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Abstract 

The existing work on generating rational approximants of functions from their series expansions is extended to include 
the generalization of the Levin transforms due to Weniger. It is seen that this leads to approximants even better than the 
u-approximants obtained previously. It is further seen that the freedom of choosing an additional parameter /3 in these 
transforms can be exploited to dramatically increase their effectiveness in certain situations. 
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1. Introduction 

Infinite series, either slowly convergent or even divergent, occur frequently in the mathematical analysis of 
scientific problems like the solution of a differential equation, an integral equation or in perturbation theory. In 
many scientific problems the computation of larger and larger numbers of terms of the series becomes 
increasingly difficult and, in many cases, the higher order terms are affected by serious inaccuracies. Because of 
this, one is confronted with the problem of estimating a function from a few terms of its series representation. 

It is well known that nonlinear sequence transforms are very effective accelerators of convergence on 
monotone and alternating sequences of numbers. Moreover, these sequence transforms induce convergence in 
divergent sequences and are valid methods of summation. Probably the oldest nonlinear transform is the famous 
Aitken A2-transform [l] and the current interest in nonlinear sequence transforms stems originally from the 
articles on the e-transform and the 8-transform by Shanks [2] and Wynn [3] respectively. A survey of the 
nonlinear transforms can be obtained in the review article by Weniger [4] and in the book by Brezinski and 
Zaglia [5]. A unified discussion of the different nonlinear transforms can also be found in the article by 
Bhowmick et al. [6]. 

When a nonlinear sequence transform is applied to the sequence of partial sums of a power series, it 
generates approximants in the form of rational functions. The Pad~ approximants, which are rational approxi- 
mants derived from the power series, have been frequently used in tackling divergent series encountered in 
theoretical physics [7] and in simulating analytic properties of the function such as zeros or singularities that are 
not apparent from the series expansion. Active research on nonlinear sequence transforms contributed signifi- 
cantly not only to the understanding of the relation between the Pad6 approximants and the e-transform, but also 
led to the discovery of other sequence transforms. It has been demonstrated by Smith and Ford [8,9] and 

0010-4655/96/$15.00 © 1996 Elsevier Science B.V. All fights reserved 
SSDI 0010-4655(95)00106-9 



160 D. Roy et al./ Computer Physics Communications 93 (1996) 159-178 

Bhowmick et al. [6] that the 0-transform of Brezinski [10] and the Levin tranforms [11] are move effective than 
the &transform in summing a wide class of convergent and divergent test sequences of numbers, both real and 
complex. It is thus quite natural to ask how the approximants of a power series built with these sequence 
transforms compare with the Pad~ approximants. Recently it has been shown by Roy et al. [12] that the fidelity 
of the rational approximants built with the Levin u-transform is in general better than the standard Pad~ 
approximants except for functions which have both poles and zeros. Weniger [4] has made a number of 
generalizations of the Levin transform assuming that the remainder estimate can be expressed as a factorial 
series instead of a power series as in the case of a Levin transform. The purpose of the present paper is to make 
a comparative study of the different approximants built with such generalized transforms (henceforth called the 
Weniger transforms) with Pad6 approximants. 

We also examine the relative performance of these transforms over a large range of the argument of the 
approximants obtained from them as opposed to their effectiveness on sequences of numbers which simply 
correspond to specific points in this range. As we shall see, the relative effectiveness of the transforms varies 
over the range considered, and conclusions from studies only on sequences of numbers can, therefore, be 
generalized. 

In the next section we briefly introduce the Pad~ approximant. In the subsequent section we introduce the 
Weniger transforms and the associated approximants. In Section 4 we compare the performance of these 
Weniger approximants with the Pad~ approximants on a number of test series which include convergent, 
divergent and asymptotic series. In the final section we discuss some interesting findings on the Weniger 
transforms. 

2. Pad6 approximants and the e- t ransform 

Let us assume that f ( z )  is analytic in the neighbourhood of z = 0, so that we can write 
oo 

f ( z ) =  E a. z (1) 
n=O 

The Pad~ approximants [re,n] of f ( z )  are uniquely determined by the rational functions defined by 

Pro(x) 
[m,.] (2) 

where Pro(z) and Qn(z) are polynomials in z of degree m and n respectively, such that for any pair of integers 
(re,n) 

f (  z) - [re,n] = O( z m+"+'). 

The Pad6 approximants [m,n] form a two-dimensional array called the Pad~ table. The s-transform, which is 
closely related to the Pad~ table, may be stated in the following form. 

If  {Sn, n = 1,2. . .  } be the sequence of partial sums of the series given by Eq. (1), i.e. 
n - - I  

Sn= E akzk, n =  1,2 . . . .  (3) 
k=0 

then we define 

6(0 '0 = S n , s(_~ = 0 n = 1,2 . . . . .  

(4) 

o(n) = 8(n+|) i °k+l  k-1 + C , . + t ) . S r .  ) ~  ~ k=O,1  . . . . .  
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The 8 ' s  with odd lower index are intermediate quantities without any interesting meaning and only the even 
order e ' s  are meaningful. It can be shown that 

s (]  ) = [ n + k , k  ]. (5) 

Thus the recursive s-algorithm produces the Padd approximants and the convergence theory of the Pad~ 
approximants [7,13] can be applied to the e-algorithm. 

3. Approximants with Weniger transforms 

If {S,, n = 1,2 . . . .  } is the sequence of partial sums of a power series defined by Eq. (3), then one can define 
an associated sequence { g,} by the relation 

S = S, + g,  ~o,, (6) 

where the w,'s are known functions of n which are different from zero and distinct for all finite values of n and 
oo 

S = f ( Z )  = E a, zi. (7) 
i = 0  

The Levin sequence transform is designed to be exact for model sequences of the type 

k -  1 ci 

S - S ' = w ' E / = 0  ( n + ~ } )  i '  k = l , 2  . . . .  (8) 

and serve as a finite approximation to a Poincar&type asymptotic expansion of the following type: 

r~ Ci 
S - S , = w ,  Y'. i" (9) 

i=0 ( n + / 3 )  

Eq. (8) can be rewritten in the following form: 

( S _ S , ) ( n + I ~ )  k - '  k - I  
= ~_~ c i (n+~8)  k - i - '  =p(kn__),, (10) 

('On i= 0 

-1 -0.5 X 0 ~  0-5 1 

I ~ ~"~ ............................ .......................... .....~........, - 

....... > 
~ ' ~ .  . /  

"x I / e ~ ' ' ' ' ' "  . /"  " 
'~ .  ~ - . , ,  ,. / ./)~ 

~- . .  \ ( \ N  " ~ - / / /  / " "  
\,. "%\M-I/Z~, / "  \ ",,",\ ~/..: / ! / ~  ,."" 

. \ .  ~ -  / /  / \ /// /" 
"";~ffl / 

Fig. 1. Plot of  the logarithm of the absolute error for e x against x using different approximants of order 4 with /3 = 0. 
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where P<k~l is a polynomial in n of order k -  1. Using the fact that any polynomial of degree k -  1 can be 
annihilated by the forward difference operator A k defined as 

Akf(n)=Ak-lf(n+ l)--Ak-lf(n), A°f(n)=f(n), (11) 

we can write 

Ai'pk_~(n) O = A k ( ( S - S ~ ) ( n + " ) k - X )  = . ( 1 2 )  

t O  n 

Table 1 
Different approximations of order 4 for different test functions f (x )  

2. 

Xt/i 
3'(x) = e x = - -  

m=0 m! 

24(5 + 13 )2 + 24(9 + 2/3 ) x + 24x 2 

u4 24(5 +/3 )2 _ 24(4 +/3 )2 x + 12(3 + 13 )2 x 2 _ 4(2 +/3)2 x 3 + (1 + 13 )2 x 4 

t 4 

Y4 = 

24(5 +/3 )3 + 24(61 + 2713 + 3/3 z ) x  + 72(4 +/3 ) x  2 + 24x 3 

24(5 +/3 )3 _ 24(4 +/3 )3x + 12(3 +/3 )3 x 2 _ 4(2 +/3 )3 x 3 + (1 +/3)3 x 4 

24(5 +/3)(2) + 48(5 + f l ) x +  24x 2 

24(5 +/3 ) (2)-  24(4 +/3 )(2)x + 12(3 +/3)(2) x 2 -- 4(2 + 13 )(2)x 3 4- (1 +/3 )(2)x 4 

24(5 +/3)(3) + 72(5 +/3)(2)x + 72(5 + / 3 ) x  2 + 24x 3 

r4 = 24(5 +/3 )(3) - 24(4 + 13 )(3)x + 12(3 +/3)(3)x 2 - 4(2 +/3)(3)x 3 + (1 +/3)(3)x 4 

xm+ 1 
.,r'(x)=log(1 + x ) =  ]~  ( - 1 )  m -  

m + l  m=O 

60(5 +/3 )2 x + 6(387 + 206/3 + 27fl z) x.Z + 4(227 + 182/3 + 35/3 2 ) x 3 + ( 1 + /3  )(61 4- 37/3 ) x 4 
U4 

60(5 +/3)2 + 192(4 + / 3 ) 2 x  + 216(3 +/3)2x3 + 96(2 +/3)2x3 + 12(1 + /3)2x4  

60(5 + 13 )3x + 6(1423 + 1161/3 + 309/3 2 + 27/3 3)x  2 + 4(547 + 681/3 + 273/3 2 + 35/3 3)x  3 + (1 +/3 )2(73 + 37/3 ) x  4 
t4 

60(5 +/3)3 + 192(4 + /3)3x  + 216(3 +/3)3x2 + 96(2 +/3)3x3 + 12(1 +/3)3x4 

60(5 +/3 )(2)x + 6(5 +/3 )(98 + 27/3 ) x  2 + 4(318 + 217/3 + 35/3 2 )x  3 + (110 + 135/3 + 37/3 z ) x  4 

Y4 = 60(5 +/3)(2) + 192(4 +/3)(2)x + 216(3 + 13 )(2)x 2 + 96(2 +/3){2)x 3 + 12(11 +/3)(2)x 4 

60(5 +/3 )(3)x + 18(5 +/3.)(2)(31 + 9/3 ) x  2 + 4(5 +/3 )(282 + 203/3 + 35/3 2 )x  3 + (354 + 551/3 + 258/3 2 + 37/3 3)x  4 

r4 = 60(5 +/3)(3) + 192(4 +/3)(3)x + 216(3 +/3)(3)x z + 96(2 +/3)(3)x 3 + 12(1 +/3)(3)x 4 

3. 
sin x ~ x 2 m 

f ( x ) =  - -  = Y O  x (2 ,571) !  

362880(5 +/3)2 _ 20160(59 + 22/3 + 2/3 2) x 2 + 96(295 + 80/3 + 4/3 2) x 4 7 96x6 
u 4 

362880(5 +/3 )2 4- 20160(4 +/3  )= x z + 720(3 +/3 )2 x 4 + 24(2 +/3 )= x6(1 +/3 )2 x 8 

362880(5 +/3)3 _ 20160(311 + 177/3 + 33/3 z + 2/3 3) x 2 + 96(1900 + 885/3 + 120/3 = + 4/33) x 4 - 144(9 + 2/3)x  6 
t4 

362880(5 +/3)3 + 20160(4 +/3)3x2 + 720(3 +/3)3xn + 24(2 + / 3 ) 3 X 6  4- (1 -I- /3 )3X8 

362880(5 +/3)(2) - 40320(5 + / 3 ) ( 7  + / 3 ) x  2 + 96(335 + 84/3 + 4/32)x 4 -- 96x 6 

Y4 = 362880(5 +/3 )(z) + 20160(4 +/3 )(2)x 2 5- 720(3 +/3 )(2)x 4 + 24(2 +/3 )(2)x 6 + ( 1 +/3 )(2)x 8 

362880(5 +/3)(3) - 20160(5 + fl)(z)(17 + 2/3)x  2 + 96(5 + /3) (573  + 112/3 + 4 / 3 Z ) x  4 -- 144(11 + 2/3)x  6 

r4= 3 6 2 8 8 0 ( 5 + / 3 ) ( 3 ) + 2 0 1 6 0 ( 4 + f l ) ( 3 ) x 2 + 7 2 0 ( 3 + / 3 ) ( 3 ) x 4 + 2 4 ( 2 + / 3 ) ( 3 ) x 6 + ( l + / 3 ) ( 3 ) x  8 
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Table 1 C o n t i n u e d  

oo Xm 

4. f(x): = q~(x,l.l,O)= Y'. ml.l 
m = l  

u 4 = [5.87309(5 + f l ) Z x -  15.6393(3.37106 +/3)(4.27855 + f l ) x  2 + 

13.27(2.10523 +/3)(3.13122 + f l ) x  3 - 3.41256(1.01474 +/3X1.67888 + f l ) x 4 ] /  

[5.87309(5 +/3)2 _ 18.3792(4 +/3)2x + 20.0902(3 +/3)2xZ - 8.57419(2 +/3)2x 3 + (1 +/3)2x4] 
t 4 = [5.87309(5 + /3 )3x-  15.6393(2.87127 +/3)(18.5678 + 8.60315/3 +/32)x2 + 

13.27(1.86304 +/3)(2.39435 +/3 X3.59729 +/3)x 3 - 

3.41256(0.966389 +/3)(1.06556 +/3)(2.00848 +/3)x4] /  
[5.87309(5 +/3) 3 - 18.3792(4 +/3)3x + 20.0902(3 +/3)3x2 - 8.57419(2 +/3)3x3 + (1 +/3)3x41 

Y4 = [5.87309(5 +/3)(z)x- 15.6393(3.64961 +/3)(5 +/3)x z + 

13.27(2.40187 +/3)(3.83458 +/3)x 3 - 3.41256(1.24658 +/3)(2.44703 +/3)x41/ 
[5.87309(5 +/3)i2) - 18.3792(4 +/3)12)x + 20.0902(3 +/3)(2)x 2 - 8.57419(2 +/3)i2)x 3 + 
(1 +/3)x41 

~'4 = [5.87309(5 +/3)(3)x - 15.6393(3.47442 +/3)(5 +/3)/2)x 2 + 
13.27(2.3294 +/3)(3.52528 +/3)(5 +/3)x 3 - 

3.41256(1.22078 +/3)(2.2935 +/3)(3.52615 +/3)x4]/  
[5.87309(5 +/3)(3) - 18.3792(4 +/3)(31 x + 20.0902(3 +/3)(3)x 2 - 
8.57419(2 +/3)(3)x 3 + (1 +/3)(3)x 4] 

co - t  oo 
e 

5. .f(x) = f .T-~t~tdt = }2 m!(-xY" 
-o m=O 

(5 + /3)2  + (11 + 3/3)(21 + 5/3)= + 2(221 + 162/3 + 29/32) x 2 + 2(1 + /3 ) ( 49  + 25/3)x 3 

U 4 =  ( 5 + / 3 ) 2 + 1 6 ( 4 + / 3 ) 2 x + 7 2 ( 3 + / 3 ) Z x + 9 6 ( 2 + / 3 ) 2 x 3 + 2 4 ( l + / 3 ) 2 x 4  

(5 +/3 )3 + (899 + 693/3 + 177/3 2 + 15/3 3) x + 2(3 =/3 )(  195 + 156/3 + 29/3 2 ) x 2 + 2( 1 +/3 )2(61 + 25/3 ) x 3 

t4 = (5 + /3)3 + 16(4 + / 3 ) 3 X  + 72(3 + / 3 )3X2  + 96(2 + / 3 ) 3 X 3  + 24(1 + /3)3X4 

(5 + /3)(6 + /3) + (5 + /3)(58 + 15/3 )X + 2(302 + 191/3 + 29/32) X 2 + 2(86 + 99/3 + 25/3 2) X 3 

Y4 = (5 + /3)i2) + 16(4 + /3)(2)X + 72(3 + /3)(2)X 2 + 96(2 + /3)i2)X 3 + 24(1 + /3)(2)X 4 

(5 + /3 )i3) + 3(5 + /3 )(2)( 19 + 5/3 )X + 2(5 + /3 )(282 + 185/3 + 29/3 2)X 2 + 2(282 + 419/3 + 186/3 + 25/3 3)X 3 
t4= 

(5 + /3 )(3) + 16(4 + /3 )i3)X + 72(3 + /3 )i3)X 2 + 96(2 + /3 )(3)X 3 + 24(1 + /3 )i3)X 3 

oo t co , e -  dt 1 
6. f(x) = J " - - 7  = E,(x)= ~ • ( - 1 ) ' m !  x -m 

x m = 0  

2(1 +/3)(49 + 25/3)x + 2(221 + 162/3 + 29/3 2 ) x 2  + (11 + 3/3)(21 + 5/3)x 3 + (5 +/3)2x4 
U 4 

24(1 +/3)2 + 96(2 + /3)2x+ 72(3 +/3)2x2 + 16(4+/3)2x3 + (5 +/3)2x4 

2(1 +/3 )2(61 + 25/3)x + 2(3 +/3 )(195 + 156/3 + 29/3 2)x 2 + (899 + 693/3 + 177/3 2 + 15/33) x 3 + (5 +/3 )3 x 4 
t4 = 

24(1 +/3)3 + 96(2 +/3)3x + 72(3 +/3)3x2 + 16(4 +/3)3x3 + (5 +/3)3x4 

2(86 + 99/3 + 25/3 2)x + 2(302 + 191/3 + 29/3 2)x 2 + (5 +/3)(58 + 15/3 )x  3 + (5 +/3 )(6 +/3 )x  4 

Y4 = 24(1 +/3)(2) + 96(2 +/3)i2)X + 72(3 + / 3 ) ( 2 ) X  2 + 16(4 + /3)(2)X 3 + (5 + / 3 ) ( 2 ) x  4 

2(282 + 419/3 + 186/3 2 + 25/3 3) x + 2(5 +/3)(282 + 185/3 + 29/3 2) x 2 + 3(5 +/3)(2)(19 + 5 / 3 ) x  3 + (5 +/3)(3)x 4 

"/'4 = 24(1 +/3 )i3) + 96(2 +/3 )(3)x + 72(3 +/3 ) (3)X 2 + 16(4 +/3 )(3)x 3 + (5 +/3 )(3)x 4 

This  gives the kth order  Levin- t ransform as an approximat ion  to S, i.e. 

( ak ( n + ~ )  ~-~ 

S ~..o qa(n) = O)n 
(13)  
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Levin [11] suggested 

o9. = ( / 3 + n ) A S . - I .  (14) 

This amounts to assuming 

S - S.  k -2  c~ (15)  
~ = ~ ( " + / 3 )  + E ,, 
AS.-1 i=0 (n  + / 3 )  

which is the behaviour of a generalized zeta-like series. 
With this choice of o9, one gets the Levin u-transform, i.e. 

7i~._ 7 E ( - ) J  (/3+"+J)~-~as.+j_ 
j = O  1 

a~ a--~._7 E ( - ) J  ( / 3 + n + J ) ~ - ~ - -  _ j=O A S n + j -  1 

In arriving at the last step we have used the properties of the A-operator, i.e. 

Akf( n )= E (--)J f ( n + j ) .  
i f 0  

For an alternating series Levin suggested o9. = AS._ 1, and this gives the Levin t-transform 

E ( - )  j ( / 3 + n + J ) k - ' A S . + j _  l 
j=0 (17) t(k")(/3,S.) = k 1 (:) - -  E ( - ) J  (/3+n+J)~-'as.+j_ ' 
. i = 0  

Smith and Ford [8] suggested to. = AS. for an alternating series. However, with this choice of o9., the 
transform would need one more term for a given order. In subsequent investigations we shall consider n = 1 and 
denote the u and t-transforms as u s ( /3) and tk(/3). 

A new class of sequence transforms is obtained [4] by replacing (n + /3) ;  in Eq. (10) by (n +/3)(i). i.e. 

( s -  s.)(n +/3)~_,) 
tO n 

k - 1  

= E ci(n+/3)(k-i- l) ,  (18) 
i = 0  

where z~) is the Pochhammer symbol defined as 

r(z+~) 
z(v)  = F ( z )  z ( z +  1 ) . . . ( z +  v -  1). (19) 

With the choice o9. = (/3 + n) AS._ l and to. = AS._ 1 one gets the y and r-transforms respectively and they 
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are given by 

y" ( - ) J  ( / 3 + n + j ) ( k - ~ ) a S n + j _  ~ j=O 
y i ' ) ( / 3 , s , )  = ~ 1 ' 

E (--)l(k)( /3+n+J)(k-2) Asn+j_, 
j=O 

E ( - ) j (/3 + n + j ) ( ,_  1)~S-~+j_ 1 
j=0 "- 

r(')( /3,Sn) = k 1 

E (--)J(k)(/3+n+J)(k-1)AS,+i_1 
j=0 

Here also we shall use n = 1 and denote the corresponding transforms as Yk(/3) and %(/3) respectively. 
All these transforms can be compactly written as 

k 

Lk(/3, ,~)  = k 
~ ( - ) J ( ~ ) ( / 3 + j + l )  k-a 1 

j=0 ASj 
so that L k (/3,2) = u k (/3) and Lk(/3,1) = tk(/3) and 

j~0 ( - ) '  "= (/3 + J + 1)(k- ~) 74-'S; 

w ~ ( / 3 , 8 ) =  ~ 1 • 

~ ( -  )J( k )( /3 + J + l)(k-a) AS J 
j=o 

where W k (/3,2) = yk(/3) and Wk(/3,1) = %(/3). 
We can recast the transforms in the form 

k Sj+I k k 
Z Pkj j=O ~-'S] 2 ZJ 2 (-Okiaj-i 

j=O i=0 
(L,W)k(/3,3) ,~ 1 k , 

ASj j=o 

where 

and 
{i - ) J ( k ) ( / 3 + j + l )  k-~ forthe L-transform, 

l/kJ= _ ) j ( k ) ( / 3  + j +  1)(k_~)for the W-transform, 

( _ ) j  ( / 3 + k - J +  1) k-a 

ak- j  

for the L-transform, 

for the W-transform. 

(20)  

(21)  

(22) 

(23)  

(24) 
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Thus L k and W k represent a set of rational functions, which are obtained from (k + 1) terms of the original 
sequence {S,) and are approximants for the function f (z) .  

It can be easily demonstrated that 

f ( z )  - T}n)( [3,6 ) = O( z "+k ) ,  (25) 

where T}")(/3, 6) stands for either L or W-transform. 

Table 2 

Magnitude of  the relative error for different approximants at some speciifed points. For a particular va lue  of  x the first row gives the 

relative error fo r /3  = 0 and the second row gives that fo r /3  = 1. 

Function x [2,2] Transform used 

u4 t4 Y4 ~'4 

e x --0.5 4 . 4 0 ×  10 - 5  8 .44X 10 - 7  2.31 × 10 - 7  9.01 × 10 - s  2 . 6 2 ×  10 - 9  

5.18 X 10 -6  8.98 X 10 - 7  8.72 X 10 - 6  3.42 X 10 - 6  

0.5 4.40 × 10 -5  9.03 X 10 -7  1.21 k 10 - 7  1.21 × 10 - 7  2.97 X 10 - 9  

1.03 × 10 -5 1.61 X 10 - 6  1.78 × 10 -5  6.38 X 10 - 6  

--1.0 1.47 X I0  -3  5.32 X 10 -5  1.89 X 10 -5  1.02 × 10 - 5  6.45 X 10 - 7  

1.23 × 10 -4  2.08 × 10 -5  1.99 X 10 - 4  8.10 X 10 -5  

1.0 1.47 x 10 -3  6.06 × 10 -5  4.43 X 10 - 6  1.83 × 10 - 5  8.31 X 10 - 7  

4 . 7 8 x  10 -4  6 . 9 6 ×  10 -5  8.21 × 10 - 4  2 .8 2 X 10 - 4  

log(1 + x)  - 0 . 8  2.75 × 10-2  7.52 x 10-  3 3.42 × 10-  3 4.70 × 10-  3 1.37 × 10-  3 

3 . 35X 10 -3 1 . 4 5 ×  10 - 3  2 . 1 7 ×  10 - 3  6 . 2 6 ×  10 - 4  

1.0 1.21 X 10 -3  6.95 X 10 - 6  4.68 X 10 - 6  2.03 × 10 - 5  3.66 × 10 - 6  

3.66 × 10 -6  9.16 X 10 - 7  6.95 X 10 - 6  1.10 X 10 - 6  

2.0 7.01 × 10 -3  7.44 × 10 -5  6.37 X 10-5  2.37 × l0 - 4  7.10 X l0  -5  

6 . 5 4 ×  10 -6  2 .2 6 X 10 -5  1 . 5 2 ×  10 - 4  3 . 8 2 ×  10 - 5  

(sin x ) / x  1.0 2.70 × 10 - s  1.23 × 10 - 9  1.48 X 10-  1o 6.14 × 10-  1o 1.18 × 10-  to 

6 . 9 6 ×  10 -9  1 . 2 0 ×  l0  - 9  1 . 1 5 ×  10 - 8  4 . 4 0 ×  10 - 9  

2.0 4.32 X 10 -5  2.27 × l0  - 6  4.10 k 10 - 7  4.63 X 10 - 7  1.69 × l0  -7  

7.40 × l0  -6  1.17 × 10 -6 1.30 × 10 -5  4.86 × l0  -6  

4.0 5.51 × 10 - 2  2 . 8 4 ×  10 -3  1.51 × 10 -3  4 . 6 7 ×  10 - 3  9 . 8 6 ×  10 - 4  

3 . 22X 10 -3  8.50 × 10 - 4  2.25 X 10 - 3  1.51 X 10 -3  

t~ (x , l . l , 0 )  - -0 .9  8.87 X 10 - 4  6.78 X 10 - 6  2.77 × 10-6  1.22 × 10 - 5  1.79 X 10 - 6  

4.06 X 10 -6  5.71 × 10 -7  1.18 X 10 - 6  4.78 X 10 -7  

1.0 0.75 1.79 × 10 -4  0.69 1.18 × 10 - 3  0.68 

3.48 x 10 -3  0.68 8.98 x 10 - 3  0.66 

0.5 1.14 × 10 -3  7A2 × 10 -5  2.88 × 10 -5  3.13 × l0  - 5  4.75 X l0  - 6  

1 .69X l0  -5 6 . 0 4 ×  10 - 6  5.61 x 10 - 6  1.61 × 10 - 6  

e - ' d t  

1o 1 + xt 

2Fo(1,1,- l /x)  

1.0 3.19 X 10 -2  1.65 X 10 -3  3.49 X 10 - 4  7.89 × 10 - 5  4.33 X 10 - 4  

3.36 X 10 -4  2.98 × 10 - 4  5.66 × 10 - 4  9.00 × 10 -5  

2.0 0.11 1 . 0 4 ×  10 -4  3.21 X 10 -3  3.93 X 10 - 3  5.37 × 10 - 4  

2 . 72X 10 -3  4 .9 6 X 10 - 4  2.09)< 10 - 3  1.42)< 10 -3  

1.0 3.19 X 10 -2  1.65 × 10 - 3  3.49 X 10 - 4  7.89 X 10 - 4  4.33 × 10 - 4  

3.34 X 10-  4 2.98 X 10-  4 5.66 × 10-  4 9.00 × 10-  5 

2.0 6.39 × 10 -3  6.02 × 10 -4  2.80 X 1 0 - 4  2.82 X 1 0 - 4  5.87 X 10-5  

1.20 X 10 -4  3.33 × 10 -5  2.18 × 10 - 5  4.08 × 10 - 5  

4.0 8.53 X 10 -4  9.36 X 10-5  1.05 X 10 -4  5.91 × 10-5  2.09 X 10 -5  

3.69 X 10 -5  2.18 × 10 -5 2.27 X 10 -5  1.28 × 10 -6  
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If we use the symbol H , ( z )  to denote any polynomial z of degree n, then 

S, = 17 , (z ) .  (26) 

Assuming that a i ~ 0 for all i > 0, it follows that 

A'S, = z"r I ,_  , ( z ) .  (27) 

For convenience let us write 

( n + / 3 )  k-~ 
for L-transform, 

a n t  n -  1 

6 .  = (28)  
(n +/3)~k-~ 

for W-transform, 
a n z " -  1 

so we can write 

rI,( z) 
k~b. z . + / _ z ,  (29) 

so the kth order transform may be written as 

ak(~.s.) 
T(k n) ( / 3 , a )  = Ak~)" ( 30 )  

Now 

a~(4.s.) = ~ ( - )J  Ak-~S.+~AJ4).+S.+kZ~%. (30 
j=O 

Hence 

r}"~( /3 ,a )  = s .+k + z "+~ r/k_ , ( z )  
/Tk(z)  ' (32) 

which proves that n + k terms of the power series expansion of T~")(/3,6) will again agree with those of the 
original series for any value o f /3 ,  8. The [re ,n]  Pad~ approximant is built in such a way that m + n + 1 terms 
of the series for the approximant will agree with its actual series. For a Levin-like transform T~ ") ( /3 ,6) ,  n + k 
terms of the series expansion of the approximant will definitely agree for any value of /3 and 6 and depending 
on the values of /3 and 6 more terms may agree with the actual series. 

Table 3 
Number of terms of the series expansion of different approximants of order 4 that agree with the actual series. Five terms have been used to 
build each of the approximants. 

Function ud.(0) u4 (l)  t4(0) t4(1) yn(0) y4(1) "/'4(0) "1"4(1 ) 
e x 5 5 6 5 7 5 8 5 
log(l + x) 5 6 5 6 6 7 7 8 
(sin x ) / x  5 5 5 5 5 5 5 5 
~b(x,l.l,0) 5 5 5 5 5 5 5 5 

t fe-'d, 6 6 5 5 6 6 5 5 
s o 1 +x t  

2Fo(1,1,- l / x )  6 6 5 5 6 6 5 5 
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In a recent paper [12] we compared the performance of the approximants obtained form uk(0) with the Pad6 
approximants and found that for a given number of terms of the original series the uk(0)-approximants are, in 
most cases, better representations of the corresponding functions. A comparison of the two methods made on a 
divergent perturbation series expansion for the excluded-volume effect in the theory of polymer solutions 
extends support to this surmise [14]. Thus it seems natural to make a comparative study of the different Weniger 
approximants along with the Pad6 approximants and we undertake it in the subsequent section. 

4. A comparative study of Pad6 approximants and Weniger approximants on some test series 

In this section we make a comparative study of Pad6 approximants and Weniger approximants calculated 
from the series expansion of some known functions. Table 1 is a list of functions and the approximants of order 
4 which require five terms of the original series. The Padd approximants which also require the same number of 
terms are also given in the table. The numerical efficiency of these approximations in relation to Pad6 
approximants at some specified points for these functions are given in Table 2. It is evident from the table that 
for these representative convergent, divergent and asymptotic series, the Weniger approximants are significantly 
better. The comparison of the actual functions with their Padd approximants and the other approximants is 
shown in Figs. 1-6. Instead of plotting the actual functions and the approximants, we plot the logarithm (to the 
base 10) of the absolute value of the difference between the function and the approximant against the 
independent variable and this makes the comparison much more transparent. The number of terms of the series 
expansion of the approximants which agree with those of the original series for the different test functions 
chosen is shown in Table 3. 

The first example is on approximating e x in the interval ( -o%~) .  It is well known that in binary arithmetic 
the problem is reduced to one of approximating e x in the finite interval ( - I n  2, In 2) or approximately, ( - 0 . 7 ,  
0.7). Fig. 1 shows the log-plot for the different approximants of order four with /3 = 0. It is evident from the 
figure that the Weniger approximants are distinctly better than the [2,2] Pad6 approximant. The relative error at 
x =  - 0 . 5  with ~'4 is 2.6 × 10 -9, whereas that with the [2,2] Pad6 approximant is only 4.4 × 10 -5. It may be 
remarked that the series for e x is a monotone sequence for positive x and is an alternating one for negative x. 
Though the t-transform is built for an alternating series, it works quite well for positive and negative x. It is 
seen from the figure that the curves for Y4 and t 4 cross at nearly x = 0.5. Thus, if one uses a transform on a 
sequence of numbers, at x = 0.2 the y4-transform will work better then ta-transform; but the reverse will be the 
case if one uses the sequence of numbers at x = 1.0. This type of crossing is common for almost all the 
functions for any order of the approximants. Thus for a study on sequences of numbers it is difficult to conclude 
which transforms work better for the function. From Fig. 1 and Table 2 one can conclude that ~-4(0) is the best 
representation for e x. It is seen from Table 3 that 8 terms of the series expansion for ~-4(0) agree with those of 
the original series, though only five terms have been used to build the approximant. 

The next series we consider is that for ln(1 + x) which can be represented as a Stieltjes integral, i.e. 

1 a t  ( - x )  m 

ln(1 + x ) = x  f x Y'. (33) 
o l + x t  m=0 r n + l  

The power series converges absolutely for Ix[ < 1 and for x > 1 the series diverges. Moreover, for positive x 
the series is alternating and for negative x the series is monotone. This series gives the Madelung sum for an 
one-dimensional ionic lattice and also occurs if correlation effects in atoms are treated by perturbation theory 
[15]. It may be remembered here that many perturbation series expansions are Stieltjes series. Incidentally, 
Grotendorst [16] lists the approximants for the above function obtained from a number of nonlinear transforms. 
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Fig. 2 shows the log-plot for the difference between the approximants of order 4 and the function, Here also the 
Weniger approximants better reproduce the function than the [2,2] approximant over the entire region - 
monotone, alternating and divergent. Of the Levin-like transforms the r-transform seems to work better, if one 
ignores the "sp ikes"  in the curves. Table 2 also supports this fact as the relative error for ~'4 is less than that for 
other transforms for the values shown in Table 2. The relative error for ~-4(1) at x = 1 is 1.1 × 10 -6 whereas 
that for [2,2] Pad6 approximant is 1.3 × 10 -3. From the Table 3 it may be seen that eight terms of the series 
expansion for ~-4(l) agrees with the original series, whereas only five terms are used to build the transform. A 
look at Fig. 3 reveals that the curves for different approximants cross each other at a number of points. If  one 
uses the different transforms on the sequence of numbers at x = - 0.5 one comes to the conclusion that ~-4(0) is 
the best transform. But from an identical performance on the sequences of numbers for x = 0.5 and x = 1.4, it 
will be concluded that t 4 and ~'4 are respectively the best transforms for the function. This characteristic 
crossing of the curves for the different approximants is common for any order for any function. Thus 
conclusions from a study on sequences of numbers should be taken  with great caution, It may be remarked here 
that the spikes represent points where the function is exactly reproduced by the corresponding transform. We 
shall discuss this point in the final section. 

Fig. 3 shows a similar plot (sin x ) / x  which is an oscillating function and consequently has a number of 
zeros. For this function also the Weniger approximants are better than the [2,2] Pad~ approximant. The 
performance of the different Weniger approximants is more or less the same except at the spikes, where the 
function is exactly reproduced. From Table 3 it is seen that only five terms of the series for the different 
approximants agree with the actual series. Table 2 gives the relative error for the function with different 
approximants at some specified points. Here also the Weniger approximants cross each other at a number of 
points. Consequently it is difficult to come to any conclusion about the overall performance of a particular 
transform from a study on sequences of numbers. 

Series 4 is a special case of the Lerch transcendent ~-function defined by 

xn 

@(x, s ,O)  = E n ~ (34) 
n = l  

and for x = 1 and - 1 it represents respectively ~(s) and ~/(s). Fig. 4 shows the log-plot for different Weniger 
approximants along with [2,2] Pad~ approximant and the Weniger approximants are found to be superior to the 
Pad~ approximant. From Table 2 it is seen that at x = 1 the relative errors for [2,2] Pad6 approximant, t 4 and ~'4 

X ~  
- 0 8  - ~ 5  0 0 -5  1 1.5 2 

, I 

~ " ,  t -2~ t2~ ............................. 

"\'*~ \ I / .4."/f" 

\",,<},sU//" v 
\ t i71.! i'~, 

: l  i ~ i /  : 

_t7 
l,Jg. z. Plot of the logarithm of the absolute error for log(l + x) against x using different approximants of order 4 with fl = 0. 
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................. I;;Z 
.................... 1 

Fig. 3. Plot of the logarithm of the absolute error for sin x / x  against x using different approximams of order 4 with/3 = 0. 

are comparatively large. Apart from the region near x = 1, all the Weniger transforms reproduce the function 
fairly well. The u 4 and Y4 seem to reproduce the function better over the entire region. As can be seen from 
Table 3, six terms of the series expansion of u 4 and Y4 agree with that of the original series, unlike t 4 and ~'4 
for which only five terms agree. For this function also there are crossings of the curves for different 
approximants. There are spikes or points of exact coincidence in the curves for some of the approximants. 

Series 5 is a divergent Stieltjes series and is obtained by expanding as an infinite power series in z the 
function 

f (  z) = ~f p( t) dt, (35) 

B 

A l + z t  

where p(t), t are real and z is complex and each of the limits A and B (B > A) may be finite or infinite. 
Taking p(t) = e - '  and the range of integration (0,oo) and expanding (1 + zt)-l one gets the famous Euler series 
given in Table 5. Even though f ( z )  is finite and can b e computed by numerical integration, the series for f ( z )  is 
divergent. This series is a good mathematical model for the kind of divergence which occurs in the perturbation 
series for the quartic anharmonic oscillator. In Table 1 we give the different approximants which reproduce the 

X 
-s -,~ -3 -2 -! o 

.................................... [22J 1 ....................................... ............... -2 

_.'~ .-~ . . . . . . . . .  " .......... ~ < _ z  ......... ~-' 

Fig. 4. Plot of the logarithm of the absolute error for <#(x, 1.1, 0) against x using different approximants of order 4 with ]3 = 0. 
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function over a wide range of the argument. A close relative of the Euler integral is the so-called exponential 
integral 

oo 
e - X  

= d x .  (36)  f x 
Z 

Using the transformation x = t + z one gets 

zeZE,( z ) =  f I , I , -  . (37) 
o l + t z  m=0 

This is the asymptotic hypergeometric series we consider as the last example (series 6 in Table 1). The radius of 
convergence of this hypergeometric series is zero and diverges for any values of z. To build an approximant for 
an asymptotic series we replace x by 1/y so that it is a power series in y. We then build the approximant in y 
and replace y by 1/x. Some of the Weniger approximants of order 4 are given in Table 1. Figs. 5 and 6 show 
the log-plot for the Euler and the asymptotic series. In both cases the Weniger approximants are distinctly better 
than [2,2] Pad4 approximants. Also, six terms of the series expansion for u 4 and Y4 agree with those of the 
original series. From Table 2 it can be seen that the relative error for the Euler function at x =  2 is 0.11, 
whereas those for the Levin approximants vary between 10 -3 to 10 -5. The relative error for the  asymptotic 
series decreases for larger values of x as expected. Due to crossing and the presence Of spikes it is difficult to 
decide about the superiority of one Weniger transform over another, but it can definitely be concluded that they 
work much better than the Pad6 approximants with the same number of terms of the original series. 

It is also worthwhile to investigate the performance of higher order Pad~ approximants with that of a given 
order of the Weniger transforms. We find, for example that for the functions e ~ and log(1 + x ) ,  the Pad6 
approximants [3,4], [5,6] and [7,8] are comparable with ~'4, % and z 8, respectively. For the divergent Euler 
series (number 5 in Table 1) the approximant [15,15] is better than 7" 6 in the range (0,1), the two are comparable 
in the range (1,3), but % is significantly better than [15,15] for x > 3. We note again that the transform ~-~ 
needs k + 1 terms of a series whereas the Pad6 approximant Ira,n] needs m + n + 1 terms. 

5. Discuss ion on the choice  o f  the parameter  

The Weniger transforms contain a free parameter/3. It has also been demonstrated in Section 3 that 

f ( Z )  -- Z(k n) ( / 3 , ~ )  -~ O(  Z n+k) 

-4 

o- 6 

0.5 , ,;5 ,2 

2 2 ]  .............................. 

...... Y ........................................................................ " ...... 

.... ,,,' ',/'4 V Y 

I 

(38) 

Fig. 5. Plot of  the logarithm of the absolute error for the divergent Stieltjes series f o  d t [ e - l / (  1 + xt)] = Y2~ (-x)mm! against x using 
different approximants of  order 4 with /3 = O. 
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Fig. 6. Plot of the logarithm of the absolute error for the asymptotic hypergeometric series zFo(1,1,-  1/x) against x using different 
approximants of order 4 with /3 = 0. 

for any value o f /3 ,  where Tk  ( " )  ( /3 ,6 )  represent the L or W-transform and 6 is chosen to be either 1 or 2. With 
6 = 1 one obtains either the t or ~- transforms and with 6 = 2 the u and y transforms are obtained. Any of the 
approximants discussed in Section 3 for a function f ( x )  at a certain value of x approximates the function at that 
point. Table 4 presents the different approximants for the function log(l + x) at x -  1, i.e. for log 2. These 
approximants with /3 ranging from - 1  to 1 approximate log 2 to an accuracy of  0.02%. This fact is clearly 
seen from Fig. 7, where we have plotted the difference between the approximants and log 2 against /3. The 
question that naturally arises is whether we can choose a value of  /3 for which the function is best 
approximated. The answer to this question is closely related to the spikes in the logarithmic plots (Figs. 1-6).  
The spikes in these plots arise at those values of  x for which the approximants reproduce the function to the 
available precision corresponding to the values of  /3 given in the plots. It can be easily understood that if we 
equate the function to T} n) for a particular value of x we obtain a polynomial equation for /3 ,  i.e. 

f ( x )  D ( / 3 , x )  - N ( / 3 , x )  = 0, (39) 

where N(/3,x) and D(/3,x) are the numerator and denominator of  the approximant. The roots of  these 
equations represent values o f /3  for which the approximant approximates the function to the precision available. 
For tk or ~'k we get a polynomial equation of  order k - 1 and for Yk or u k the polynomial equations are of  order 
k -  2. Thus for t 2 o r  "r 2 we have a linear equation in /3 and for a real sequence the root of  the equation is 

0oooi 

%/./'- o.oooo~ - - ' ~  
.,:" j , ,_ . . . . .  
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Fig. 7. Plot of the difference between tile approximants for log(l + x) (at x = 1) and log 2 against /3. 
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Table 5 
Different approximants for log0 + x) at x = 1 

173 

Transform Approximant 

25 + 11/3 
t l( /3) or ~'l(/3) 4(9 + 4fl)  

707 + 466/3 + 83/3 2 

t3(/3) 12(85 + 56/3 + 10/3 2) 

940+ 549/3+ 83/3 2 

~'3(/3) 12(113 + 66/3 + 10/3 l )  

u3(/3) 233 + 83/3 

Y3(/3) 24(14 + 5/3 ) 

4791 + 2662/3 + 399/3 2 

u4(/3) 192(36 + 20/3 + 3/3 l )  

Y4(/3) 6122+ 3061/3+ 399/3 2 

192(46 + 23/3 + 3132) 

always real. Similar  is the situation for u 3 or Y3. For  t3, 7" 3, /'/4 and Y4 the equations for /3  are quadratic and for 
a real sequence either both roots are real or both of  them are complex depending on the value of  x and the 
sequence considered. The variation of  fl with x for the different test functions considered in Table 1 with 
different approximants are shown in Figs. 8 -13 .  For  t 2 or 7"2 and u 3 or Y3 the variation o f / 3  with x is smooth 
and for any value of  x there is a value o f / 3  for which the function is reproduced to the available precision. For  
these approximants /3 decreases monotonical ly with x for the test functions 1,2 and 5 of  Table 1 and the 
opposite is the case for other three test functions. For  the approximants  u 4 or Y4 and t 3 o r  7"3 the equation for /3  
is quadratic. Thus for a real sequence either both the roots are real or both of  them are complex. For  higher 
order approximants it is a lways l ikely that some of  the roots are complex.  This is evident  from the Figs. 8 -13 .  
From Fig. 8 it may be seen that the two values of  /3, corresponding to t 3 o r  7"3 and u 4 or Y4, approach each 
other as x decreases and, at a certain value of  x, the two roots are coincident. For  lower values of  x the roots 
for /3 become complex and are consequently not shown in the figure. A similar situation arises for other 

Table 5 
co 

Table for the values of /3 for which the functions log(1 + x) and f~ (d te - t /1  + xt) are reproduced to the available precision at different 

values of x with the transform ~'2(/3) 

e-  tdt ~oo 

x /3 for log (1 + x) /3 for / 
S o  1 + X l  

0.5 0.7008248699351658 2.732760300916694 
1.0 0.5168674366153715 1.418804735230054 
2.0 0.2926715667402574 0.6400859679621395 
3.0 0.1556334097334717 0.331638394423988 
4.0 0.06051251907255196 0.1576745389821985 
5.0 - 0.01060629140089863 0.04297590304242866 
6.0 -0.06644882881331578 -0.03969723921820527 
7.0 - 0.1118485927370422 -0.102832538007318 
8.0 -0.1497101220985562 - 0.1530427329933659 
9.0 -0.1819856149772059 - 0.1941911259255686 

10.0 -0.2098952530131156 - 0.2287022298920801 
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Fig. 8. Plot of/3 against x for approximants of different orders for the function e x. 
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Fig. 9. Plot of/3 against x for approximaats of different orders for the function log(1 + x). 

funct ions  also l ike log(1 + x )  or q b ( x , l . l , 0 )  as m a y  be seen in Figs .  9 and 11. W e  w o u l d  l ike to remark here that 
the variation o f / 3  with  x m a y  or m a y  not  be  s imilar  for different orders. For example ,  in the case o f  the test 
funct ions  4 and 6, /3 increases with x in the case  o f  t 2 or u 3 but it decreases wi th  x in case o f  t 3 and u 4 as 
m a y  be seen from Figs.  11 and 13. On the other hand, the variation o f / 3  with x in case o f  series number  5 is 
a lmost  identical  for the different orders. For this test funct ion the /3 va lues  for x in the range 0 - 0 . 1  are not 
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Fig. 10. Plot of/3 against x for approximants of different orders for the function (sin x)/x. 
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Fig. 11. Plot of /3  against x for approximants of  different orders for 4~(x,l.l,O). 

175 

6 

i, 
2 

i~ \ \  \ \  \\ \ \  --<\ 
~ i \ \  \ , \  

".  " ~  ~'~'-.. "~..~3,Y3 " , , " - ' - - - - ~ ' ~ . ~  
\ \ ......... ~ .  1"3 ~ . - - ~ . . ~  " ~ - ~ . ~ _ . ~ .  

"~ "~.~. 2,~z .............. ~ --_____ ________ 

0.5 - ~ ' 1  . . . . .  ~ . ~  1.5 --2 
x ~  " . . . . .  - ~  . . . . . . . . .  

Fig. 12. Plot of /3  against x for approximants of  different orders for the Stieltjes integral fo ~ d t [e- t / (1  + xt)]. 
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Fig. 13. Plot of /3  against x for approximants of  different orders for the asymptotic hypergeometric series 2 Fo(1,1 , -  1/x) .  

shown in the figure. In this range /3 starts with a small value at x = 0, increases to a very high value of  the 
order of  300 and then decreases monotonically. This part of  the variation is not shown in the figure. 

We also note that with a complex value of  /3 the approximant becomes complex. Yet the real part of  this 
approximant is a fair representation of  the real function. For example, the real part of  the approximant t 3 ( /3)  
for the function e x with /3 = 0.2290251 - 0.510364 i reproduces the function eXup  to four decimal places for 
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Fig. 14. Plot of  the absolute value of the difference between the real part of  t 3 and e x against x with fl  = 0 . 2 2 9 0 2 5 1  - 0 . 5 1 0 3 6 4  i. 

values x in the range - 1 to 1 as may be seen from Fig. 14. The above value o f / 3  is chosen in such a way that 
t3(/3 ) exactly reproduces the function at x = - 1. It may be noted at this point that if we use a complex value 
for /3 and take the real part of the approximant as a representation of  the function then the order of  the 
polynomials of  both the numerator and denominator of  the approximant is doubled. 

In order to demonstrate now effective an appropriate choice of  /3 can be, we first show in Fig. 15 the 
Weniger approximants for tan x with /3 = 0. The [2,2] Pad6 approximant clearly outperforms the rest. Next 
using ~-2(x,/3), which uses only three terms of  the series for tan x, we solve for/3 from ~-2(x,/3) = tan x. This 
equation, being transcendental, can be used to get /3  as a power series in x by (i) expanding it as a Taylor series 
about x = 0 and (ii) fitting /3 as a least squares polynomial. If these expressions for/3 are substituted back in 
~'2(x,/3), the result is a higher order approximant whose deviation from tan x is shown in Fig. 16. In this figure 
the curves labelled o- i correspond to ~'2 with /3 replaced by i terms of  its Taylor series expansion. Similarly the 
ones labelled Ai correspond to least square fittings o f / 3  with i terms. It is seen that the third order least squares 
fit reproduces tan x with an accuracy of  10-  ~0 over the range 0 -1 .2 .  Thus it is possible to fit known functions 
with low order transforms and an appropriate choice of  /3 with a much greater accuracy than a higher order 
transform with a fixed /3 (e.g., /3 = 0). 

6. Conclusions  and discussions 

Here we have extended our previous work on rational approximants generated by the u-transform to include 
the generalizations of  the Levin transforms made by Weniger. The effectiveness of  the approximants generated 

o 

-15 

! ~ . ~  /'. 
u4 . ~ ' ~ " ~ ' Y 4  /" " ........ [2 21 

/ 
/ 

Fig. 15. Plot of  the logarithm of the absolute error for tan x against x using different approximants of  order 4 with f l  = 0.  
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Fig. 16. Plot of the logarithm of the absolute error for tan x against x for z 2 (x,/3) with h i and o, i corresponding to series expansions and 
least square fits respectively for/3 with i terms. 

by the Weniger transforms are compared with both Pad6 approximants as well as the u-approximants studied 
previously. 

We conclude that the y and z-transforms, which are, respectively, the generalizations of the u and 
t-transforms, are not only more effective than the Pad~ approximant, but mostly produce better approximants 
than u and t. The results obtained also bring into question the wisdom of judging the effectiveness of nonlinear 
transforms by applying them only on sequences of numbers. As we have shown, even for a given function the 
effectiveness of the approximants varies with the argument. Thus different conclusions can be drawn from two 
different sequences of numbers which really represent the values of one function at two different points. 

The study of the approximants also shows at a glance the effectiveness of the transforms on monotone, 
altemating and divergent sequences simply by applying them on the series expansion of, say, log(1 + x). As can 
be seen from Fig. 2, the ranges - 1 < x < 0, 0 < x < 1 and x > 1 correspond, respectively, to monotone, 
alternating and divergent series. This study of the approximants, therefore, brings into focus in a unified manner 
a large number of properties of nonlinear transforms which generate them. 

We also explore the freedom of choosing the parameter/3 which appears in the Weniger transforms. We 
show that by choosing /3 appropriately it is possible to use a relatively low order transform to represent the 
function to the accuracy of the available precision over a whole range of the argument. Even i f /3  is chosen to 
be a complex number, the real part of the approximant reproduces the function fairly well. Finally, even for a 
function like tan x which has both zeros and poles for which the Weniger transforms are not so effective in 
comparison with the Pad~ approximant, a choice o f /3  as an appropriate power series enables these transforms 
to far exceed the performance of Pad6 approximants. 
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