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~Received 27 December 1999; accepted 15 March 2000!

The Hartree–Fock self-consistent-field approximation has provided an invaluable conceptual
framework and a standard computational procedure for atomic and molecular quantum theory. Its
shortcomings are significant however, and require remediation. Mo” ller–Plesset perturbation theory
offers a popular correction strategy: it formally expands eigenfunctions and eigenvalues as power
series in a coupling parameterl that switches the Hamiltonian continuously between the Hartree–
Fock form (l50) and the electron-correlating ‘‘physical’’ Hamiltonian (l51). Recent high-order
Mo” ller–Plesset numerical expansions indicate that the series can either converge or diverge atl
51 depending on the chemical system under study. The present paper suggests at least for atoms
that series convergence is controlled by the position of a singularity on the negative reall axis that
arises from a collective all-electron dissociation phenomenon. Nonlinear variational calculations for
the two-electron-atom ground state illustrate this proposition, and show that series convergence
depends strongly on oxidation state~least favorable for anions, better for neutrals, better yet for
cations!. © 2000 American Institute of Physics.@S0021-9606~00!30222-7#

I. BACKGROUND

On account of its conceptual simplicity, computational
convenience, and adequate accuracy, the Hartree–Fock self-
consistent-field approximation has exerted a dominating in-
fluence on the evolution of atomic and molecular electronic
structure studies. Indeed its single-particle terminology~e.g.,
orbitals, bands, sigma and pi electrons, Fermi surfaces, holes,
etc.! has permanently entered the general scientific vocabu-
lary. Not surprisingly, the Hartree–Fock approximation often
serves as the starting point for more ambitious computational
procedures that attempt to come to grips with electron cor-
relation phenomena by appending systematic corrections to
that starting point. One of these procedures was initiated by
Mo” ller and Plesset in 1934,1 and forms the subject of this
paper.

As explained in the following Sec. II, the Mo” ller–Plesset
formalism casts the electronic structure problem into the for-
mat of Rayleigh–Schro¨dinger perturbation theory.2 The self-
consistent-field Hartree–Fock Hamiltonian serves as the un-
perturbed problem, and the electronic wave function and
energy are then developed in power series in a perturbation
parameterl whose increase from 0 to 1 continuously trans-
forms and connects the independent-particle description to
the fully correlated electronic structure problem.

Modern advances in computing power have enabled nu-
merical studies to carry out Mo” ller–Plesset expansions to
high order, at least for some atomic and molecular systems
of modest size. Although basis set adequacy always remains
a significant concern, one can safely assume that behavior
patterns exhibited by published Mo” ller–Plesset series for en-
ergy eigenvalues are at least qualitatively correct. These pat-
terns appear to fall into two categories:~a! convergent~ex-
amples are BH, CH2! and ~b! divergent with even–odd sign
alternation in the high-order series coefficients~observed for
Ne, HF, H2O!.3 In view of the fact that the physical state of

interest lies atl51, these cases~a! and ~b!, respectively,
correspond tol series with radii of convergence greater than,
and less than, unity. Specifically, pattern~b! is characteristic
of an energy singularity closest to the origin that lies on the
negative reall axis at less than unit distance from the origin.
The purpose of the present study is to argue that this singu-
larity stems from a multielectron autoionization phenom-
enon.

Beside presenting the general formalism required for this
analysis, Sec. II also offers an intuitive description of how
the eigenvalue problem is expected to evolve along the reall
axis. Section III bolsters this view with results from a set of
nonlinear variational calculations for1S ground states of
two-electron atoms; in particular these results show a two-
electron autoionization whose position on the negativel axis
depends strongly on nuclear chargeZ. The final Sec. IV dis-
cusses the potentially most useful next-stage calculations de-
signed to elucidate Mo” ller–Plesset convergence issues, and
how they might be used to increase the productivity of com-
putational quantum chemistry.

II. FORMALISM

In the interest of maximum clarity, the following will
concentrate on the case of 2n electrons with equal numbers
of up and down spins, i.e., a spin singlet state. The corre-
sponding self-consistent-field Hamiltonian, to be denoted by
H(0), consists strictly of a sum of 2n identical operators for
the 2n electrons:

H~0!5(
j 51

2n F2~1/2!“ j
22 (

k51

N

Zk /ur j2Rku1V j
~scf!G .

~2.1!

Here k indexes theN nuclei, with chargesZk and positions
Rk . V j

scf is the self-consistent-field operator for electronj,
including both Coulomb and exchange portions. The ‘‘physi-
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cal’’ Hamiltonian,H(1), replaces the sum of self-consistent-
field operators with the pairwise sum of all 2n22n electron–
electron Coulomb repulsions. More generally, letH(l) be
the Hermitian operator that linearly interpolates between
these two cases:

H~l!5(
j 51

2n F2~1/2!“ j
22 (

k51

N

Zk /ur j2Rku

1~12l!V j
~scf!1l(

j ,1

2n

1/ur j2r l uG . ~2.2!

For each electronic state of interest, twol-dependent
energy functions need to be distinguished. The first is the
corresponding eigenvalue ofH(l), to be denoted byE(l),
associated with normalized wave functionc(1,...,2n,l):

H~l!c~1,...,2n,l!5E~l!c~1,..,2n,l!. ~2.3!

The second,W(l), is the expectation value of the physical
HamiltonianH(1) in the state described byc(1,...,2n,l):

W~l!5^c~1,...,2n,l!uH~1!uc~1,...,2n,l!&. ~2.4!

It is this latter quantity whose power series represents the
Mo” ller–Plesset expansion:

W~l!5W01W1l1W2l21•••• . ~2.5!

In generalE(l) and W(l) are not equal. The obvious
exception occurs at the physical value of the coupling con-
stant,

E~1!5W~1!. ~2.6!

The Rayleigh–Ritz variational principle4 requires for the
ground electronic state~or indeed for the lowest-energy state
of any given symmetry! that W(l) must pass through its
absolute minimum atl51, an attribute not shared byE(l).

It is traditional to express the wave function atl50 as a
2n32n Slater determinant whose elements are space–spin
orbitals. However, this is not necessary in view of the fact
that HamiltonianH(l) is spin independent for alll. Instead,
we can confine attention to any one spin–space component,
say that for electrons 1,...,n with spins down andn
11,...,2n with spins up, and consider just the position-space
dependence ofc(l50). Let w1(r )¯wn(r ) be an appropri-
ate orthonormal set of position-space orbitals. Then we can
set

c~r1¯r2n ,l50!5D~r1¯rn!D~rn11¯r2n!, ~2.7!

whereD is ann3n determinant

D~r1¯rn!5~n! !21/2det@w i~r j !#. ~2.8!

Self-consistency requires that the orbitalsw i which com-
pose eigenfunctionc(l50) both determine the operators
V j

~scf! and also minimizeW(0). Each of theV j
~scf! resolves

into Coulomb~c! and exchange~e! portions,

V j
~scf!5V j

~c!2V f
~e! . ~2.9!

The first of these is just anr -space-function multiplier,

V j
~c!52(

k51

n E dswk
2~s!/ur j2su, ~2.10!

while the second is an integral operator with the property

V j
~e!
• f ~r j !5 (

k51

n

wk~r j !E dswk~s! f ~s!/ur j2su. ~2.11!

The effect of the self-consistent-field essentially is to
provide a static negative charge cloud that is spatially dis-
tributed according to the extension of the orbitals comprised
in c(l50). The exchange operators reduce the magnitude
of the corresponding repulsion somewhat, but only to a par-
tial extent. Asl increases from 0 to 1 inH(l), Eq.~2.2!, this
diffuse repulsion continuously switches off while being re-
placed by explicit electron-pair repulsions. Formally extend-
ing l to even larger positive values greater than 1 causes the
self-consistent field to convert to a diffuse attraction sur-
rounding the nuclei, while electron pairs become even more
repulsive. For very large positivel we can expect the 2n
electrons to concentrate around configurations that represent
a compromise between these competing strong attractive and
repulsive interactions.

As l moves from the origin along the negative real axis,
interaction roles are reversed in comparison with thel.1
regime. The self-consistent field becomes ever more repul-
sive, overcoming the direct nuclear attractions, thereby di-
minishing the capacity of the electrons to remain bound in
the neighborhood of the nuclei. But now the explicit
electron–electron pair interactions have become attractive.
As a result the 2n electrons in isolation from nuclei have the
capacity to form their own bound state whose energy would
have the form (l,0)

2A~n,n!l2, ~2.12!

whereA is a suitable positive constant. This last expression
~2.12! locates an autoionization threshold at which the 2n
electrons spontaneously leave the neighborhood of the nu-
clei, together as a bound composite particle, tunneling
through a repulsive barrier due to the magnified self-
consistent field. The negativel value at which this occurs
can be identified by equating eigenvalueE(l) to quadratic
expression~2.12!. Just as an analogous autoionization thresh-
old for the Z21 expansion of the two-electron-atom ground
state creates a wave function and energy singularity in that
context,5,6 so too can we expect the same forc~l!, E(l), and
W(l). Hence we propose that this collective autoionization
phenomenon determines the Mo” ller–Plesset convergence ra-
dius.

III. SIMPLE ILLUSTRATIVE EXAMPLE

In order to provide support for the qualitative ideas ex-
pressed at the end of Sec. II, we now set up and carry out a
simple nonlinear variational calculation. While it is desirable
eventually to use a more sophisticated and precise calcula-
tion, the following example will suffice for present purposes.
Specifically we consider the general two-electron atom
~nuclear chargeZ! in its singlet ground state, for which the
spatial wave function is symmetric under electron inter-
change. Our task is to estimateE(l) andW(l), and for this
purpose we introduce the following two-parameter correlated
variational wave function~the nucleus is at the origin!:
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cn~r1 ,r2 ,l!5C~a,b!exp@2a~r 11r 2!2br 12#. ~3.1!

The normalizing constant has the value

C~a,b!5F 8a3~a1b!5

p2~8a215ab1b2!G
1/2

. ~3.2!

Parametersa~l! andb~l! are to be determined by minimiz-
ing

^cnuH~l!ucn&>E~l! ~3.3!

at eachl.
Negative reall permits formation of a bound ‘‘dielec-

tron.’’ In its free state this composite particle has wave func-
tion (l,0)

~ ulu3/8p!1/2exp~2ulur 12/2! ~3.4!

and binding energy

2ulu2/4. ~3.5!

Accurate numerical solutions are available for the
Hartree–Fock approximation to the two-electron ground
state.7 In principle they could be used to construct the single-
particle operatorsV j

(c) and V j
(e) . However, that would be

‘‘numerical overkill’’ given the modest objective of our el-
ementary variational strategy. Instead we exploit two simpli-
fying approximations. First we use the best effective-charge,
single-exponential 1s orbital for each nuclear chargeZ:8

w0~r !5~a0
3/p!1/2exp~2a0r !,

~3.6!
a05Z25/16.

In this approximationV j
(c) is a simple closed-formr -space

potential

V j
~c!5~2/r j !@12exp~22a0r j !#22a0 exp~22a0r j !.

~3.7!

The second simplifying assumption involves the following
modification of the exchange operator:

V j
~e!
• f ~r j !5w0~r j !E dsw~s! f ~s!/ur j2su

→ f ~r j !E dsw0~s!w0~s!/ur j2su

[~1/2!V j
~c!
• f ~r j !. ~3.8!

Note that this is exact whenf 5w0 . Thus we assume

V j
~c!2V j

~e!>~1/2!V j
~c! ~3.9!

for illustrative purposes; this is equivalent to the restricted
Hartree approximation.9

Subject to these simplifications, the Appendix contains
the matrix elements needed for theE(l) variational minimi-
zation, each of which has a rational algebraic form. These
have been used to obtaina~l! and b~l! numerically along
the reall axis. Note that theH(1) matrix element has a
relatively simple form:10

^cnuH~1!ucn&5@~a1b!/~8a215ab1b2!#

3@8a317a2b14ab21b315a2

14ab1b224Za~4a1b!#. ~3.10!

By substituting thea~l! andb~l! variational results into this
expression one obtains the correspondingW(l).

IV. NUMERICAL RESULTS

Figure 1 showsa~l! andb~l! computed for the neutral
helium atom, Z52. The corresponding energy functions
E(l) and W(l) appear in Fig. 2, which also contains the
free dielectron binding energy curve, Eq.~3.5!. Numerically
it appears possible to locate normalizable wave functions in
this approximation for

FIG. 1. Coupling constant~l! dependence of variational parametersa andb
in trial wave functioncn , Eq. ~3.1!, for the helium atom ground state (Z
52).

FIG. 2. Variationally determined energy curvesE(l) and W(l) for the
helium atom ground state. The free dielectron binding energy2l2/4 for
l,0 has been included to locate the dielectron ionization singularity, its
intersection withE(l).
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22.10<l ~Z52!. ~4.1!

However, notice in Fig. 2 thatE(l) intersects the curve for
the dielectron binding energy at the ionization threshold
critical value

lc~Z52!>21.33; ~4.2!

if the variational wave function had been sufficiently flexible
to describe the dielectron ionization explicitly and realisti-
cally, no normalizable solution would have been found for
l,lc . In view of the fact that the predicted magnitude
ulc(Z52)u exceeds unity, the Mo” ller–Plesset series for the
helium atom ground state is predicted to be absolutely con-
vergent.

Analogous calculations have been performed forZ53
(Li1) and Z54 (Be11). The critical thresholds for these
cases are the following:

lc~Z53!>22.52,
~4.3!

lc~Z54!>23.70.

Evidently the ionization singularity moves farther from the
origin as Z increases, which would be reflected as a more
rapid convergence of the Mo” ller–Plesset series.

The situation is drastically different forZ51 (H2). The
corresponding energy curves appear in Fig. 3. TheE(l) and
dielectron binding energy functions intersect very close to
the origin:

lc~Z51!>20.08, ~4.4!

indicative of a strongly divergent Mo” ller–Plesset series.

V. DISCUSSION

Although the variational calculations presented above
are admittedly crude and are restricted to two-electron
atomic ground states, it is reasonable to suppose that they
present qualitatively correct patterns. In particular they lead
to the proposition that the Mo” ller–Plesset series forW(l),
Eq. ~2.4!, has a radius of convergence determined by the
presence of a singularity on the negative reall axis. Further-
more this singularity arises from a wave function–distorting
phenomenon whereby the electrons are expelled from the
region of the nucleus as a free dielectron complex. The varia-
tional calculations also indicate that for a fixed number of
electrons the singularity position depends strongly on nuclear
chargeZ: larger Z moves the singularity farther from the
origin of the complexl plane and improves the convergence
rate of the Mo” ller–Plesset energy power series.

Obviously it is desirable to strengthen the case by re-
peating the two-electron ground-state calculations in a more
precise manner. One area for improvement involves thel
50 Hartree–Fock orbitals, approximated crudely in the
present study by a single exponential with effective nuclear
charge. A result of this approximation is that the variational
calculations atl50 do not quite replicate a product of
simple exponentials; insteadb~0! has a small negative value,
anda~0! slightly exceeds effective chargeZ25/16, for allZ
values investigated. These minor discrepancies would be
eliminated upon insertion of a correct Hartree–Fock solution
for H(0).

At the same time it is also desirable to employ a more
flexible, and thus potentially more accurate, variational wave
function. For the two-electron ground state considered above
it would be advantageous to work with linear combinations
of Gaussian functions that are appropriately symmetrized:

cn~r1 ,r2!5(
i

Ai exp~2air 1
22bir 2

22cir 12
2 !. ~5.1!

The full set of parameters$Ai ,ai ,bi ,ci% could in principle
be treated as independent variables~subject tocn normaliza-
tion!, but for practical reasons might be linked into con-
tracted subsets. In any case sufficient flexibility should re-
main to describe the formation and ionization of the
dielectron complex at negativel.

Using a Gaussian basis would remove another source of
imprecision in the present calculations, the replacement~3.8!
of exchange operators with their Coulomb operator analogs.
The result ofV(e) operating on any Gaussian term can be put
into closed form, so approximation~3.8! becomes unneces-
sary. It is also clear that more than two electrons should be
considered, and polyatomic molecules as well, to provide a
more comprehensive view of Mo” ller–Plesset convergence is-
sues in quantum chemistry.

Two further matters deserve mention. The first is the
nature of the free ‘‘multelectron’’ in its ground and excited
states. Locating singularity-associated thresholds generally
will require determining the energy of these ‘‘self-
gravitating’’ units composed of given numbers of down-spin
and up-spin electrons. The other matter is the precise math-
ematical characterization of theE(l) andW(l) singularities

FIG. 3. Variationally determined energy curvesE(l) and W(l) for the
hydride anion ground state (Z51), along with the free dielectron binding
energy2l2/4 for l,0.
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themselves; if the analogous 1/Z-expansion threshold singu-
larity for two electrons is any indication, this mathematical
problem will require a deep analysis.5 Understanding these
singularities and how they dominate high-order series coef-
ficients should suggest how best to sum partial series into a
closed form, including cases that formally diverge, to pro-
vide reliable energy estimates for systems of chemical inter-
est.
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APPENDIX

Owing to the special choice~3.1! of variational wave
function, to the restricted Hartree simplification~3.8!–~3.9!,
and to the fact that only one nucleus is present, all of the
matrix elements needed to evaluateE(l) andW(l) can be
expressed as rational algebraic functions of the variational
parametersa andb. The kinetic energy has the form

^K&5E dr1E dr2 cn~r1 ,r2!@2~“1
21“2

2!/2#cn~r1 ,r2!

5
~a1b!~8a317a2b14ab21b3!

8a215ab1b2 . ~A1!

Nuclear attractions, proportional toZ, lead to the following:

^VN&5E dr1E dr2 cn
2~2Z/r 12Z/r 2!

52
4Za~a1b!~4a1b!

8a215ab1b2 . ~A2!

Direct Coulomb repulsion between the two electrons gener-
ates the matrix element:

^Ve&5E dr1E dr2 cn
2/r 125

~a1b!~5a214ab1b2!

8a215ab1b2 .

~A3!

Equation ~3.10! above results from substituting Eqs.~A1!,
~A2!, and~A3! into the expression

^H~1!&5^K&1^VN&1^Ve&. ~A4!

In order to carry out the variational calculation for arbi-
trary l that leads to evaluation ofa~l!, b~l!, E(l), and
W(l), one also requires a general expression for the Hartree
self-consistent-field matrix element. The effective-charge ap-
proximation, Eq.~3.6! above, also produces an algebraic ma-
trix element, though rather more complicated than before:

^VH&5E dr1E dr2 cn
2@~V1

~c!1V2
~c!!/2#

5
4a~a1b!~4a1b!

8a215ab1b2 2
16a3~a1b!5

8a215ab1b2

3$R1a0S14a0~a1a0!abT%, ~A5!

where

R5
a

@~a1a0!22b2#~a22b2!2 1
b

a0~2a1a0!~a22b2!2

2
4a2b

a0~2a1a0!~a22b2!31
4ab2

@~a1a0!22b2#~a22b2!3

1
2a2b

a0
2~2a1a0!

2~a22b2!2
1

2ab2

@~a1a0!
22b2#2~a22b2!2

2
2~a1a0!ab

a0
2~2a1a0!2@~a1a0!22b2#2 , ~A6!

S5
~a1a0!a

@~a1a0!22b2#2~a22b2!2 1
~a1a0!b

a0
2~2a1a0!2~a22b2!2

1
ab

a0
2~2a1a0!2@~a1a0!22b2#2 , ~A7!

T52
a1a0

a0
3~2a1a0!

3@~a1a0!
22b2#2

2
a1a0

a0
2~2a1a0!

2@~a1a0!
22b2#31

a

a0
3~2a1a0!3~a22b2!2

2
a

a0
2~2a1a0!

2~a22b2!3
1

b

@~a1a0!
22b2#3~a22b2!2

1
b

@~a1a0!22b2#2~a22b2!3 . ~A8!

The variational eigenvalue estimateE(l) is obtained as fol-
lows:

E~l!5 min
~a,b!

@^K&1^VN&1l^Ve&1~12l!^VH&#. ~A9!
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