary and sufficient, therefore, still remain unknown in 
the Rayleigh-Schrodinger perturbation theory. 

11.2 The norm of RW 

Apart from the problem of finding the most appropriate integration 
path, i.e. the appropriate z values, it is evident that quantity IIC(O)WII 
plays a determining role in the problem of convergence. 

Instead of 6(0), let us focus here on a related quantity, the reduced 
resolvent R. This is defined for the ground state as 

or can be given in spectral resolution as used in previous sections. Un
like 6(0) (z), R is regular if the ground state is non-degenerate in the 
zero-order spectrum. The role of the reduced resolvent in PT can be 
summarized by recalling the compact PT energy formulae at the lowest 
orders[202] : 

6This contour should embed the K-th pole of both {; and {;(O) 
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E(3) = (W R(W - (W) )RW) 

etc. The PT corrections are constructed from the powers of operator 
RW. A natural idea appears therefore to minimize the square norm of 
this operator, II RW 112 with respect to any free parameters that are at 
our disposal. 

As free level shift parameters can always be introduced in PT, these 
can be utilized to minimize IIRWI12. For this purpose one first has to 
choose a norm in the operator space. Let us define the norm of operator 
A as 

expanding in a basis set representation 

IIAI12 = LAIKAjK = L IAIKI2, 
lK lK 

which is the two-norm or Frobenius norm in matrix theory. 
Evaluating IIRWI12 with this definition, we get: 

IIRWI12 = L(1IRWIK)(KIWRI1) = L(1IRW2RI1) 
lK 1 

(1IW211) 
L (E(O) E(O))2' 
11'0 1 - 0 

where the resolution of identity was used to get rid of the summation 
over K. Applying level shifts (1.4) we get 

IIRW'112 = L (1IW211) - 27]I(IIWI1) + 177 
11'0 (E}O) - EaO) + 7]I)2 

where the level shift of the ground state, 170, was set zero to fix the energy 
origin. 

To determine 7]I values that are optimal in this sense, we require 

which yields 

(KIW2IK) + (KIWIK)(E(O) _ E(O)) 
17K = (KIWIK) + (EC:) _ ~aO)) 0 (1.35) 

In what follows, level shifts obtained from this relation will be identified 
as RW-optimized ones. Similarly, the partitioning defined by them will 
be referred to as RW-optimized (shortly: RW-opt) partitioning. 
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Figures 1.13 and 1.14 illustrate the effect of RW-optimization on the 
anharmonic oscillator. Note that the PT is divergent both in the stan
dard and EN partitionings, while it turns out to be nicely convergent in 
the RW-opt case. 
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Figure 1.13. Convergence of the per
turbed energies of the quartic anhar
monic oscillator up to the 50 th order 
for weak coupling constant A = 0.025 

Figure 1.14. The same as for 
Fig.1.13, but with a larger value 
A = 1.0 

11.3 Properties of the RW -optimized 
partitioning 

11.3.1 Uniqueness. The RW-opt partitioning is unique, i.e., 
the resulting shifted denominators do not depend on the initial parti
tioning. To see this, evaluate the shifted denominators 

~K + TJK 
A WkK+ WKK~K 
UK+~~~--------

WKK+~K 

~k + WkK + 2WKK~K 
WKK+~K 

(WKK + ~K)2 - (WKK)2 + WkK 

WKK+~K 

W +~ + (WkK)c 
KK K WKK+~K 

where the abbreviation WkK = (KIW2IK) and the second connected 
moments of the perturbation operator, 
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are introduced. To arrive at our final formula for the shifted denomina
tors, we observe that 

by which the shifted energy denominators become 

(0) (W~"K)C 
b..K+rtK=HKK-EO + (0)' 

HKK -Eo 
(1.36) 

Here both HKK - E6°) and the connected moments (WkK)c are in
dependent of the initial partitioning7 . Therefore we see that the RW
optimization results uniquely defined energy denominators. 

11.3.2 Uncoupled nature. A second property of the RW
opt partitioning can be inferred from (1.35) or (1.36) observing that 
these formulae do not present explicit coupling between the states K. 
(There is, however, an implicit coupling expressed by the presence of 
the square of W in the connected moments.) This uncoupled nature of 
RW-optimization makes it markedly different from the energy-optimized 
partitionings discussed in Sections 1.6-1.10, where the coupling between 
different states represents a serious computational difficulty. The sim
plicity exhibited by Eqs. (1.35) or (1.36) is a great advantage from the 
computational point of view, but gives a warning that the power of this 
simple optimization might not be strong enough. 

The same conclusion is supported by the observation that the RW
opt denominators lie quite close to the EN denominators. The reason 
is that if Woo = 0, the EN partitioning results from Eq.(1.36) simply 
by neglecting the (usually quite small) second connected moments of 
W. The results obtained in the RW-opt partitioning for modest pertur
bations will thus be close to those of the EN partitioning. Moreover, 

since the correction term (Wk K ) cI (H K K - E6°)) is always positive, the 
RW-opt denominators are slightly larger than the EN ones. Thus, low
order corrections are expected to be in absolute value smaller in RW-opt 
partitioning as compared with EN corrections. The difference between 
the EN and RW-opt partitionings is therefore expected to be major if 
the perturbation is strong, i.e., if (WkK)C-S are large. In these cases 
RW -optimization appears to be a promising tool. 

7With no loss of generality, one can choose Woo = O. This can always be achieved - without 

affecting the partitioning - by a simple shift of the origin of the energy scale. Then, EbO) = 
Hoo which clearly expresses a partitioning independence of Eq.(1.36). 
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11.3.3 Degeneracy elimination. An interesting property 
of the RW-opt partitioning is associated with the fact that all shifted 
denominators are definitely positive. This is because (HKK - E6°)) ~ 0 
by definition and the second connected moments (WkK)c are always 
positive quantities (these moments are zero if and only if evaluated with 
an exact eigenfunction of H, when all PT corrections are zero anyway). 
Accordingly, any possible degeneracy of the zero-order spectrum will be 
lifted upon RW-optimization. To have a closer look into the degeneracy 
problem, let us evaluate the limit of the second-order RW-opt correction 
when a state K becomes degenerate with the ground state, i.e., when 
t1K = E~) -E6°) = 0 for some K. This leads to the shifted denominator 
(c.f (1.35)): 

which is a regular expression for nonzero W K K. 

In the special case when the initial partitioning is the EN one, i.e. 
WKK = 0, the shifted denominator diverges thereby eliminating the 
contribution of level K. This is not the accurate result that would 
be obtained from degenerate PT, but it is certainly a better estimate 
than the divergent energy of non-degenerate PT. The result of RW-opt 
partitioning in such a degenerate limit will be the elimination of the effect 
of degenerate levels, a damping of quasi-degeneracies, while summing up 
slightly modified EN-type contributions from non-degenerate states. To 
see how it works in practice, numerical studies will be necessary. 

12. 

12.1 

Constant denominator PT 

U nspld approximation 

With the aim to extract PT formulae in the so called Unsold approx
imation that uses averaged energy denominators, let us define a zero 
order Hamiltonian[203] 

HA (0) = E(O)OA + p V . (1.37) 

Here v stands for a constant or 'averaged' value of excited energy levels, 
thus v - E(O) is an Unsold type excitation energy. The reduced resolvent 
has therefore the form 

A P 
R=-----;-::-:-

v - E(O) 

leading to the second and third order PT corrections 

E(2) = _ (OIW PWIO) = _ (W2)c = _ (H2)c 
Uns¢ld V - E(O) w w 
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E(3) _ (OIW P(W - Woo)PWIO) _ (W3)c __ (fI2)c (fI3)c 
Uns"ld - (v _ E(O))2 - W2 - W + w2 

where w = v - E(O) is the averaged excitation energy, and (fIn)c is the 
n-th connected moment of the Hamiltonian[204] defined recursively 

(fIn+!)c = (fIn+!) - 'f (n) (fIp+!)c(fIn- p). 
p=o p 

Similar formulae can be put down at the higher orders. 

12.2 Optimized U ns~ld approximation: CMX2 

Among numerous possible ways to determine v, here we choose the 
one that makes use of the concept of optimized partitioning. We may 
consider vasa level shift parameter, as it can be seen if regrouping the 
terms of the Hamiltonian as 

where both the zero order operator Eq.(1.37) and the perturbation (the 
three terms in parentheses) are v-dependent. Changing the level shift 
parameter v affects the partitioning of the Hamiltonian, which can now 
be optimized by finding a proper value for v. 

Parameter v is now state-independent, which represents a substantial 
simplification. Zeroing th derivative of (E~:~"ld + E~~~"ld) with respect to 
v, one arrives at[205] 

(1.38) 

This optimized averaged energy is now to be substituted into the PT 
correction formulae to yield 

E(2) 
opt 

(fI2)~ 
- (fI3)c 

o 

(1.39) 

(1.40) 

That is, the third order energy correction in the optimized partitioning 
is zero, in agreement with the general result[150]. 

Determination of parameter v in constant denominator PT by means 
of a variational optimization procedure with the first order Ansatz was 
suggested some time ago by Cullen and Zerner[206]. The difference 



167 

between their results and those presented above is that they did not 
neglect 0(4) terms in the Rayleigh quotient. This has the consequence 
that their second order result is not size extensive but gives an upper 
bound to the energy. 

The second and third order Uns0ld formulae (1.39) and (1.40) can 
be compared to those resulting from the connected moment expansion 
(CMX)[207]. The CMX expansion is a non-perturbative technique to 
approach the exact energy. The lowest order corrections read[207] 

E(CMXl) 

E(CMX2) 

E(CMX3) 

(H) 
(H2)~ 

- (H3)c 

1 ((H4)c(H2)c - (H3)~)2 
- (H3)c (H5)c(H3)c - (H4)~ 

It is apparent that the second order optimized Uns0ld approximation 
coincides with the CMX2 energy, the latter can therefore be considered 
as a constant denominator PT result with optimized partitioning. The 

...... 
::j 
ai ...... 
>-
CI ... 
(1) 
I: 
(1) 

'iii -0 
I-

-75.7 

-75.75 HF 

-75.8 

-75.85 

-75.9 

-75.95 

-76 

-76.05 

-76.1 

-76.15 
1 1.2 1.4 1.6 1.8 

R [Angstrom] 

APSG ---------

APSG+CMX2 
APSG+CMX3 

2 2.2 

lIE 

o 

2.4 

Figure 1.15. Potential curve of H 2 0 in comparison with Fe! 



168 

third order CMX correction, however, is not zero, and it often represents 
a considerable improvement. This is illustrated on the example of the 
symmetric dissociation curve of the water molecule in 6-31G basis set, 
where the CMX correction is shown as applied to the Hartree-Fock (HF) 
and the antisymmetrized product of strongly orthogonal geminal[164] 
(APSG) approximations. 

13. Perturbation corrections to ionization 
energies 

The optimized partitioning elaborated above can also be used when 
calculating ionization potentials perturbatively8. Energy differences like 
excitation energies and ionization potentials (IPs) can be obtained from 
the equation-of-motion[209, 210] 

(1.41) 

that holds for the ionization (excitation) operator n connecting two 
eigenstates of iI, Wo and W K, by 

nwo = WK . 

The ionization energy is w = EK - Eo. Introducing the "super" Hamil
tonian or Liouvillean 1-l defined by its action on any operator A being 
1-l£1 = [iI, A], one may rewrite Eq.(1.41) as [211-213] 

1-ln = wn . (1.42) 

Ionization operators are thus eigenfunctions of a superoperator defined 
over ordinary operators, and one gets the corresponding ionization en
ergy as an eigenvalue. 

To apply standard approximations to the solution of this eigenvalue 
problem, one needs a scalar product (.1.) among the operators that con
stitute the domain of 1-l. Accordingly, bra- and ket vectors of the oper
ator space are identified as (.1 and I.). 

To obtain a perturbative series for w, the super Hamiltonian is split 
for a zero order superoperator and a perturbation 

1-l = 1-l(O) + W 

and it is supposed that the solutions of the zero order problem 

1-l(O) In(O») = w(O) In(O») 

8 An early, substantial paper on the perturbative calculation of ionization potentials was 
written bu Hubac and Urban[208]. 
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are known. Expanding the exact ionization energy w to a Brillouin
Wigner perturbation series one gets the" super" counterpart of the well 
known sequence [2] : 

(1.43) 

where the reduced resolvent is defined so that 

R(O) (w(O) -H(O)) = 1-0 

with 

and the unity superoperator acting as 

A suitable approximation to the IPs is given by the Koopmans ap
proximation[148], which is recovered at zero order if specifying the zero 
order superoperator as 

Here F is defined by FA 
neutral molecule. 

H(O) = F. 

[F, A], and fr denotes the Fockian of the 

Since any product of second quantized creation and annihilation op
erators (corresponding to the MOs of the neutral molecule) is an eigen
operator of F, the zero order solution for the ionization from the ith 
canonical orbital looks: 

The above specification of H(O) therefore involves w(O) = -Ci and 0 = 
lai)(ail . 

13.1 The ionization operators' subspace 

To proceed further the scalar product and the superoperator of unity 
has to be specified more in detail. 

For any operator describing single ionization like 

(1.44) 

the binary product can most simply be [212, 214] 

(1.45) 
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where I H F) corresponds to the neutral system 9 . In order that the prod
uct of Eq.(1.45) becomes a scalar product in the strict sense, the oper
ators having zero norm have to be excluded from those listed in (1.44). 
Furthermore, it is useful to select an orthonormal set with respect to 
(1.45) among the operators in (1.44). This is usually achieved by devis
ing the following subset of (1.44)[214]: 

{aj} U {ab} U {a} abaclb > c} U {ab aj aklj > k} 

U {a}al ab ac adlj>k, b>c>d} U {aba1 aj ak azlb>c, j>k>l} U .. (1.46) 

Having an orthonormal set of single ionization operators, the spectral 
resolution of the identity superoperator can be put down as: 

p pqr 
(q>r) 

+ N~,rstlapq,rst)(apq,rstl + ... 
pqrst 

(p>q,r>s>t) 

with the shorthands 

N:'qr = (np nqnr + np nqnr) , 

N~,rst = (npnq nrnsnt + npnq nrnsnt) , 

np denoting the occupation number, and np = 1 - np. 

13.2 PT formulae for single ionization 

The fact that basis vectors in (1.46) are eigenvectors of F, permits to 
compose the spectral form of superoperators F and n(O)(z) as: 

F = ~)-fp)lap)(apl + L (fp - fq - fr)lap,qr)(ap,qrIN:'qr + .. (1.47) 
p pqr 

(q>r) 

and 

gIn this section the orbital labeling follows the convention: a, b, ... virtual, i, j, ... occupied, 
p, q, . .. generic. 
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where P = 1- lai)(ail was utilized for getting the latter expression. 
Substituting Eq.(1.47) and Eq.(1.48) into the PT correction terms of 
Eq.(1.43) one finds: 

w~2) = (aiIWR(O)(Wi)Wlai) = 2: (aiIWap,qr) (ap,qrIWai) N:qr (1.49) 
pqr Wi - Ep + Eq + Er ' 

(q>r) 

for the second order term, and 

W~3) = (aiIWR(O) (wi)WR(O) (wi)Wlai) 

2: [2: (ai IWas,tu) (as,tuIWap,qr) N+ 
pqr stu Wi - Es + Et + Eu s,tu 

(q>r) (t>u) 

""' (ai IWast,uvx) (ast,uvx IWap,qr) N+ j X 

~ Wi - Es - Et + Eu + Ev + Ex st,uvx 
stuvx 

(s>t, u>v>x) 

+ 

(ap,qrIWai) N+ (1.50) 
x Wi _ Ep + Eq + Er p,qr 

for the third order term. 
Formulae (1.49) and (1.50) are relatively simple since only three op

erators' product contribute at maximum to the second order expression, 
while only five operators' product to the third order correction. No 
higher operators' product from (1.48) appear, due to the rank reduc
ing nature of the commutator, which has the effect that matrix ele
ments like (apq,rstIWai) or (astu,vxyzIWap,qr) are all zero. Interestingly 
(ap,qrIWast,uvx) is also zero, but not (ast,uvxIWap,qr), showing that W is 
a non-hermitian operator if the scalar product is defined as above. 

Utilizing the basic anticommutation rules, the second order correction 
ofEq.(1.49) is found to be identical with the ordinary second order Dyson 
correction or Born collision[95, 212, 215] for the IPs. 

It may also be simply verified that 

in the canonical basis, consequently the first order correction in Eq.(1.43) 
vanishes. The fact that 

Wi = -Ei + 0(2) 

may be interpreted as the formulation of Koopmans' theorem[148] in 
this framework. 
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13.3 Optimal level shifts for the ionization 
potential 

The second order Dyson correction to the ionization potential, Eq.(1.49) 
is known to perform poorly[216, 217], and a great deal of effort has been 
put into going beyond this approximation. Some studies proposed to 
include at least certain terms of the third order[218, 219], others applied 
a wave function corrected for electron correlation in Eq.(1.45), instead 
of the Fermi vacuum indicated there. The idea of modifying the ex
pression of the binary product was investigated[220-223]. Level shifts 
have also been used to affect the convergence, and consequently alter 
the performance of low order approximations[215]. 

Another way to step beyond Eq.(1.49) is to apply a strategy differ
ent from a simple PT. For example, Green's functions techniques that 
use non-diagonal approximation of the self energy matrix fall into this 
category[217, 222-224]. 

In this section we apply a simple level shift of the form 

HO' = :F - L Ap,qrlap,qr)(ap,qrIN:'-qr 
pqr 

(q>r) 

Wi W + L Ap,qrlap,qr)(ap,qrIN:'-qr 
pqr 

(q>r) 

and determine Ap,qr in the spirit of the optimized partitioning. Rewriting 
Eq.(1.50) for the primed partitioning, and equating it zero term by term, 
one is lead to: 

stuvx 

(aiIWast,uvx) (ast,uvxIWap,qr) N+ = 0 
-Ei - Es - Et + Eu + Ev + Ex st,uvx 

(1.51) + L 
(s>t, u>v>x) 

for eachpqr, q > r, ((p E ace) 1\ (q, r E virt))V((p E virt) 1\ (q, r E ace)). 
Rearranging Eq.(1.51) and neglecting the term arising from five opera
tors' product one gets: 

[6 6 6 !:l.ip - (ailwas,tu)(as,tuIWap,qr)] N+ L sp tq ur qr (aiIWap,qr) s,tu 

stu !:l.~~ + As,tu 
N:'-qr (1.52) 

(t>u) 

which is a linear inhomogeneous system of equations for 1/(!:l.~~ + As,tu) 
with !:l.t~ = -Ei - Es + Et + Eu' Note, that level shifts defined by the 
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criterion (1.51) depend on index i. This means that to each ionization 
potential there is a different set of level shift parameters that set the 
third order correction to zero. 

Table 1.4. The first ionization potentials in atomic units for the H 2 0 molecule, at 
geometry ROH=0.96 A, a(HOH) = 105 0 and for the N2 molecule at RNN=l.l A. 
Koopmans values and perturbative approximations, such as second order Dyson cor
rection (DY2), shifted Born collision (SBC), and shifted second order Dyson correc
tion with shifts got from Eq.(1.52) (OPTDY2) are tabulated. The so-called EOMIP 
results, got with using the CCSD wave function are given for comparison. 

basis FCI Koopmans OPTDY2 
H20 molecule 

STO-3G .317 .308 .391 .303 .282 .299 
6-31G .436 .427 .501 .398 .387 .417 

6-311G** .442 .499 .410 .404 .429 
N2 molecule 

6-31G .544 .629 I .529 .498 .545 
6-31G** .562 .630 .545 .522 .557 

To illustrate the effect of these shift parameters, a few numbers are 
collected into Table 1.4 relating the first ionization potentials of the wa
ter and nitrogen molecules computed by various methods. Acronym SBC 
in the table refers to the so-called shifted Born collision approximation 
[215], that is obtained if neglecting of diagonal matrix elements of su
peroperator W, which gives just the EN partitioning in this framework. 
On the basis of the numbers presented, one can conclude that level-shift 
optimization does improve upon the second order Dyson approximation 
and also on SBC values. However, more thorough studies should be 
carried out to investigate the reliability of the optimized second order 
correction for IPs. 

Finally, let's mention that the electron attachment can be dealt with 
in a very similar manner. Carrying out the derivation one is led to just 
the same structure for the PT corrections as Eq.(1.49), Eq.(1.50) with 
signs reversed. The same holds for the PT terms of the level shifted 
partitioning, if shift parameters are introduced with proper signs. 
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