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Abstract 

Some methods of describing electron correlation are compared from the point of view of requirements for 
theoretical chemical models. The perturbation approach originally introduced by Mgller and Plesset, terminated 
at  finite order, is found to satisfy most of these requirements. It is size consistent, that is, applicable to an en- 
semble of isolated systems in an additive manner. On the other hand, it does not provide an upper bound for 
the electronic energy. The independent electron-pair approximation is accurate to second order in a Mgller- 
Plesset expansion, but inaccurate in third order. A series of variational methods is discussed which gives upper 
bounds for the energy, but which lacks size consistency. Finally, calculations on some small molecules using 
a moderately large Gaussian basis are presented to illustrate these points. Equilibrium geometries, dissociation 
energies, and energy separations between electronic states of different spin multiplicities are described sub- 
stantially better by Moller-Plesset theory to second or third order than by Hartree-Fock theory. 

1. Introduction 

In practical theoretical chemistry there is much advantage in studying a wide range 
of problems at  a uniform level of approximation. The results of all calculations at  one 
level constitute what may be termed a “theoretical model chemistry” [ 11. The effec- 
tiveness of any model may be evaluated by comparing some of its details with real 
chemistry in areas where experimental data are available. If the results of such a com- 
parison are favorable, the model acquires some predictive credibility. 

To qualify as a satisfactory theoretical model chemistry, a method ideally should satisfy 
a number of requirements. In the first place, it should provide well-defined results for 
the energies of electronic states for any arrangement of fixed nuclei, leading to a set of 
continuous potential surfaces. Special features such as selection of particular electronic 
configurations or the imposition of constraints related to the symmetry of the system 
should be avoided if possible. Second, the method should be such that the amount of 
computation does not increase too rapidly with the size of the system. Third, the method 
should have the property of size consistency, that is, application to an ensemble of isolated 
molecules should give results which are additive for the energy and other properties. 
Comparison between properties of molecules of different size will not be effective unless 
this requirement is satisfied. Finally, the calculated electronic energy should be an upper 
bound to that corresponding to an exact solution of the Schrodinger equation. Such 
methods are usually termed variational. 

Most theoretical model chemistries that have been proposed and examined up to now 
are of the Hartree-Fcck molecular orbital type, using single-determinant wave functions. 

1 

0 1976 by John Wiley & Sons, Inc. 



2 POPLE, BINKLEY, AND SEEGER 

Some are semiempirical in character [CNDO [2], INDO [3], MIND0 [4]) being partially 
parameterized to fit experimental data. Others utilize ab initio methods, optimizing 
molecular orbitals which are expanded as linear combinations of a finite set of basis 
functions. If the basis functions are specified for each atom according to its atomic 
number, and if they are centered at the nuclear position, the resulting self-consistent 
molecular orbital calculations constitute a model satisfying most of the requirements 
outlined above. For the electronic ground states, at  least, the resulting energy surface 
is variational and uniquely defined. If the total number of basis functions is N ,  the most 
time-consuming parts of the computation, if carried out in full, require 0(N4) operations. 
This is the handling of two-electron integrals. Also these Hartree-Fock models are size 
consistent, at least in the spin-unrestricted form (UHF) in which electrons of different 
spins occupy independent molecular orbitals [ 5 ] .  

It is well recognized that the principal deficiency of Hartree-Fock models is the neglect 
of correlation between motions of electrons of opposite spin. The primary purpose of the 
present paper is to examine and assess various methods of handling corrections for cor- 
relation from the point of view of the model requirements listed above. In principle, the 
correlation energy may be calculated by full configuration interaction in which the wave 
function is determined as the best linear combination of all possible electron configuration 
functions. In practice, however, this rapidly becomes impractically time consuming, and 
simpler schemes must be sought. We begin the survey in the second section with the 
perturbation approach originally proposed by Moller and Plesset [6]. Various later 
modifications of this technique [7-131 are often grouped under the name “many-body 
perturbation theory.” The relation between perturbation techniques and configuration 
interaction has been developed extensively by Lowdin [ 141. The general idea is to treat 
the full Hamiltonian as a perturbed independent electron Hamiltonian and then to expand 
the energy and wave function in orders of the perturbation. In the Moller-Plesset ap- 
proach the Hartree-Fock Hamiltonian is used as a starting point. In the third section 
we consider the independent electron-pair approximation and related methods, introduced 
by Sinanoilu [ 151 and Nesbet [ 161. In the fourth section we consider a series of variational 
techniques which evaluate the expectation value of the Hamiltonian for various trial wave 
functions and which, therefore, provide rigorous upper bounds to the energy corresponding 
to full treatment with any given orbital basis. In Section 5 ,  we consider the merits and 
demerits of these various techniques if used as theoretical models with appropriate basis 
sets. 

As a result of these comparative studies it is argued that the original Mdler-Plesset 
expansion, carried to second or third order, provides correlation techniques which have 
some advantages over the other methods considered. It therefore seems worthwhile to 
begin a comprehensive study of theoretical models based on this expansion, appropriately 
terminated. If the UHF Hamiltonian is used as a starting point, such models may be de- 
scribed as spin-unrestricted Mdler-Plesset theory to second or third order (UMP2 or 
UMP3). In the final section of the paper we commence such a study using a moderately 
large uncontracted basis set for some small molecules. 

2. M~ller-Plesset Theory 

This theory begins with the Hartree-Fock single-determinant wave function 
90 = (n!)-’/* det { X I  . . . xn) ( 1 )  

where the n electrons are assigned to spin orbitals xi. i = 1 ,-,n. In practical computations 
these are written as linear combinations of a finite set of spin-orbital basis functions as 
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discussed in a later section. If we adopt the spin-unrestricted form of Hartree-Fock theory 
(UHF), each xi satisfies the equation 

Fxi = ~ i x i  (2) 
where F is the one-electron Fock operator and ti is the eigenvalue corresponding to x i .  
For a finite basis set, Equation (2) is replaced by an appropriate set of matrix equations 
[5, 171. The remaining solutions of Equation (2) that are not occupied in Equation ( l ) ,  
xa ,  a = n + 1,-, are usually described as virtual spin orbitals. 

The M~ller-Plesset procedure treats the full many-electron Hamiltonian X as the 
Fock Hamiltonian plus a perturbation. Thus introducing a dimensionless expansion 
parameter A, we define 

P 

where Fp is the Fock operator for electron p .  The eigenfunctions of XO are the Har- 
tree-Fock determinant (1) and other determinants in which some of the occupied spin 
orbitals xi  are replaced by virtual spin orbitals xa.  These may be classified into single 
substitution functions *;+a ( x i  replaced by x a ) ,  double substitution functions *jj+ab 

(x i  replaced by xa, x,  replaced by X b ) ,  and so forth. Note that qkij-ab is antisymmetric 
in the suffix pair (0)  and also in the pair (ab). Rayleigh-Schrodinger perturbation theory 
[ 181 is then used to obtain expansions for the ground-state wave function and energy, 

(4) 

( 5 )  

Correlation theories at various levels are obtained by termination of these series and 
putting X = 1. Since unrestricted Hartree-Fock theory is used as a starting point, we shall 
refer to this method as "unrestricted Mdler-Plesset theory" (UMP) to a particular order. 
For example, 

qX = * ( O )  + X*(') + X2*(2) + . . . 
= &(O) + A&(') + X2&(2) + . . . 

&UMPZ = &(O)  + &(') + &(2)  (6) 

is the UMP2 energy. 
The leading terms in Equations (4) and (5) are 

* ( O )  = qo 

Higher order terms involve matrix elements of V between eigenfunctions of XO. If we 
use suffixes s,t,- for these eigenfunctions, the first-order wave function is 

where E, is the zero-order energy of Xo for state s. If s is a single substitution, V,O van- 
ishes by Brillouin's theorem [ 191. Also V,O vanishes for triple and higher substitutions 
because V contains only one- and two-electron terms. By evaluating V,O for double 
substitutions, Msller and Plesset obtained 
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where the coefficients aGab are given by 

= -D;iij (abllij) 
D abiJ .. = € a  cb - ci - c j  (10) 

(11) 

(12) 

The general notation adopted for two-electron integrals is [20] 

CpqII4 = ss Xi(1) x*4(2> (~/rl2)[Xu(l)Xu(2) - xu(l)xu(2)1 dT1 d72 

Here integration is over Cartesian and spin coordinates. Note that 

aijab = -a,iab = -aijba = ajiba 

A nondimensional measure of the magnitude of the first-order wave function is 

In a similar manner, Mgller and Plesset found the second-order energy 

= - c (Es - Eo)-' I Vosl 
s>o 

This is probably the simplest of all general expressions for the correlation energy, requiring 
little more than a partial transformation of the two-electron integrals to the basis of the 
UHF spin orbitals to give (ijllab). 

The theory may be extended to higher orders. The UMP3 energy is given by the Ray- 
leigh-Schrodinger third-order perturbation result [ 181 

G U M P 3  = G U M P 2  -t 6(3)  

& ( 3 )  = c (Es - Eo)-'(Et - EO)-'vos(Vst - ~ O O ~ s t ) ~ , O  (15) 
s,t>O 

Again only double substitutions s,t contribute and the matrix elements Vs, can be reduced 
to two-electron integrals. The resulting expression may be written 

This formula was given explicitly by Bartlett and Silver [20] who derived it from the 
Goldstone expansion [8] and associated diagrammatic techniques. It can also be derived 
directly from Equation (1 5) by evaluating all appropriate Vsr. 
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3. Independent Electron-Pair Approximation 

Another correlation method, which has received considerable attention, is the inde- 
pendent electron-pair approximation (IEPA) [ 15, 161. This method concentrates on a 
particular pair of spin orbitals which is occupied in the Hartree-Fock determinant (1). 
It attempts a full treatment of the correlation of this electron pair under the assumption 
that the remaining electrons are undisturbed. The total effect is then assumed to be ad- 
ditive for all pairs. 

Mathematically, the IEPA method corresponds to finding the optimum wave function 
of the form 

for a particular pair ij. If the resulting energy is &UHF 4- EU, the total IEPA energy is then 

The IEPA method itself can be used with the modified Hamiltonian [Equation (3)] 
and the results expanded in powers of X 

9 j j  = 9 0  + x 9 y  + - - * 

qj = X2# + X 3 4 j )  + . . . 
(19) 

(20) 
Only double substitutions involving the pair i j  need be considered, leading to 

Comparing Equations (14), (1 8), and (22) it is clear that the IEPA energy is correct to 
second order in the expansion parameter A. However, it is not correct to third order. This 
is evident, since $) can only involve integrals containing the occupied orbitals i and j ,  
and it then follows from Equation (1 7) that &[&.A cannot contain terms involving three 
or more different occupied orbitals i,,j,k,-. Such terms represent pair-pair interactions 
and are included in the correct &(3) [Equation (15)]. 

4. Variational Methods 

As previously noted, neither MBller-Plesset theory to finite order nor the independent 
electron-pair approximation give energies which are necessarily upper bounds to the exact 
solution (the result from full configuration interaction if a finite basis is used). In this 
section we shall consider a number of methods which do have this property. They all 
proceed by calculating the expectation value of the full Hamiltonian X using H trial wave 
function. Again each method can be applied with the Hamiltonian X and the results 
expanded in powers of X to find to what order the method is correct. 

The first and simplest variational method [21] is one which uses the correct first-order 
MBller-Plesset wave function as a trial function: 

9 V A R 1  = b(\ko + 9'')) (23) 
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using Equations (1) and (9). The constant b is chosen so that \ ~ V A R I  is normalized. Thus 

The expectation value of the energy is then 

& V A R ~  = &(O)  + &(’) + (1 + T2)-’[&(2) + &(3)] (25) 
Since T2 is of second order in A, the expression (24) is accurate to third order. We may 
also note that, since T2 is positive, the correlation correction in Equation (25) will be 
smaller in magnitude than in G u ~ p 3  (Equation (16)). 

A slightly improved variation method [21] finds the best linear combination of $0 and 
*(I) ,  

\ k v ~ ~ 2  = bo\ko + bl\k(’) (26) 
treating bo and bl as variational parameters. This leads to a 2 X 2 secular equation: 

with the solution 

& V A R ~  = &(O)  + &(’) + f/2T-2(&(2) - &(3)) 

X ( [ l  + 4T2(&(2))2(&(2) - &(3))-2]’/2 - 1)  (28) 

Again, it is easily confirmed by expansion that this formula is accurate to third order. 
Since Equation (23) is a special case of Equation (26), the energy &VAR2 is less than or 
equal to & V A R ~ .  

The next variational method uses a more flexible wave function 

where is the first-order contribution to the pair function $i, (Equation (21)). The 
wave function \kVAR3 may be described as a “linear combination of frozen perturbation 
pair functions.” It leads to a (Np + 1) X (Np + 1) secular equation where Np is the 
number of occupied pairs ij. We shall not give detailed formulas for the matrix elements 
of 3f, but their derivation is straightforward. Since constraints are removed from 
Equations (26)-(29), the energy must decrease. Also, since GVARZ is correct to third order, 
&VAR3 is correct to the same level. 

Further relaxation of constraints is possible if the perturbation pair functions in 
Equation (29) are allowed to change when they interact with each other. One way to allow 
for this is to transform the virtual spin orbitals in \kt) to pair natural spin orbitals xaxaf  
of the types first introduced by Edmiston and Krauss [22], so that 

This reduces the number of terms in @)). Then in a variational calculation with a wave 
function 

occ nat 

i<j a 
QVAR4 = boqo + C C buaqij-oaf (31) 

the coefficients bja may be varied independently while the natural spin orbitals xa. xaf  
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are held fixed. This type of method was introduced by Meyer [23] who called it pair 
natural orbital configuration interaction (PNO-CI). The actual technique used by Meyer 
is based on spin-adapted pair functions rather than the unrestricted spin-orbital treatment 
discussed here, but the principles are similar. There are complications due to the fact 
that PNOS for different pairs are not orthogonal, but these have been overcome and the 
technique has been applied successfully to a number of molecules [23-251. From the form 
of Equation (31) it is clear that &VAR4 I &VAR3 and that &VAR4 is correct to third order. 

Further relaxation of constraints on the trial wave function can be achieved by treating 
each part of *!!) independently. This corresponds to finding the best wave function of 
the form 

This is equivalent to complete configuration interaction involving all double substitutions, 
CI (HF + D). An even more flexible function is obtained by also including single substi- 
tutions, CI (HF + s + D), 

occ virt occ virt 

i a  i<j a<b 
*VAR6 = bo*o C C bia*i-a + C C bijabqi j -ab (33) 

Each of these improvements lowers the calculated energy further. 

5. Basis Set Expansions and Computational Features 

As indicated previously, practical computations normally utilize basis-set expansions 
for the spin orbitals. Suppose that there are N basis functions ipP in one-electron Cartesian 
space. Then the spin-orbital basis consists of the 2 N  functions qPa and pP@. In the UHF 
approximation, if there are n, a-electrons and np 6-electrons (n = n, + np), the occupied 
spin orbitals may be written 

N 
xy = C c;; ‘PPff, i =  l;..,n, 

P 

Similar expressions apply for the virtual spin orbitals xz and xt. 
To carry out a calculation of the UMP second-order energy (1 4), the main task after 

determining the UHF spin orbitals (34) is the transformation of the two-electron integrals 
from the original basis functions to the set (ij Ilab). This transformation may be carried 
out treating each suffix in turn. The computation time will be dominated by the first suffix 
i which runs over n, and ng values. The total number of multiplications required for this 
step is asymptotically ‘/S(n, + np)N4 = ‘/SnN4. Subsequent transformation for the other 
suffixes requires only O(n2N3) multiplications. Once the elements ( i j  Ilab) are available, 
&(2) may be evaluated directly from Equation (14). If n, = np and the a- and @-molecular 
orbitals coincide in pairs, the computation time may be approximately halved. 

The third-order energy calculation may be carried out with Equation (16) using the 
first-order coefficients aij& already obtained [from Equation (lo)]. The first term in- 
Equation (16) appears to require the large set of transformed integrals (ab lid). If N 
>> n, this transformation requires O ( N 5 )  multiplications and may be prohibitively ex- 
pensive. However, this difficulty may be avoided by transforming back to the spin-orbital 
basis functions 
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virt 

ab 
Gijfiv = c aijabcfiacub 

and rewriting the first term in &(3) [Equation (16)] as 
1 occ 

8 i j f iuxu  
- c c 4j,,~yxu(CLvll~a) 

(35) 

Here all variables are real and the elements (pvll h a )  are defined by Equation ( 1  1)  with 
spin-orbital basis functions instead of the x functions. Evaluation of Equation (36) then 
requires asymptotically n 2 N 4 / 8  multiplications. The two remaining parts of &(3) 

[Equation (16)] require the further transformed integrals (klllij) and (ak Ilic) followed 
by summations involving oi(n3N3) terms. 

6. Comparison of Methods 

In this section we shall compare methods of handling electron correlation from the 
point of view of the model criteria discussed in the Introduction. In Table I we list the 
main features of the methods, including the order of the asymptotic time taken for a 
calculation (large n,N),  correctness to second or third order in h if the Msller-Plesset 
Hamiltonian Equation (3) is used, size consistency when applied to an ensemble of isolated 
systems, and the upper bound feature associated with the variational methods. In addition 
we shall consider the behavior of the methods when the Hartree-Fock Equations (2) have 
degenerate solutions. Under these circumstances the spin orbitals xi are not uniquely 
defined, and any degenerate set may be subjected to an arbitrary unitary transformation. 
For a theoretical method to lead to a uniquely defined energy, it is necessary that the result 
is invariant to such transformations. 

The Mdler-Plesset expansions for the energy, terminated at second order (UMP2) 
or third order (UMP3), do have the property of size consistency. If the theory is applied 
to a set of isolated molecules, every nonvanishing term in Equation (14) or (16) must 
refer exclusively to one molecule, since one or more of the two-electron integrals would 
otherwise vanish. More generally, the Mdler-Plesset energy expansion is size consistent 
if terminated at any order since the full calculation [for any value of X in Equation (3)] 
in a group of isolated molecules can be broken down into additive calculations on single 
molecules. The Mdler-Plesset expansion terminated at any finite order is also invariant 
under unitary transformations within a degenerate orbital set. This follows since the 
complete Hamiltonian and the Fock Hamiltonian are both invariant under such trans- 
formations. 

At this point some other variants of many-body perturbation theory should be men- 
tioned. One is the use of a potential which modifies the virtual spin orbitals so that they 
are eigenfunctions of a Hamiltonian representing the field of (n - 1) rather than the full 
set of n electrons [26]. Such spin orbitals are better representations of orbitals associated 
with electronic excited states. Normally the (n - 1) potential is obtained by removing 
an electron from the highest occupied orbital. This procedure, however, destroys the size 
consistency of the full UMP expansion since the electron removed would have to be taken 
from a particular one of a set of isolated molecules (at least if the molecules are different). 
Also, if the highest occupied orbital is one of a degenerate set, the method will lose in- 
variance to unitary transformations within such a set. 

A second modification of perturbation theory which has been proposed is the de- 
nominator shift [26-281. In this procedure the inverse energy denominators in Equations 
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( 1  4) and (1 6) are replaced by the differences between the correct diagonal matrix ele- 
ments in the full configuration interaction matrix. In other words, the off-diagonal parts 
of this matrix are treated as perturbations on the diagonal parts. This procedure is size 
consistent, but by treating off-diagonal elements within a degenerate set on a different 
basis to corresponding diagonal elements, it loses invariance to unitary transformations 
within degenerate sets. This has been noted by Ostlund and Bowen [29]. 

The IEPA method, as already noted, is accurate only to second order in the M~ller-  
Plesset expansion. It is size consistent since individual electron pairs will be localized in 
single molecules if the method is applied to a set of isolated molecules and the energy 
formula (18) then ensures additivity. However, the neglect of third-order terms in 
Equation (16) involving three distinct suffixes i,j,k implies that the method is not invariant 
to unitary transformation within degenerate sets of orbitals. 

The series of variational methods discussed in Section 4 have most properties in 
common. As already noted, they are all correct to third order in the Mgller-Plesset ex- 
pansion and all provide definite upper bounds to the energy corresponding to full solution 
of the configuration interaction problem. However, they all have the disadvantage of 
not being size consistent. This has been pointed out several times, particularly by Meyer 
[ 2 3 ] .  Since all the variational methods are accurate to third order in a Mgller-Plesset 
expansion and since all orders are size consistent in the exact expansion, the failure of 
size consistency for VAR1-VAR6 must occur at fourth or higher order. It is instructive 
to consider the fourth-order energy in more detail. In Rayleigh-Schdinger perturbation 
theory &(4) is given by 

- c (Es - Eo)--'(Et - Eo)-'(Eu - Eo)-'Vos(l/,t - Voo&t) 
s.t,u>O 

x ( K u  - ~ o o ~ m ) ~ I 4 0  (37 )  
When applied to the Mvller-Plesset expansion, summation over s and u may be limited 
to double substitutions, but the suffix t should run over all substitutions up to quadruple 
[ 131. Although the complete expression (37 )  must be size consistent, the two parts into 
which it is divided are not so individually. If the formula is applied to a set of L identical 
isolated molecules, the first part gives a contribution proportional to L2. This L 2  depen- 
dence is only canceled by the second part if quadruple substitutions are included in t .  
This cancellation eliminates contributions of unlinked clusters to Equation (37 )  [ 151. 
Consequently all the variational methods described in the previous section, which are 
limited to substitutions no higher than double, fail the size-consistency test. These dif- 
ficulties are evident in the fourth-order terms in the expansions of the first two variational 
methods from Equations (24) and (28): 

& e l R l  = -T2&(2)  (38 )  

(39 )  

-T2&(2) will be proportional to L2,  whereas the other term in Equation (39 )  is propor- 
tional to L .  The effect of the term -T2&(2)  on the size consistency of configuration in- 
teraction theories has been recognized by Langhoff and Davidson [ 15bl. 

Some of the variational methods are invariant to unitary transformations within a 
degenerate set of orbitals. This is clearly true for V A R ~  and VAR2 since T2, &(2), and &c3) 
are invariant. It is also true for configuration interaction involving all double or all double 

&elR2 = - ~ 2 & ( 2 )  + [&(3)]2/&(2) 
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TABLE I. Features of electron correlation theories. 
Order of 

Method Asymptotic correct t o  correct to Sire Upper Transformation 
Time Second Order Third Order mnsistent Bound Invariant 

and single substitutions (VARS, VAR6). This is because the full space spanned by such 
functions is invariant. However, invariance may not apply to the remaining methods 
(VAR3, VAR4) if they involve arbitrary specification of pairs within a degenerate set. 

One other method listed in Table I is the coupled electron-pair approximation (CEPA) 
due to Meyer [23]. This is a modification of the above variational methods which avoids 
the size-consistency problem but no longer gives an upper bound for the energy. All CEPA 
methods are still accurate to third order in a Mdler-Plesset expansion, but modification 
of the diagonal elements in the configuration interaction matrix alters the first term of 
the fourth-order contribution. For the first CEPA method of Meyer [18] the first part 
of Equation (37) is reduced to 

where 

This revision eliminates the L2 dependence of &(4) so that CEPA is size consistent in fourth 
order. However, it should be noted that triple and quadruple substitutions are not included 
explicitly, so the resulting fourth-order term is not exact. Also, like other methods treating 
pairs separately, invariance to unitary transformations within a degenerate set of spin 
orbitals may be lost. 

From this comparative discussion it is clear that the UMP2 procedure is very suitable 
as the simplest type of theoretical model incorporating electron correlation. The nN4 
step is straightforward and the total computation involved is not much greater than a 
Hartree-Fock calculation. Of the various n2N4 methods, UMP3 is probably simplest to 
execute and is also satisfactory for model purposes. The various variational methods have 
severe fourth-order errors for larger systems, lacking size consistency. CEPA and UMP3 
should give similar results for a given basis set. Both are size consistent, both are correct 
in third order, and both are incorrect in fourth order. In view of the fact that €(2) and 
G ( 3 )  probably account for a large fraction of the total correlation energy (97.6% for helium 
[30]), these higher order differences may not be very significant. 

7. Illustrative Calculations 

In this section we shall describe some UMP2, UMP3, and related results obtained on 
small molecules with an uncontracted Gaussian basis of moderate size. The aim is to 
explore the extent to which such simple models with correlation correct known deficiencies 
of Hartree-Fock theory. 
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TABLE 11. d exponents in (841/41) basis. 

ad A t  om 

Li 

Be 

B 

C 

N 

0 

F 
Ne 

0.200 

0.255 

0.401 

0.626 

0.923 

1.292 

1.750 

2.304 

The basis set used is of the type (841/41), that is, 8s, 4p, and Id sets of uncontracted 
Gaussians on each non-hydrogen atom (Li to Ne) and 4s, lp sets on each hydrogen. Most 
s and p exponents are taken from the tabulation of Hartree-Fock optimized functions 
due to van Duijneveldt [31]. For B to Ne, his (8s,4p) bases are used directly. For Li and 
Be, the outermost four s functions in his 8s sets are supplemented with p functions having 
the same exponents. For hydrogen, his 4s set is used. Although these functions were chosen 
to minimize atomic Hartyee-Fock energies, they should provide a useful span of the ( sp )  
space for Mbller-Plesset calculations. The remaining functions are of polarization types, 
and these are selected to minimize UMP2 energies. The d-exponent ffd for the functions 
(3z2 - r2,x2 - y2,xy,xz,yz) exp(-adr2) is chosen to minimjze G " ~ p 2  for the electronic 
ground states of each heavy atom. The values are listed in Table 11. (Actually these op- 
timizations were carried out with a (951) basis, but tests indicated that (841) optimi- 
zations led to almost identical results.) The value for Li was selected by extrapolation 
from the others since optimization led to 4.66, which is clearly associated with the inner 
shell region and not compatible with the values for other atoms. Thep exponent for hy- 
drogen is taken to be aP = 0.75 as an approximate average of values which give lowest 
G U M P ~  for the diatomic hydrides LiH to FH. 

The second-order theoretical model UMP2/(841/41) was used to determine equilibrium 
geometries for the ground and some low-lying excited states of diatomic and triatomic 
molecules AH and AH2. The bond lengths re and angles 0, are listed in Tables 111 and 
IV together with some corresponding UHF/(841/41) data and experimental values. 
Ideally, the theoretical equilibrium bond lengths and bond angles should be compared 
with the corresponding experimental equilibrium data. For BH2, CH2 (both multiplicities) 
and NH2 the experimental equilibrium geometries are not available, and the values quoted 
correspond instead to the lowest vibrational quantum level. These results show that the 
second-order correlation correction greatly improves the agreement between theoretical 
and experimental bond lengths. For the independent lengths listed, the mean absolute 
differences between theory and experiment are 0.010 A (UHF) and 0.003 A (UMP2). 
Comparable results have been obtained with the CEPA method by Meyer and Rosmus 
[44]. The bond angles for CH2( ' A  NH2, and OH2 are 1-2' too small in the UMP2/ 
(841/41) model. This is probably due to the limitation of the basis set rather than the 
absence of higher order correlation energies. A Hartree-Fock study of OH2 with a larger 
basis than that used here [45] gives a bond angle of 106.6', indicating that at  the limit 





ELECTRON CORRELATION MODELS 13 

TABLE IV. Bond angles for AH, molecules. 

Molecule UHF/ (841141) UMP2I(841/41) Expt.  

BeH2 180.0 180.0 

127.5 128.5 131a’ 

131.4 132.1 136b’f 

102.7 101.3 102.4” 

103.2 101.7 183.4d’ 

105.3 102.4 104. 5e 

BH2 

3 

1 

CH2 ( B1) 

CH2 ( A1) 

NH2 

OH2 

UFrom [ 381. 
bFrom [43] .  
CFrom [40].  
dFrom [41] .  
=From [39] .  
fExperimenta1 value uncorrected for the effects of zero-point vibration. 

energy & V A R ~  is above &UMp3 as required by Equation (25). & V A R ~  is sometimes lower 
than &UMP3, but other times it is higher. For Ne, FH, and O H 2 ,  &VAR2 also lies above 
&UMP2. These trends reflect the increasing effect of the lack of size consistency of vari- 
ational methods as the number of electrons increases. 

Table VI lists the contributions to the correlation energy (at the same UMP2 
geometries). The third-order contribution to the independent electron-pair approximation 
&&.A is included for some of the systems. This is obtained from Equation (16) by omitting 
all terms involving three or four distinct occupied spin orbitals, i, j ,  k,  1. Finally the 
nondimensional quantity T from Equation (13) is listed. 

The &(2) values for the atomic ground states parallel estimates made previously [46] 
for infinitely large basis sets. The (841/41) basis accounts for about 70% of these limiting 
values. For the AH and A H 2  molecules, the &(2) energies are close to those of the iso- 
electronic atomic states. For H 2  our value of &(2) (-0.02789) is somewhat smaller in 
magnitude than that of Schulman and Kaufman [47] (-0.032) who used a larger basis. 
The &(3) values computed are all negative, thereby increasing the absolute magnitude 
of the calculated correlation energy. The value of -0.00592 for H 2  compares well with 
-0.00550 obtained by Kaldor [48] with the Schulman-Kaufman basis. As the number 
of electrons is increased, the absolute value of &(3) first increases but then decreases, 
becoming almost zero for the ten-electron systems. It is interesting to compare this with 
the independent-pair approximation &BA which increases in magnitude with the number 
of electrons. &(3) and &[:LA are approximately equal for atoms up to carbon, but become 
sharply different for larger atoms. This means that the pair-pair interactions in third 
order become more important so that for neon the corresponding energy contributions 
almost cancel This feature of the pair approximation in neon was first found by 
Barr and Davidson [49a] and Micha [49b]. A direct comparison can also be made with 
the work of Bartlett and Silver on hydrogen fluoride [50]. Most of their work involved 
denominator shifts, but they have reported values of &(2) = -0.30557 and &@PA = 
-0.05083 using an STO basis containing more basis functions than used here. These 
numbers are consistent with the corresponding entries in Table VI. Bartlett and Silver 
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T A B L E  V. Total energies, in hartrees, using the (841/41) basis. 

Moleculea UHFb W Z C  uMP3 = VARIC vAR2 

H 

L i  

Re(‘S) 

Be ( 3 ~ )  

B(’P) 

R(4P) 

U 3 P )  

U 5 S )  

N 

0 

F 

Ne 

H2 

LiH 

ReH 

BH 

CH(’II) 

CH(4Z-) 

NH 

OH 

FH 

BeH2 

BH2 

-. 49928 

-7.43178 

-14.57124 

-14.50407 

-24.52813 

-24.44694 

-37.68404 

-37.58882 

-54.38785 

-74.78785 

-99.36960 

-128.48170 

-1.13111 

-7.98296 

-15.14379 

-25.12458 

-38.27102 

-38.28034 

-54.96460 

-75.39131 

-100.01629 

-15.76149 

-25.75349 

CH2(3B1) -38.92715 

CHZ (‘A1) -38.88076 

-55.56672 NH2 

0% -76.02632 

-.49928 

-7.46022 

-14.62945 

-14.53741 

-24.60118 

-24.48876 

-37.77678 

-37.64599 

-54.50415 

-74.94214 

-99.57034 

-128.73622 

-1.15901 

-8.03437 

-15.20378 

-25.22264 

-38.39285 

-38.38172 

-55.11562 

-75.59415 

-100.27909 

-15.84565 

-25.85799 

-39.06281 

-39.03448 

-55.75918 

-76.28366 

-.49928 

-7.46399 

-14.64187 

-14.54145 

-24.61675 

-24.49418 

-37.79329 

-37.65292 

-54.51887 

-74.95579 

-99.57942 

-128.73669 

-1.16492 

-8.04348 

-15.21388 

-25.24196 

-38.41265 

-38.39570 

-55.13248 

-75.60622 

-100.28036 

-15.86071 

-25.87527 

-39.08049 

-39.05617 

-55.77570 

-76.28949 

-. 49928 

-7.46391 

-14.63990 

-14.54133 

-24.61459 

-24.49393 

-37.79091 

-37.65243 

-54.51629 

-74.95210 

-99.57432 

-128.73000 

-1.16462 

-8.04260 

-15.21285 

-25.23810 

-38.40826 

-38.39315 

-55.12747 

-75.59876 

-100.27018 

-15.85836 

-25.87189 

-39.07562 

-39.04903 

-55.76698 

-76.27663 

- .49wa  

-1.46445 

-14.64209 

-14.54185 

-24.61749 

-24.49466 

-37.79338 

-37.65325 

-54.51767 

-74.95277 

-99.57440 

-128.73014 

-1.16602 

-8.04413 

-15.21443 

-25.24085 

-38.41041 

-38.39456 

- 5 5.12 844 

-75.59886 

-100.27046 

-15.86054 

-25.87394 

-39.07690 

-39.05048 

-55.76729 

-76.27681 

UElectronic ground state unless otherwise specified. 
bAt  UHF optimized geometry. 
=At  UMP2 optimized geometry. 

did not evaluate the full &(3), but our analysis suggests that here, as elsewhere, the IEPA 
method will overestimate the correlation energy by a substantial amount. 

Results for dissociation energies of ground state systems are collected in Table VII 
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TABLE VI. Correlation energy components, in hartrees, using the (841/41) basis. 

Moleculea 

-. 02845 

-.05821 

-. 03334 

-.07305 

-. 04182 

-.09274 

-.05717 

-. 11630 

-. 15429 

-. 20075 

-.25452 

-.02789 

-.05145 

-. 06000 

-. 09807 

-. 12189 

-. 10148 

-. 15112 

-. 20304 

-. 26310 

-.08420 

-. 10451 

-. 13570 

-. 15391 

-. 19276 

-. 25799 

-.00376 

-.01242 

- .00404 

-.01557 

-. 00543 

-.01651 

-.00693 

-.01472 

-.01365 

-. 00907 

- .00048 

-. 00592 

-. 00910 

-. 01010 

-. 01932 

-.01980 

-.01397 

-.01686 

-. 01207 

-. 00127 

- .01506 

-.01728 

-.01768 

-.02169 

-. 01653 

-. 00583 

-. 00381 

-. 01293 

-. 00415 

-.01611 

-.00572 

-.01866 

-. 00816 

-. 02056 

-. 02526 

-. 03050 

-.03511 

-. 00592 

-. 04244 

-.02238 

-. 02756 

.04969 

.16962 

.05592 

.15810 

.07284 

.14907 

.08752 

.14190 

.14993 

.15778 

.16422 

.09527 

.12143 

.12248 

.18459 

.17875 

.15017 

.17537 

.18954 

.20012 

.15575 

.16887 

.18117 

.20578 

.20851 

.22631 

a Electronic ground state unless otherwise specified. 

and compared with the available experimental data. The correlation corrections clearly 
improve the agreement. The Hartree-Fock dissociation energies are too low by an average 
of about 35 kcal/mole whereas the UMP results are low by an average of only 9 kcal/mole. 
The third-order (UMP3) results are better than second-order (UMP2) for the molecules 
with fewer electrons, but for OH and FH bonds there is a slight deterioration, due to the 
already noted smallness of &(3) for these systems. In a previous study on molecular cor- 
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TABLE VII. Dissociation energies for gound states D, in kcal/mole. 

UHF uMP2 uMP3 Exp t . 
H 2 - 8 H + H  

L i H  -8 Li + H 

BeH -8 Be + H 

B H + B + H  

C H + C H + H  

N H + N + H  

O H + O + H  

F H - + F + H  

BeH2 -8 Be H + H 

BH2 -8 BH + H 

CH2 -t CH + H 

NH2 -8 NH + H 

OH, -8 OH + H 

83.2 

32.6 

46.0 

61.0 

55.0 

48.6 

65.4 

92.5 

74.3 

81.3 

98.4 

64.5 

85.2 

100.7 

47.0 

47.1 

76.7 

73.3 

70.4 

95.8 

131.4 

89.5 

85.4 

107.1 

90.5 

119.4 

104.4 

50.3 

45.6 

79.0 

75.4 

71 .7  

94.9 

126.5 

92.6 

84.1 

105.8 

90.3 

115.5 

109.4' 

b 58.0 

48.7' 

82.2* 

83. 7e 

87. 7aJ ' 
106. 8' 

140. 7a 

106. la 

98. 5' 

125.5' 
~ ~~ ~~~~ ~~ ~ 

aBased on experimental total energies as given in [50, Table 4 1 .  These energies are derived princi- 
pally from heats of formation as given in [5  1 ] , and vibrationally corrected using available spectro- 
scopic data. For further details, see [50] .  

bDo taken from [52] .  we,  wexe, and weye taken from [ 321. 
=From [53] .  
d D o  taken from [34] .  Note that this is a combined theoretical-experimental estimate. Values for 

we, wexe, and weye taken from [ 341. 
Values of Do, we,  and wexe taken from [ 35 1 . 

f A  more recent determination [54] of the dissociation energy for NH obtains a value (vibrationally 
corrected. using we and w s e  from [36] of 78.5 kcal/mole. This value is not taken into account in the 
JANAF compilation [51] .  

relation energies [ 5 5 ]  it was noted that electron correlation should play an important 
part in reactions involving the formation or destruction of electron-pair bonds. Com- 
parison of the UHF/(841/41)  data in Table VII for the dissociations involving, for ex- 
ample, Hz, LiH, CH, and FH with the corresponding experimental information clearly 
demonstrates the deficiency of the UHF method in describing this type of reaction. Here 
the effect of correlation is very prominent. The UMP3 energies are within 10 kcal/mole 
of the experimental energies for all systems except OH and FH, whereas the corre- 
sponding UHF results are typically too low by 20-50 kcal/mole. In those reaction systems 
not directly involving rupture of electron-pair bonds (for example, BeH, HB-H, and 
HC-H), the effect of electron correlation is expected to be smaller, and indeed the overall 
agreement between theory and experiment is much better. Even the UHF/(841/41) model 
does relatively well in describing these reactions. 

Table VIII gives energy differences between states of different spin multiplicity. It 
is well recognized that Hartree-Fock theory cannot describe such differences well since 
correlation energies are generally greater in states with low resultant spin. The results 
in Table VIII show that such energy differences are significantly changed and brought 
into better agreement with experiment as we proceed to UMP2 and UMP3. For the atoms 
excellent agreement is obtained with beryllium, but there is still a residual error with 
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TABLE VIII. Energy separations, in kcal/mole. 

UHF uMP2 uMP3 Exp t 

Be(3P) - Be(’S) 42.2 57.8 63.0 

B(4P) - B?P) 50.9 70.5 76.9 

C(5S) - U3P)  59.8 82.1 88.1 

CH(4x-) - CH(2n) -5.8 7.0 10.6 

-17.8 -15.3 3 1 
CH2( B1) - CH2( A1) -29.1 

62. 8a 

82.ha 

96. 4 a  

b 17.1 

.19. oc  

=From [56]. 
bFrom [57]. 
CFrom [58]. 

boron and carbon. For the diatomic molecule CH the UHF/(841/41) model incorrectly 
predicts the 42- species to be more stable than the 211. At the UMP2 level the correct 
energy ordering is obtained, but a sizable gap remains between the theoretical and ex- 
perimental values. Further improvement is obtained at the UMP3 level. Considerable 
theoretical work has been done on the low-lying electronic states of CH2 [59]. The recent 
work by Staemmler [60] using the previously described IEPA method obtained an energy 
separation of 10 kcal/mole. An earlier work by McLaughlin and coworkers [61] using 
an extended basis with a fairly large configuration interaction obtained an energy dif- 
ference of 13.8 kcal/mole. The uMP2/(841/41) procedure obtains a -17.8-kcal splitting, 
a marked improvement over the UHF result. The addition of the third-order term further 
reduces the magnitude of the energy separation by 2.5 kcal/mole. 

It is not yet clear whether the remaining deficiencies in the UMP description of disso- 
ciation energies and energy differences between states of different multiplicity are due 
to the limitations imposed by the (841/41) basis or the omission of higher order terms 
in the Mller-Plesset energy expansion. With regard to basis set effects, deficiencies are 
possibly due to the spd part of the basis being incomplete, and to the omission of basis 
functions of higher angular momentum (such asffunctions). The effect of basis set size 
on multiplet splittings is currently under investigation and will be discussed more fully 
in a future publication [62]. 
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