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Optimized partitioning in perturbation theory: Comparison
to related approaches

P. R. Surjána) and Á. Szabados
Eötvös University, Department of Theoretical Chemistry, H-1518 Budapest 112, POB 32, Hungary

~Received 4 October 1999; accepted 15 December 1999!

A generalized Epstein–Nesbet type perturbation theory is introduced by a unique, ‘‘optimal’’
determination of level shift parameters. As a result, a newpartitioning emerges in which third order
energies are identically zero, most fifth order terms also vanish, and low~2nd, 4th! order corrections
are quite accurate. Moreover, the results are invariant to unitary transformations within the zero
order excited states. Applying the new partitioning to many-body perturbation theory, the perturbed
energies exhibit appealing features:~i! they become orbital invariant if all level shifts are optimized
in an excitation subspace; and~ii ! meet the size-consistency requirement if no artificial truncations
in the excitation space is used. As to the numerical results, low order corrections do better than those
of Mo” ller–Plesset partitioning. At the second order, if the single determinantal Hartree–Fock
reference state is used, the CEPA-0~5LCCD! energies are recovered. Higher order corrections
provide a systematic way of improving this scheme, numerical studies showing favorable
convergence properties. The theory is tested on the anharmonic linear oscillator and on the electron
correlation energies of some selected small molecules. ©2000 American Institute of Physics.
@S0021-9606~00!31210-7#

I. INTRODUCTION

Perturbation theory~PT! offers an efficient tool for esti-
mating energetics of weak interactions, and is widely used in
various areas of physics and chemistry. It is based on sepa-
rating a zero order part of the Hamiltonian from a residual
interaction operator, the perturbation. This separation speci-
fies thepartitioning in PT.

In a recent Letter,1 we proposed a repartitioning of the
Hamiltonian which emerged by ‘‘optimizing’’ the energy de-
nominators in PT, i.e., by introducing appropriate level shifts
for which a linear algebraic equation has been derived. Our
aim in this paper is to present a more elaborate theory, to put
the method into the context of other approaches, and to apply
it to a wider range of examples. We shall show, for instance,
that, as applied to the correlation problem in a many-electron
system with the Hartree–Fock reference state, thesecond
order correction in the new partitioning is the same as that
one would obtain with the LCCD method~linearized coupled
cluster with doubles!.2 ~This particular method has already
been introduced to quantum chemistry under various names:
linearized CPMET,3,4 CEPA-0,5 and D-MBPT(̀ ).6–8!
Higher order results will also be resulted demonstrating sub-
stantial improvements in the convergence properties at the
first 10–20 orders of the PT series, even though at the very
high orders, features of asymptotic convergence were noticed
in some cases.

The paper is organized as follows. The exposition of the
theory is presented in Sec. II., while numerical results are
discussed in Sec. III. The theoretical section is though pre-
ceded by an introduction collecting our notations and dis-
cussing some previous results in this field.

A. Perturbation theory

On solving the Schro¨dinger equation,HC5EC, by PT,
we split the HamiltonianH into a zero order partH0 and a
perturbationW:

H5H01W, ~1!

and suppose that the problem ofH0 has been fully solved:

H0uk&5Ek
0uk&, k50,1,2, . . . . ~2!

Then, the exact wavefunctionC and the energyE, assuming
convergence, can be developed in terms of the zero order
quantities as2,7,9

uC&5u0&1 (
n51

`

@R~W2DE!#nu0&, ~3!

E5E0
01 (

n50

`

^0uW@R~W2DE!#nu0&, ~4!

where the intermediate normalization^C0uC&51 is used,
the reduced resolvent ofH0 is specified in spectral resolution
as

R52 (
kÞ0

uk&^ku

Ek
02E0

0
, ~5!

and the energy correction isDE5E2E0
0. The orders of PT

are defined by the powers ofW. At a given order, using
merely the estimation from the previous orders forDE in Eq.
~4!, one arrives at the Rayleigh–Schro¨dinger perturbation
theory ~RSPT!.a!Electronic mail: surjan@para.chem.elte.hu
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B. Level shifts

To achieve a satisfactory convergence of PT, a proper
choice ofH0 is crucial. For any choice ofH0, one can freely
modify the partitioning — without affecting the zero order
states — by adding/subtracting weighted projectors as

H5S H01 (
kÞ0

lkuk&^ku D 1S W2 (
kÞ0

lkuk&^ku D
5H081W8, ~6!

where the weighting factorslk are calledlevel shifts, since
they affect the zero order excited energy levels. Several au-
thors have discussed and used such shifts in PT for acceler-
ating or ensuring convergence of the series, which is espe-
cially important in quasi-degenerate situations.10–14Complex
shift parameters were also investigated in some cases.15–17

Level shift operators as introduced in Eq.~6! provide
examples to general operatorsA that are nilpotent when act-
ing on the zero order ground state:Au0&50. Such operators,
which clearly do not affect the zero order ground state en-
ergy, but modify the excited levels, were considered a long
time ago.18–20Kutzelnigg21 presented a many-body represen-
tation of operators like this, and assigned the name‘‘gener-
alized Epstein–Nesbet perturbation theory’’to such a repar-
titioning. This name is justified because by a special choice
of the level shift parametersl i one may arrive at the
Epstein–Nesbet partitioning22,23 where all diagonal matrix
elements of the perturbation operatorW8 are zero.

C. Perturbation theory by projectors

A unifying formalism for many perturbational treatments
is offered by Löwdin’s partitioning technique.9,24 In this ap-
proach, two Hermitian and orthogonal projectors,O and P,
are introduced so that

O1P51.

The full Schrödinger equation is partitioned as

~OHO1OHP!C5EOC, ~7!

for the O-block, and

~PHO1PHP!C5EPC ~8!

for the P-block. Specifically, if one chooses

O5u0&^0u,

with u0& being the zero order ground state, and splits the
Hamiltonian according to Eq.~1!, one gets for the energy

E5^0uHu0&1^0uWuPC&, ~9!

and for theP-component of the wave function,

PWu0&1PH0uPC&1PWuPC&5E0
0uPC&1DEuPC&,

whereDE5E2E0
0. This latter equation can be rearranged as

uPC&5RWu0&1RWuPC&2DERuPC&, ~10!

where, the inverse being taken in theP-space,

R5~E0
02PH0!21P

is the same reduced resolvent as introduced in Eq.~5!. An
iterative solution of Eqs.~9! and~10! yields the exact result,
while various approximations and strategies cover different
PT schemes.~Note that a variety of notations has been intro-
duced for the quantitiesO, P and R in literature. Here we
adopt those introduced by Lo¨wdin.9!

II. THEORY

In this section we determine a set of level shift param-
eters by imposing an approximate variational condition1

which results in a system of linear algebraic equations. The
solution of these will be shown to be equivalent to eliminat-
ing any third-order type terms in the new partitioning defined
by the level-shifted zero order Hamiltonian,H08. Then we
show how the second order energy in the new partitioning
can be obtained as a partial resummation of the initial series.
The resummation results in a compact formula, which can
easily be obtained by the projector operator technique. This
formula, within the framework of many-electron theory as
applied to the correlation problem, is equivalent to the en-
ergy expression in the CEPA-0 or LCCD2,5 method. Going to
higher orders in the new partitioning appears to be natural
way for a systematic improvement of this latter scheme.

A. Optimal level shifts

To begin with, let us start from a perturbative splitting of
the Hamiltonian and simultaneously redefine the zero order
and the perturbation operator, as indicated in Eq.~6!. Level
shift parameters,l i , introduced like this, do affect individual
terms of the perturbation series, but not the converged sum.
This can be expressed by the variational like condition,

]

]lk

^CuHuC&

^CuC&
50, k51,2, . . . . ~11!

In this spirit, one may regard level shifts as variational pa-
rameters and set stationary the Rayleigh quotient taken with
a trial wavefunction. For example, with the aim of optimiz-
ing low order results, one may write

]

]lk

^C [1] uHuC [1]&

^C [1] uC [1]&
50, k51,2, . . . , ~12!

where C [1] is the first order Ansatz for the wavefunction
having the expansion

uC [1]&5u0&2 (
kÞ0

Wk0

Ek
02E0

01lk

uk&. ~13!

Since the total number of level shift parameters can be as
large as the free parameters inC [1] , the solution of Eq.~12!
may, in some cases, yield even the exact result.@In reality,
however, the situation is a bit more complicated since from
Eq. ~12! one can only determine thoselk values for which
W0kÞ0. In electron correlation theory, for example, the so-
lution of Eq. ~12! gives CID.# As we do not seek exact re-
sults, rather a meaningful approximation to the level shift
parameters to be used in PT, we rewrite the Rayleigh-
quotient as
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^C [1] uHuC [1]&

^C [1] uC [1]&
5E081E181E281E381O~4!. ~14!

Here and further on, primes refer to the new partitioning.
NeglectingO(4) terms, the variational requirement takes the
form

]

]lk
~E281E38!50, k51,2, . . . . ~15!

Here the zero and first order terms are left out sinceE08

1E185^0uHu0& is independent of level shifts. Substituting
the expressions ofE28 and E38 into Eq. ~15!, and carrying
out the variation, one finds

^0uWR8uk&^kuW8R8Wu0&2W00̂ 0uWR8uk&^kuR8Wu0&

50, k51,2, . . . , ~16!

where the resolvent of the shifted zeroth order is

R852(
iÞ0

u i &^ i u
D i

, ~17!

with the shifted denominatorsD i5Ei
02E0

01l i . Equation
~16! defines the level shifts in the new partitioning.

An interesting feature of this partitioning is that the third
order energy is explicitly zero. This fact can be understood
by putting down the third order RSPT formula,

E385^0uWR8W8R8Wu0&2W00̂ 0uWR82Wu0&

5 (
kÞ0

Ek
38 , ~18!

where, writing out the resolvents explicitly,

Ek
385

W0k

Dk
S (

iÞ0

WkiWi0

D i
2~W001lk!

Wk0

Dk
D . ~19!

Substituting formulas for the resolventR8 and the shifted
perturbation operatorW8 into Eq. ~16!, its left hand side

turns out to be equalEk
38 . That is, Eq.~16! is equivalent to

the requirement

Ek
3850, k51,2, . . . .

The above condition implies that, in Eq.~19! the expres-
sion in curly brackets should be zero:

(
iÞ0

WkiWi0

D i
2~W001lk!

Wk0

Dk
50, k51,2,. . . , ~20!

which is quite useful for the practical determination oflk’s.
This system of equations can be brought to the form1

(
j Þ0

Ak j

1

D j
51, k51,2, . . . , ~21!

where

Ak j5dk j~Ej
02E0

02W00!1
Wk jWj 0

W0k
. ~22!

This shows that, if matrixA is nonsingular, nonzero energy
denominatorsDk are uniquely determined as the solution of

an inhomogeneous linear system of equations. Those shifts,
which do not emerge in the expansion of the first order
wavefunction are certainly not defined by Eq.~21!. The sim-
plest choice is to set these parameters to zero.

Vanishing of allEk
38’s has important consequences for

higher orders, too. Explicitly, all terms containing the ex-
pression

^ku~W82W00!R8Wu0& ~23!

will be zero for all statesk which contribute toE38, i.e.,
which directly interact with the ground state. In particular, of
the fifth order formula,

E585^0uWR8~W82W00!R8~W82W00!R8

3~W82W00!R8Wu0&

22E28^0uWR82~W82W00!R8Wu0&

2E38^0uWR82Wu0&, ~24!

the last term is zero due to the vanishing ofE38, while the
second term is zero due to Eq.~23!. Consequently, merely
the first term may contribute if there are excitations in the
two middle resolvents, which do appear here, but are absent
in E38. The fifth order contribution is therefore expected to
be very small. It may even be zero in a model where neither
of the W0k matrix elements vanish. Similar considerations
apply for higher orders, too.

The fact that there is no third order correction in the new
partitioning remounts to earlier works by Feenberg, Gold-
hammer and Amos.25–27 In these studies possibilities for
choosing one single repartitioning parameter were investi-
gated, the redefined splitting written as

H085m21H0, W85W1
m21

m
H0.

Requiring that third order energy term in this new partition-
ing vanishes proved to be considerably successful.25,26How-
ever, it may be easily shown that a perturbation series emerg-
ing like this does not provide size consistent correction at
finite orders.

Another way of optimizing zero order energies was fol-
lowed by Finleyet al.28 Their strategy is to select a relatively
small subspace of the most important zero order eigenfunc-
tions and, within this space, minimize the functional

uEgs2E3u1uEgs2E4u, ~25!

with respect to the zero order excited eigenvalues. In this
functional,Egs is full CI ground state energy,E3 andE4 are
the 3rd and 4th order PT energies, and all the three quantities
are computed within the subspace chosen. Inclusion of the
fourth order term in~25! assures unique determination of the
selected zero order energies. Test calculations result im-
proved low order estimations and show convergent series
when ordinary partitionings~MP, EN! diverge.29,30 Clearly,
the choice for the subspace for optimization is a crucial
point, and should be reconsidered for each system, and each
basis set.
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B. Resummation of RS-PT series

A useful transformation of formula~20!, suitable for an
iterative treatment, is given by1

D i5D i
0 W0i

W0i2( j Þ0 ~Wi j Wj 0 /D j !
~ iÞ0!, ~26!

whereD i
05Ei

02E0
0 is the unshifted denominator. Equation

~26! is fully equivalent to Eq.~20! if W00 is zero, which can
be set in the initial partitioning without loss of generality. It
is not difficult to see that the second order guess to the en-
ergy,

E2852(
iÞ0

uW0i u2

D i
, ~27!

is equivalent to an infinite order partial resummation of the
original partitioning. Substituting Eq.~26! into ~27! we get

E2852(
iÞ0

uW0i u2

D i
0

1 (
i ,kÞ0

W0iWikWk0

D i
0Dk

5^0uWRWu0&1^0uWRWR8Wu0&. ~28!

Here the first term is the original second order energy. The
second term is of order 3, and it can be further expanded by
substituting Eq.~26! repeatedly to yield

E285^0uWRWu0&1^0uWRWRWu0&

1^0uWRWRWRWu0&1 . . .

5 (
n51

`

^0uW~RW!nu0&, ~29!

which is clearly a part of the infinite order~exact! PT energy;
cf. Eq. ~4!. More precisely, we see that all type of terms of
the PT series have been summed up which would emerge
also in Brillouin–Wigner ~BW! theory.31,32 We may call
these contributions BW type terms, which differ only from
true BW results in that the resolventR is constructed from
zeroth order excitation energies (Ek

02E0
0), and not from BW

denominators (Ek
02E0) containing the exact energyE0 .

Writing this result more compactly becomes possible by
introducing the reaction operatorT:

^0uTu0&5W001E28, ~30!

where, from~29!,

T5W1WRW1WRWRW. . . ~31!

that satisfies an equation of the Lippman-Schwinger type,

T5W1WRT, ~32!

since the iteration of~32! with T(0)50 leads immediately to
~31!. The formal solution of~32! is

T5~12WR!21W, ~33!

indicating that the second order energy in the optimized par-
titioning can be compactly expressed as

E285^0u~12WR!21Wu0&2W00

5^0uW~12RW!21RWu0&. ~34!

The last equality can be seen by subtracting and adding the
term ^0uW(12RW)21u0&. It is of course also possible to
express the resolventR8 of the shifted zero order in terms of
the initial resolventR. Comparing Eq.~34! to Eq.~27!, since
the latter can be rewritten with the shifted resolventR8 as
E285^0uWR8Wu0&

R85~12RW!21R. ~35!

To accelerate convergence of the PT series, Dietz
et al.33,34 have proposed introducing a damping operatorL
when solving Eq.~31! iteratively. Besides a simple diagonal
approximation toL, they applied the formula

L5
RW

RW21

as well. Comparing Eq.~35! with this expression, the rela-
tion between their damping operator and our shifted resol-
vent is found to be

L52R8W.

Besides the apparent similarity of the formulation of the
theory, the procedure followed by Dietz et al. and the present
level shift technique differ in two major features. One con-
cerns the subspace, in which the matrixR8 or L is essen-
tially constructed. The above authors study several different
ways of choosing a model space, while in our case only
those levels contribute toR8, which directly interact with the
ground state. The other important point is that, in the case of
an RS expansion, we completely neglect terms originating
from the second term of Eq.~10!, as shown in the next sec-
tion. Though these terms are kept in Refs. 33,34, without
eliminating them in our case, size consistency of the RS
scheme would be broken.

C. Derivation by projection operator technique

In the spirit of the partitioning technique, the
P-component of the wavefunction is defined by Eq.~10!. If
we neglect the last term in this equation~which can be nu-
merically justified only if the energy correction is a second
order quantity!, we have

uPC&5RWu0&1RWuPC&, ~36!

having the formal solution

uPC&5~12RW!21RWu0&. ~37!

Iteration of Eq.~36!, or the expansion of the inverse in~37!,
yields

uPC&5RWu0&1RWRWu0&1•••5RTu0&. ~38!

On substituting this result into the energy formula~9! we
find

E5^0uHu0&1^0uWRTu0&5^0uHu0&1^0uWRWu0&

1^0uWRWRWu0&••• , ~39!

in perfect agreement with~29!.
The equivalence of these results can also be seen on the

compact formulas. Inserting~37! into Eq. ~9!,
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E5^0uHu0&1^0uW~12RW!21RWu0&

5E0
01^0uW1W~12RW!21RWu0&, ~40!

which agrees with~34!. This derivation, of course, does not
contribute to any new result as compared to the formulas of
the previous section, but it makes transparent how the BW-
type terms, accounted for byE28, emerge by neglectingDE
in Eq. ~10!.

D. Connection to CEPA-0

An interesting feature of the optimized partitioning is
that, as applied to the correlation problem in many-electron
theory, the well known CEPA-0 energy formula is recovered
at the second order. This can be demonstrated in several
ways, since the very same method has been described in the
literature in different manners. The CEPA-0 equations,5

^f i j
abuH2^0uHu0&uC [1]&50 ~41!

(f i j
ab denoting doubly excited configurations! originate from

the variational problem of the functional,

F5^C [1] uH2^0uHu0&uC [1]&, ~42!

which upon substituting the first order Ansatz with shifted
denominators, can be expanded as

F5^0u~11WR8!~H2^0uHu0&!~R8W11!u0&

5^0uWR8Wu0&1^0uWR8W8R8Wu0&

2W00̂ 0uWR82Wu0&5E281E38. ~43!

This was just the functional we used in Eq.~15! to get the
level shifts, which, if only doubles are taken into account, are
just the free parameters inC [1] .

Equivalence ofE28 and the CEPA-0 correlation energy
can also be inferred from the energy formula~34!, which is
clearly the same as the energy formula in the LCCD
method,2,35 the latter being known to be equivalent to
CEPA-0. The analogy between the resummation discussed in
Sec. II B and the D-MBPT(̀ ) method~another variant of
deriving the same energy6–8! is also obvious.

E. Properties of the optimized partitioning

Based on the derivation by projector operator technique
and as suggested by the equivalence of the second order
result and LCCD, a few properties ofE28 are immediately
evident. Namely, we get an energy which is, though not
variational, size extensive, and invariant to unitary transfor-
mations among zeroth order excited states. In particular,E28

~more generally,En8 if computed in the subspace present in
C [1] ) is invariant to orbital rotations within the occupied
MOs ~and also to those within virtuals!. This is an especially
appealing feature as this makes it possible to perform the
calculations, e.g., in terms of localized orbitals without af-
fecting the PT formulas. This property markedly distincts the
optimized partitioning from that of Epstein22 and Nesbet,23

as well as from that of Mo” ller and Plessett,36 since the former
is not orbital invariant at all, while the orbital invariant for-
mulation of the latter37,38 requires the use of nondiagonal

resolvents. In the optimized partitioning the same second or-
der formula~27! gives the same result whatever orbitals~ca-
nonical or localized! are used.

We note that the equivalence betweenE28 and the
CEPA-0 ~or LCCD! energy holds only if one uses the
Hartree–Fock wavefunction as the reference stateu0&. The
optimization of the partitioning by level shifts is, therefore, a
more general procedure, with a possibility of a wider range
of applications. These may include truly one-electron prob-
lems ~an example for this will be shown in Sec. III A!, or
multi-configurational reference states in the many-body
problem.

To investigate size extensivity of finite order contribu-
tions in the optimized partitioning in general, let us consider
two noninteracting subsystemsA andB, characterized by the
equationsH05HA

01HB
0 , W5WA1WB , u0&5u0A0B&. As-

suming that eigenvectors ofHA
0 are not mixed with those of

system B if they belong to a degenerate subspace, it is
enough to show that in the noninteracting situation level
shifts can be assigned to subsystemA or B. Regarding the
structure of matrixA in Eq. ~22!, it is apparent that a nonzero
intersystem element may only emerge in the case where
^ku5^kA0Bu and u i &5u i B0A&. ~This is because matrix ele-
ments of type^kAi BuWu0B0A& are all zero.! In the former
special case, since

Wki5^kAuWAu0A&^0Au i B&1^0BuWBu i B&^kAu0A&50,
~44!

Akl again proves to be zero. This means that matrixA is
blockdiagonal if subsystemsA and B are infinitely apart,
consequently level shifts are determined solely by expres-
sions of one subsystem or another. If, however, mixing be-
tween degenerate eigenvectors of systemA andB may occur,
size consistency of finite order corrections is violated only if
PT expressions are not invariant to unitary transformations
within a degenerate subspace. The Epstein–Nesbet partition-
ing represents such an example. In our case, however, owing
to the invariance of the optimized partitioning to unitary
transformation of zeroth order excited states, the size consis-
tency requirement is fulfilled at second order, even if degen-
erate eigenvectors belonging to different subsystems are
mixed. As to fourth and higher orders, size consistency is
recovered only if terms including unaffected levels are also
invariant to unitary transformation of degenerate eigenvec-
tors. Therefore, MP partitioning is preferred to EN, for these
levels.

An important advantage of this reformulation is that,
once the new partitioning is defined, one may go beyond the
second order in a straightforward manner. A few preliminary
higher order results in the new partitioning will be presented
in the following section. The convergence properties of PT
in the new partitioning will also be studied.

Since, as the linear nature of Eq.~21!, or the equivalence
with LCCD shows, the optimized partitioning is unique, it
can be found by starting from any initial partitioning. One
has to recall, however, that only levels of those states will be
determined which directly interact with the reference state.
Accordingly, when 4th and higher order results for the cor-
relation energy are computed, the singles, triples, and qua-
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druples are treated in the original partitioning. This problem
could be, in principle, circumvented by using a more accu-
rate Ansatz instead ofC [1] , but this method does not seem to
yield equations that are easily tractable.

III. EXAMPLES

A. Anharmonic oscillator

The eigenvalue problem of a perturbed one dimensional
harmonic oscillator is one of the most simple study cases.
Considering a perturbation proportional to the fourth power
of the coordinateq, the Hamiltonian can be written in arbi-
trary units as

H5 1
2 ~p21q2!1gq45H01W, ~45!

with p being the operator of momentum and the scalarg
measuring the strength of the perturbation. Most easily one
may start off with the partitioning suggested by the physics
of the problem, as indicated in Eq.~45!, consideringgq4 as
the perturbation, with the solution of the zeroth order of the
well known form

H0un&5~ n1 1
2! un&. ~46!

In this case there are only two levels that interact with the
ground state, for the corresponding matrix element ofW is

W0k5
g

4
~215k14k21~k11!2!d0k

1
g

2
Ak~k21!~k11!2d2k

1
g

4
Ak~k21!~k22!~k23!d4k . ~47!

FIG. 1. Ground state energy of the anharmonic oscillator~a!, and shifted
zeroth order energies~b! as a function of the coupling strengthg in arbitrary
units. Results of the standard partitioning, i.e., considering the anharmonic
term as a perturbation, are identified by STNDn. Optimized partitioning is
referred to as OPT; for details see the text. An exact result~solid line! was
obtained by solving the Schro¨dinger equation numerically. Labels of~b! are
those used in text.

FIG. 2. Absolute energy~a! and deviation from full CI~b! at around the
equilibrium on the potential curve of the H2 molecule in the@3s2p1d# basis
set ~Ref. 42!, in MP and optimized partitioning.

FIG. 3. Illustration of the convergence of perturbation series estimating the
total energy of the H2 molecule in the@3s2p1d# basis set~Ref. 42! ~a! and
the He atom in the 10s2p1d basis set~Ref. 49! ~b!.
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This leads to the expansion of the first order wavefunction,
Eq. ~13!, to become

uC [1]&5u0&2
~ g

2!A18

21l2
u2&2

~ g
4!A24

41l4
u4&. ~48!

Level shiftsl2 andl4 can be determined using Eq.~20! in a
straightforward way. Sums appearing in these equations ex-
tend only for a few terms, because the matrix ofW is sparse
on the basis of the zeroth order eigenvectors.

Perturbative results up to fourth order, calculated in the
partitioning of Eq.~45! and in the optimized splitting are
plotted in Fig. 1~a! as a function of the strength of the per-
turbation. Standard partitioning of Eq.~45! is labeled by
STND; OPT refers to the optimal repartitioning. A third or-
der correction of the optimal partitioning is not shown, for
there is no third order contribution in this series. Figure 1~a!
shows, that as compared to the optimal partitioning, standard
splitting gives meaningful results only in the range of a weak
perturbation. Repartitioning by optimal level shifts drasti-
cally improves the results even at a relatively large perturba-
tion.

It might be interesting to see, how shifted zeroth order
eigenvalues vary with the strength of perturbation. These
curves are plotted in Fig. 1~b!. It is apparent that the shifted
zeroth order energy of the second level is a slowly varying
function of g, while level 4 runs across a singularity atg
51/6, eliminating the corresponding term in the perturbation
expansion at that point. After the pole the shifted denomina-
tor even becomes negative. However, one would beware of
assigning any physical interpretation to these values, as they
are results of a purely mathematical consideration.

Computing higher than third order of PT, one faces the
question of determining shifts, that are not set by optimiza-
tion, but appear due to the interaction with an excited zeroth
order state. These arel6 and l8 , in this special case, at
fourth order. One choice is to set these shifts zero; this cor-
responds to keeping the original partitioning for these diag-
onal matrix elements. Another possibility is to perform PT in
the subspace determined by the levels appearing in the opti-
mization, that is, to neglect at every order terms including
levels for whichW0i50. The curve labeled OPT4 in Fig.
1~a! is calculated using the former choice, R-OPT4 is ob-

tained by the latter one, ‘‘R’’ indicating ‘‘restricted.’’ Com-
paring the performance of the different fourth order schemes,
one can see that, in the case of weak or moderate perturba-
tion, OPT4 lies closer to the exact result. Increasing the
strength of perturbation to a relatively large value, it is OPT4
that first starts to deviate significantly from the exact curve
~at g;0.5), but it remains still better than OPT2 up tog
;0.7. The R-OPT4 results remain quite close to the exact
line within the full range investigated.

We may therefore conclude that, for the problem of an
anharmonic oscillator, the optimization of the partitioning in
Rayleigh–Schro¨dinger PT extends its applicability to very
strong perturbations. In the next section we address the more
difficult problem of electron correlation.

B. Electron correlation energies

In this section we apply the repartitioned PT to the elec-
tron correlation problem for the He atom and the H2 mol-
ecule representing two electron systems, as well as the Be

TABLE I. Errors of PT estimates for the total energy of the H2 molecule
(R50.75 Å!, as compared to the limit of the series, FCI or CI with doubles
~CID!. Prefix D refers to the inclusion of doubles only. Atomic energy units
are used.

Order MP2FCI OPT2FCI D_MP2CID D_OPT2CID

2 7.765931023 25.95331024 7.622931023 27.38331024

3 2.111131023 25.95331024 1.968231023 27.38331024

4 6.22031024 2.8931025 5.56431024 3.2531025

5 1.87331024 2.6231025 1.58731024 3.2531025

6 5.7331025 2631027 4.4531025 21.231026

7 1.7731025 2831027 1.2131025 21.631026

8 5.531026 331027 3.131026 0
9 1.731026 431027 731027 131027

10 531027 431027 131027 0
11 131027 531027 0 0
12 0 631027 0 0

TABLE II. The same as Table I for the He atom 10s2p1d basis set.

Order MP2FCI OPT2FCI D_MP2CID D_OPT2CID

2 6.094131023 22.91131024 6.071931023 23.13431024

3 1.061931023 22.91131024 1.039631023 23.13431024

4 1.94931024 5.231026 1.81231024 5.931026

5 3.7531025 4.531026 3.0131025 5.931026

6 7.731026 2131027 4.331026 2131027

7 1.731026 2131027 431027 2231027

8 431027 0 0 0
9 131027 0 0 0

10 0 0 0 0

FIG. 4. The same as Fig. 3 for the Be atom in the 4s1p basis~Ref. 49! ~a!
and the LiH molecule~b! using the@3s1p/2s# basis set~Ref. 44!. The
distance between the Li and the H atom is set to the SCF optimized value
1.607 Å.
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atom and the LiH molecule possessing four electrons. The
inversion barrier of ammonia will be presented as an ex-
ample for energy difference.

Basis sets and geometries are specified at the headings of
tables and figures. As to other details of calculations, note
that the single determinantal HF wavefunction was used as
the zeroth order ground state, thus only doubly excited states
interact directly withu0&. Accordingly, only the level shift
parameters of doubles have been optimized. Neglecting all
other types of excitations~singles, triples, etc.! entirely, the
PT series should converge to CID.~These approximate re-
sults, referred to as D_OPT4, are of course not size consis-
tent.! When keeping all types of excitations~results labeled
OPT!, for the two-electron systems only the single excita-
tions should be dealt with besides of doubles, and we kept
the spin adapted EN denominators for these states. For Be
and LiH, we have the singles, triples, and quadruples enter-
ing from the fourth order on, and we used MP denominators
for these levels. For the NH3 molecule, OPT4 is calculated
only in the subspace spanned by doubly excited configura-
tions. Higher order results were generated recursively39–41to
study how perturbative improvement of LCCD behaves.

In Fig. 2 PT results using MP and the optimal partition-
ing are compared to the FCI~Full Configuration Interaction!
value. Total energies near equilibrium geometry are shown
in Fig. 2~a!; differences taken with the FCI results are plotted
in Fig. 2~b!. Both figures show how MP results improve
from order to order. However, the fourth order MP curve has
roughly the same accuracy as OPT2, with the sign of the
error being opposite. Fourth order of the optimal partitioning
is considerably closer to the exact curve, with or without
exclusion of the singly excited subspace~D_OPT4 or OPT4,
respectively!. With singles included, OPT4 can hardly be
distinguished from FCI.

High order perturbative estimates are plotted in Fig. 3, to
give an insight to the convergence properties of the series
studied. In these particular cases, the often discussed diver-
gent behavior43 of the MP series is not observed: MPn data
slowly but smoothly seem to converge to FCI. On the ex-
ample of the He atom, sign of asymptotic convergence is
seen at the very high orders of the optimized partitioning,
though this series approach the FCI limit much faster than
MPn. Similar conclusions can be drawn by the numbers pre-

sented in Tables I and II, where we also included PT series
obtained using double substitutions exclusively.

In Fig. 4, the PT convergence on four-electron systems
is depicted. Again, both series is converging, and neither
shows features of asymptotic convergence~we followed the
iterations up to 50 orders, but only the first dozen are
shown!. The accelerated convergence of the optimized parti-
tioning is apparent.

Estimates for the inversion barrier of NH3 are shown in
Table III. Geometry of the pyramidal arrangement was opti-
mized at the SCF level in each basis set, and the same bond
lengths were used for the planar geometry. In the minimal
basis the FCI value is shown for a comparison, CCSD
~Coupled Cluster with Singles and Doubles! and
QCISD~TQ!, with an approximate account for triple and qua-
druple excitations is calculated as a reference in each case.
Again second order of the optimized partitioning, that is
LCCD, is comparable to MP4 in its accuracy. Fourth order
results with doubles do not alter the picture significantly.
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