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The convergence of the Møller–Plesset expansion is examined for Ne, F2, CH2, and HF and
analyzed by means of a simple two-state model. For all systems, increasing diffuseness of the basis
introduces highly excited diffuse back-door intruder states, resulting in an an alternating, ultimately
divergent expansion. For F2, the divergence begins already at third order; for the remaining
systems, it begins later. For CH2, the low-lying doubly excited state leads to a monotonic, slowly
decreasing series at lower orders; for the stretched HF molecule, the low-lying doubly excited states
lead to a slowly undulating series at lower orders. Although the divergence of the Møller–Plesset
series does not invalidate the use of the second-order expansion, it questions the use of higher-order
Møller–Plesset expansions in quantum-chemical studies. ©2000 American Institute of Physics.
@S0021-9606~00!30122-2#

I. INTRODUCTION

Quantum-chemical calculations are nowadays widely
used to analyze, interpret, and predict experimental data. The
development of efficient schemes and programs for Møller–
Plesset~MP! perturbation theory1 has been important for ob-
taining this status. The second-order version of MP theory
~MP2! is presently perhaps the most widely used correlated
ab initio model. Third-~MP3! and fourth-~MP4! order meth-
ods have also been extensively used and have been imple-
mented in a number of standard quantum-chemical pro-
grams. Recently, MP5 and MP6 has also been efficiently
implemented.2

From a huge body of calculations, it is now well estab-
lished that the MP2 method in most cases gives a significant
and cost-effective improvement on the uncorrelated Hartree–
Fock ~HF! method. However, it is also known that the MP
series may not converge when the HF state is a poor approxi-
mation to the exact wave function.3 Furthermore, recent in-
vestigations have brought into question the reliability of
higher-order MP theory also for molecules without
near-degenerencies.4 The surprising aspect of the newly re-
ported divergences was that they occur for systems such as
the neon atom and the equilibrium water molecule, which
traditionally have been considered as well-behaved systems
for MP theory. Indeed, the divergences appear to be inherent
to the MP series, arising from spatially extended intruder
states that are highly excited relative to the ground-state ref-
erence wave function.5 Such states occur whenever the one-

electron basis is sufficiently flexible to describe the diffuse
intruder states. For the above-mentioned systems, the MP
series converges in small basis sets without diffuse
functions6,7 but diverges when these sets are augmented with
diffuse functions.4

The divergence of the MP series has conceptual as well
as practical ramifications. The conceptual consequences re-
late to the fact that MP theory can no longer be considered to
provide a hierarchy of methods where an improved accuracy
is obtained at higher levels. The practical consequences may
be illustrated by a couple of examples. For F2 in the aug-cc-
pVDZ basis, the smallest error in the MP series occurs at the
MP2 level. Since aug-cc-pVDZ is the smallest basis that can
properly describe this anion, it becomes altogether question-
able to apply Møller–Plesset theory beyond second order. A
similar conclusion was drawn in an interesting study where
extrapolations to the basis-set limit were carried out for
MP2, MP3, MP4, and MP5 for various properties of small
molecules.8 For equilibrium geometries and vibrational fre-
quencies, the MP2 results were often the most accurate ones,
with a deterioration in the performance of the MP methods
when the basis set was extended. This is of course a very
undesirable feature that prevents the use of MP theory to
obtain accurate results. In Ref. 8, it was stated that the reason
for this undesirable behavior has yet to be uncovered.

In this work, we extend our previous analysis of the
divergence in the MP series for Ne,5 discussing the diver-
gences of the MP series for Ne, F2, CH2, and HF and use a
simple mathematical model to show how the divergences can
be given a simple physical interpretation by means of a two-
state model. For other examples of perturbational analysis in
terms of a two-state models see Refs. 9 and 10 and refer-
ences therein. In particular, we clarify the nature of the in-
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truders responsible for the observed divergences and explain
why such divergences will nearly always occur in a suffi-
ciently diffuse basis set.

The convergence behavior of the CH2 molecule is exam-
ined in terms of the near-degeneracy of the ground state and
a low-lying doubly excited state. For the Ne atom, the MP
divergence is analyzed as a prototypical example of a system
with a back-door intruder, demonstrating that the divergence
also persists for larger basis sets. For the HF molecule, we
present a detailed convergence analysis, both at the equilib-
rium geometry and at a stretched geometry, discussing the
different characters of the intruder states in these cases.

II. CONVERGENCE IN PERTURBATION THEORY

A. General convergence criteria

General criteria for the convergence of perturbation ex-
pansions in a finite-dimensional space have been derived by
Kato.11 Here we give a simplified discussion of the theory as
relevant in this context.12 We consider the partitioned Hamil-
tonian,

H~z!5H01zU, ~1!

wherez is a complexstrength parameter. The zeroth-order
problem is represented byz50 and z51 represents the
physical problem. The eigenvalue equation,

H~z!Ck~z!5Ek~z!Ck~z!, ~2!

defines the energy functionEk(z). The expansion ofEk(z)
in z,

Ek~z!5 (
n50

`

Ek
~n!zn, ~3!

has a finiteradius of convergence Rsuch thatEk(z) con-
verges foruzu,R and diverges foruzu.R. Our perturbation
expansion, Eq.~3!, thus converges ifR.1 and diverges if
R,1.

A point of degeneracyfor Ek(z) is defined as a pointz,
where the statek is degenerate with another statel: Ek(z)
5El(z)5Ekl . It is easy to show that, for real and symmetric
matricesH0 and U, such points always occur in conjugate
pairs ~z,z* !. The location of the points of degeneracy in the
complex plane is important since the radius of convergence
is the distance from the expansion point~0,0! to the nearest
point of degeneracy ofEk(z). Degeneracies ofEk(z) in the
complex plane within the unit circle therefore lead to a di-
vergent Møller–Plesset expansion.

A state that becomes degenerate with the reference state
at a pointz inside the unit circleuzu,1 is called anintruder
state. In this terminology, the requirement for convergence is
simply the absence of intruder states. An intruder state with
R~z!.0 is calleda front-door intruder; conversely, aback-
door intruderhasR~z!,0.

From this discussion, it follows that the convergence of
the MP expansion does not depend directly on the agreement
of H andH0 in terms of some matrix norm; rather, it depends
on our ability to select a zeroth-order matrixH0 such that the
eigenvalues ofH01zU are nondegenerate for any complex
strength parameter inside the unit circle.

In practice, it may not be possible to carry out an ex-
haustive search for degeneracies inside the unit circle. How-
ever, since avoided crossings on the real axis are indicative
of degeneracies in the complex plane, much useful informa-
tion may be obtained by investigating the energies for real
z.13,14 Of course, the identification of an avoided crossing on
the real axis is not sufficient to establish divergence since the
degeneracy may occur outside the unit circle. However, as
we shall see in the next section, by projecting the zeroth-
order Hamiltonian and the perturbation operator onto a two-
dimensional space spanned by the roots ofH(z) for real z,
we may estimate the real and imaginary components of the
point of degeneracy and thereby obtain an indication whether
the expansion is convergent or divergent.

When the number of parameters@i.e., the dimension of
H(z)# is large, a complete scan of the spectrum ofH(z) for
real z is a difficult computational task. A simpler method is
obtained by performing the scan in a subspace of the correc-
tion vectors generated in a given perturbation expansion. For
example, if the energy is calculated to order 2n11, the
wave-function corrections are determined to ordern and the
subspace Hamiltonian is set up in this (n11)-dimensional
space. Since, in standard perturbation calculations, the ma-
trix elements of the perturbation operator as well as the over-
lap of the perturbation vectors are already calculated in this
subspace, we must calculate, in addition, only the matrix
elements of the zeroth-order Hamiltonian in order to perform
a scan. Such a restricted scan can therefore be appended to
standard perturbation calculations at little cost. As we shall
see, restricted scans provide a simple way of studying the
occurrence of intruder states in perturbation theory.

B. A two-state model

It is often useful to analyze the convergence behavior of
perturbation expansions by means of a two-state model.9,10

Here we describe a two-state model that will prove particu-
larly useful for discussing divergences in MP theory.

We consider the two-state problem given by the Hamil-
tonian matrix,

H5S a d

d b D , ~4!

where all parameters are real, and we assume thatb.a. We
partition the Hamiltonian matrix Eq.~4! into a zeroth-order
part and a perturbation part,

H05S a1as 0

0 b1bs
D , ~5!

U5S 2as d

d 2bs
D , ~6!

whereas and bs are thelevel-shift parameters, describing
the level shiftsof the zeroth-order Hamiltonian. The level
shifts do not appear in the physical HamiltonianH and there-
fore do not affect the eigenvalues ofH. However, they de-
termine the dependence ofH(z) andz and thus the perturba-
tion series and its convergence properties.

The eigenvalues ofH01zU are readily obtained as
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E6~z!5
a1b1~12z!~g12as!

2

6
A@e1~12z!g#214 d2z2

2
, ~7!

where we have introduced theenergy-gap parameter,

e5b2a, ~8!

and thegap-shift parameter,

g5bs2as . ~9!

For z51, Eq.~7! reduces to the physical energies—that is, to
the eigenvalues ofH~1!. For the expansion of the lowest
energy, the energy corrections become

E~0!5min~a1as ,b1bs!, ~10!

E~1!5H 2as : E~0!5a1as ,

2bs : E~0!5b1bs ,
~11!

E~n!5
ue1gu~n22!!

~e1g!n

3 (
k51

@n/2#
~21!k

~n22k!!k! ~k21!!
gn22kd2k, n>2, ~12!

where @n/2# is the largest integer smaller than or equal to
n/2. From Eq.~12!, we see that the higher-order corrections
depend on the level shiftsas and bs only through the gap-
shift parameterg. Moreover, even though the zeroth- and
first-order energies, Eqs.~10! and~11!, depend separately on
the level shiftas , their sum is constant. We shall therefore
in the following analyze the convergence behavior of the
perturbation expansion as functions of the three parameters
e, g, andd. Note thate.0, g can be both negative, positive,
or zero, and the sign ofd is related to the relative phases of
the two states. The cased50 is trivial and we consider only
udu.0.

Instead of examining the convergence of the explicit
form of the energy corrections in Eq.~12!, we return to the
analytical expressions for the eigenvalues, Eq.~7!. To locate
the points of degeneracy forE6(z), we set E1(z6)
5E2(z6) and obtain the conjugate solutions

z65
e1g

4d21g2 ~g62 d i!. ~13!

Note that, whereas the unshifted problem~g50! has pure
imaginary points of degeneracy,

z6~g50!56 i
e

2d
, ~14!

the shifted problem has complex points of degeneracy. In the
two-dimensional case, these points may never become real
but, for large gap-shifts and small couplings, they may come
arbitrarily close to the real axis.

For uz6u,1, the points of degeneracy become intruders.
Equation~13! shows that back-door intruders may occur for
gap shifts in the interval2e,g,0 and that other gap shifts
give rise to front-door intruders. For large~positive or nega-

tive! gap shifts, the points of degeneracy approachz51 with
vanishing imaginary components. Forg52e, the zeroth-
order Hamiltonian becomes degenerate and the radius of
convergence is zero. Conversely, forg54d2/e, the point of
degeneracy is located as far away from zero as possible,
presumably leading to the most rapidly convergent series.
When uz6u.1, the series in Eqs.~10!–~12! is convergent.
Thus, the series is convergent for

~e1g!2

4d21g2.1 ~15!

or

e2

4 S 11
2g

e D.d2. ~16!

Solving Eq.~16! for d, we obtain for 2g/e.21,

udu,
e

2
A11

2g

e
, ~17!

which should be compared with the convergence criterion
udu,e/2 for the unshifted problem~g50!. For 2g/e,21, the
series diverges. Solving Eq.~15! for g, we obtain the con-
vergence criterion

g.
4d22e2

2e
. ~18!

Thus, for any energy gape and any couplingd, there exists a
gap shiftg for which the expansion converges. The conver-
gence of the perturbation expansion is summarized in Table
I.

As we usually can locate only the avoided crossings
~rather than the points of degeneracy! of the matrixH(z), it
is important to determine the relation between the positions
of the avoided crossings and the associated points of degen-
eracy. In the two-state model, there is only one avoided
crossing, which is located by minimizing the difference be-
tween the two energies in Eq.~7! for real z. It turns out that
the avoided crossing coincides with the real part of the po-
sitions of the points of degeneracy:

zmin5R~z6!5
e1g

4d21g2 g. ~19!

The corresponding energy gap is given by

DE~zmin!52
u~e1g!du

A4d21g2
. ~20!

For small couplingd, the avoided crossing becomes pro-
nounced, with the two curves coming very close atzmin .
Conversely, ifd ande1g are both numerically large, the two
curves are well separated atzmin , indicating that the points of
degeneracy are located far from the real axis and that it may
be difficult to give an accurate estimate of the location of the
avoided crossing.

In the case where the coupling is small relative to the
gap shift udu!ugu, the expression for the energy corrections
Eq. ~12! may be simplified as follows:
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E~n!52
gn22d2

~e1g!n21 . ~21!

When the gap shift is positive~as for usual front-door intrud-
ers!, this expression shows that all energy corrections are
negative. For a negative gap shift that does not change the
order of the zeroth-order states~as for typical back-door in-
truders!, this expression predicts an alternating series with
negative even-order corrections and positive odd-order cor-
rections. In the same limitudu!ugu, the ratio between two
consecutive energy corrections is given by

E~n!

E~n21! 5
g

e1g
, ~22!

showing that the relative change of the energy corrections
depends only on the ratio of the gap shiftg to the zeroth-
order energy gape1g. When the numerical value of the gap
shift g is significantly larger than the energy gape, a slow
convergence is thus obtained.

The model, Eq.~21!, cannot explain situations where the
energy corrections first decrease in magnitude and then in-
crease~asymptotic convergence!. Such a behavior can be
obtained in the two-state model but occurs as a result of a
complicated interplay among the different contributions to
Eq. ~12! and requires more than a single term to be retained
in the expression for the energy correction.

III. EXAMPLES OF MØLLER–PLESSET
PERTURBATION CALCULATIONS TO HIGH ORDER

A. Computational details

In this section, we report perturbation calculations on
CH2, BH, Ne, F2, and HF. The calculations were carried
out at the equilibrium geometries given in Ref. 4, except for
BH, where we usedRBH52.3289a0 . For HF, additional cal-
culations were carried out at the stretched geometry 2.5RHF,

whereRHF50.916 94 Å. For CH2, BH, Ne, and F2, the cal-
culations were carried out in the aug-cc-pVDZ basis15 ~un-
less otherwise specified!. For HF, the calculations were car-
ried out using the cc-pVDZ16 basis and the aug-cc-pVDZ
basis with the diffusep functions on hydrogen and the dif-
fused functions on fluorine removed~aug8-cc-pVDZ!. In all
calculations, only the valence electrons were correlated. The
LUCIA program17,18 was used for the perturbation calcula-
tions.

B. CH2 : An example of molecules containing low-
lying double excited states

Many molecules have low-lying doubly-excited states of
the same spin and spatial symmetry as the ground state. For
such molecules, the ground-state wave functions typically
have a significant contribution from the doubly excited
configuration—that is, from the zeroth-order low-lying ex-
cited state. Examples of small molecules with such near-
degeneracies are CH2, BH, and C2. In this section, we dis-
cuss the convergence of Møller–Plesset perturbation theory
for such molecules, using as an example CH2 and comment-
ing briefly on BH.

Since the single-reference wave function is a poor ap-
proximation to the ground state, one would expect the MP
expansion of these systems to diverge. However, using a
DZP basis for carbon and a DZ basis for hydrogen, Knowles
et al.6 found no indication of divergence in the first ten en-
ergy corrections for CH2. In Table II, we have listed the first
50 energy corrections for the CH2 molecule in the aug-cc-
pVDZ basis. All corrections are negative. In Fig. 1, the mag-
nitudes of the energy corrections have been plotted on a
logarithmic scale~upper curve!. From Table II, we obtain a
ratio of 0.78 between two consecutive corrections.

Although the expansion in Fig. 1 looks convergent, con-
vergence can only be established by locating the points of

TABLE I. Convergence behavior of the perturbation expansion of the two-state problem for a givene.0 and
various values ofg and udu.0.

g Convergence info. Degeneracy information

g,2e Divergent R(z6).0
g52e Divergent z650

2e,g,2
e

2
Divergent R(z6),0

g52
e

2
Divergent forudu.0 R(z6),0

2
e

2
,g,0 Convergent forudu,

e

2
A11

2g

e
R(z6),0

Divergent forudu.
e

2
A11

2g

e

R(z6),0

g50 Convergent forudu,
e

2
R(z6)50

Divergent forudu.
e

2
R(z6)50

0,g,
4d22e2

2e Convergent forudu,
e

2
A11

2g

e
R(z6).0

Divergent forudu.
e

2
A11

2g

e

R(z6).0

4d22e2

2e
,g Convergent R(z6).0
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degeneracy ofH(z). For molecules such as CH2, the low-
lying doubly excited state is the most obvious candidate for
an intruder and it is thus appropriate to use this state and the
physical ground state as the basis vectors for a two-
dimensional subspace. Diagonalizing the zeroth-order
Hamiltonian in the subspace spanned by the two wave func-
tions, we obtain the zeroth-order and full Hamiltonians,

H05S 220.089 28 0.0

0.0 219.169 61D , ~23!

H5S 239.018 42 20.028 56

20.028 56 238.855 50D , ~24!

which gives the parameters

e50.162 92, ~25!

g50.756 76, ~26!

d50.028 559, ~27!

where we have chosen the phase of the two eigenvectors
such thatd is positive. Using Eq.~13!, the point of degen-
eracy for this two-state problem becomes

z651.208 4060.091 20i. ~28!

Since this point lies outside the unit circle, the low-lying
doubly excited state is not an intruder. Indeed, a more elabo-
rate search for avoided crossings forz.0 reveals an avoided
crossing atz51.2.

Even though the presence of the doubly excited state
does not lead to divergence, it does explain the slow conver-
gence of the expansion. To see this, consider the perturbation
expansion in the above two-dimensional subspace. From
Eqs. ~26!–~27!, we see that the gap shift is significantly
larger than the coupling element. We may therefore use Eq.
~21! for the energy corrections. Accordingly, we predict the
ratio between consecutive energy corrections using Eq.~22!
as

E~n!

E~n21! 50.82, ~29!

in good agreement with the observed ratio of about 0.78.
Thus, the first 40 corrections for CH2 decrease only slowly in
magnitude—not because of a large coupling between the
ground state and the doubly excited state but because the
zeroth-order Hamiltonian severely overestimates the energy
gap between the two states.

In Fig. 1, the lower curve is a plot of the absolute values
of the energy corrections of the two-state problem. The en-
ergy corrections obtained from the two-state problem are
several orders of magnitude smaller than those obtained from
the full expansion. This is to be expected since the two-state
problem includes only the interaction between the two low-
est states. The large contributions to the energy corrections
from dynamic correlation are therefore absent in the two
state model.

The two curves in Fig. 1 are nearly linear, with similar
curvatures for orders 10–40, substantiating the notion that
the convergence of the full perturbation expansion is closely
related to the lowest doubly excited state. For orders less
than 10, the full perturbation expansion contains significant
contributions from states other than the lowest doubly ex-
cited state; for orders higher than 40, the two-state model and
the full expansion both deviate from linearity. This behavior
is not in conflict with the two-state model itself; it merely
shows that the one-term approximation, Eq.~22!, is poor for
higher orders. In the two-state model, the energy corrections
change sign and are positive for orders 52–93. A similar
behavior is expected for the full energy corrections.

For the BH molecule in the aug-cc-pVDZ basis, a simi-
lar analysis shows that there are no front-door intruders for
this system as well. For the two-state model spanned by the
ground state and by the low-lying doubly excited state, the

TABLE II. Møller–Plesset energy corrections~in mEh! for CH2 using the
aug-cc-pVDZ basis.

Ordern E(n) Ordern E(n)

1 218 570.021 18 26 20.003 953 7
2 2115.682 368 0 27 20.003 137 5
3 221.138 383 3 28 20.002 485 4
4 26.312 700 6 29 20.001 965 2
5 22.145 142 3 30 20.001 550 8
6 21.007 196 8 31 20.001 221 2
7 20.546 686 1 32 20.000 959 6
8 20.350 448 1 33 20.000 752 2
9 20.237 962 0 34 20.000 588 2

10 20.173 083 5 35 20.000 458 7
11 20.128 876 6 36 20.000 356 7
12 20.098 823 4 37 20.000 276 6
13 20.076 621 8 38 20.000 213 7
14 20.060 211 2 39 20.000 164 6
15 20.047 572 6 40 20.000 126 2
16 20.037 818 0 41 20.000 096 4
17 20.030 133 8 42 20.000 073 3
18 20.024 070 1 43 20.000 055 4
19 20.019 237 3 44 20.000 041 6
20 20.015 383 0 45 20.000 031 1
21 20.012 295 3 46 20.000 023 0
22 20.009 822 4 47 20.000 016 9
23 20.007 838 6 48 20.000 012 2
24 20.006 248 6 49 20.000 008 8
25 20.004 974 1 50 20.000 006 2

FIG. 1. The absolute values of the perturbation corrections for CH2 in the
aug-cc-pVDZ basis~upper curve! and from the two state representation
using the parameters in Eqs.~25!–~27! ~lower curve!.

9740 J. Chem. Phys., Vol. 112, No. 22, 8 June 2000 Olsen et al.



zeroth-order Hamiltonian again overestimates the energy dif-
ference between the two lowest states, leading to a positive
gap shift that is large compared with the coupling element.
Again, the large gap shift leads to slow convergence. For the
BH molecule, the point of degeneracy in the space spanned
by the two lowest FCI wave functions givesz651.41
60.19i.

Obviously, our analysis of the convergence for CH2 and
BH does not eliminate the possibility that these sequences
may ultimately diverge because of back-door intruders. We
shall now consider such intruder states.

C. Ne: An example of a back-door intruder

For systems like the neon atom and the HF molecule, the
Møller–Plesset expansion diverges, with the onset of diver-
gence between orders 10 and 20.4 In this section, we study
the back-door intruders responsible for this divergence, dem-
onstrating that the divergence is a consequence of the choice
of the zeroth-order operator. Our example will be the neon
atom in the aug-cc-pVDZ basis.

Table III contains~in the second column! the Møller–
Plesset energy corrections up to order 25. In Fig. 2, we
present information about the lowest FCI eigenvector of
H(z) of symmetry1S for realz: the upper panel contains the
energy difference between the two lowest1S states, the
middle panel the weight of the Hartree–Fock configuration
in the lowest state, and the lower panel the expectation value
of r 2 ~measuring the diffuseness of the lowest state!. We
observe an avoided crossing at aboutz520.82—for z
,20.82, the wave function of the lowest energy has only a

very small component of the ground-state configuration and
is very diffuse.5

The intruder state is observed also in restricted scans,
where the avoided crossing is studied in the subspace of the
correction vectors, as previously discussed. In Fig. 3, we
give the difference between the two lowest eigenvalues of
H~z! for the subspaces containing the correction vectors up
to ordersn equal to 2, 4, 6, 8, and 10, respectively, with the
scan extended to the interval@22,2#. For n52, there is no
indication of a back-door intruder; forn.2, there is a pro-
nounced avoided crossing that moves toward the origin with
increasingn. For n54, the avoided crossing is clearly out-
side the unit circle; forn56, it is close to the unit circle.
Finally, in the highest-order subspaces (n58,10), the

TABLE III. Møller–Plesset energy corrections~in mEh! for neon using the
aug-cc-pVDZ and the aug-cc-pVTZ8 basis sets.

Ordern Eaug-cc-pVDZ
(n) Eaug-cc-pVTZ8

(n)

1 253 907.365 36 225 709.612 50
2 2206.873 508 5 2244.690 266 7
3 21.547 443 3 1.719 475 4
4 25.686 207 4 27.469 483 4
5 2.013 699 1 2.000 452 8
6 21.582 384 8 21.494 566 5
7 0.959 125 5 0.898 918 6
8 20.707 420 7 20.674 272 6
9 0.537 928 8 0.513 454 2

10 20.439 802 3 20.416 984 0
11 0.375 500 2 0.351 804 8
12 20.334 462 8 20.309 001 1
13 0.308 421 4 0.281 169 5
14 20.293 243 4 20.264 390 8
15 0.286 368 6 0.256 220 8
16 20.286 354 9 20.255 288 3
17 0.292 429 4 0.260 941 4
18 20.304 288 5 20.273 074 0
19 0.321 979 6 0.292 042 6
20 20.345 841 3 20.318 645 1
21 0.376 478 2 0.354 148 1
22 20.414 758 7 20.400 358 2
23 0.461 831 4 0.459 738 3
24 20.519 155 9 20.535 576 3
25 0.588 548 1 0.632 217 2

FIG. 2. Information from an energy scan on the real axis for Ne in the
aug-cc-pVDZ basis. The upper panel contains the energy difference between
the two lowest1S states, the middle panel gives the weight of the Hartree–
Fock configuration in the lowest state, and the lowest panel gives the ex-
pectation value ofr 2.

FIG. 3. The energy difference in calculations on Ne using the aug-cc-pVDZ
basis between the two lowest eigenvalues ofH~z! for the subspaces contain-
ing the correction vectors up to ordersn equal to 2, 4, 6, 8, and 10, respec-
tively.
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avoided crossing is located inside the unit circle close toz
520.82—the location obtained from the energy scan.

To investigate the intruder state in more detail, we study
the two-state problem spanned by the two lowest states atz
520.82. In the basis of the vectors that diagonalizeH0 in
this subspace, we obtain

H05S 274.432 85 0.0

0.0 266.874 13D , ~30!

H5S 2127.9758 0.0059

0.0059 2111.2763D . ~31!

In the following, we shall refer to the higher state as the
intruder state~i! and to the lower state as the ground state
~g!. From the above matrices, we obtain the parameters

e516.6995, ~32!

g529.140 78, ~33!

d50.0059. ~34!

These parameters predict the point of degeneracy,

z6520.82760.001i, ~35!

showing that there indeed is a point of degeneracy within the
unit circle—that is, an intruder state. Since the coupling is
small compared with the gap shift, we can invoke Eq.~21! to
explain the alternating sign of the energy corrections.

In Fig. 4, we present the energy corrections for the per-
turbation expansion as given by the two-state model with the

parameters in Eqs.~32!–~34!. Note that, for the two-state
model, the energy corrections are significantly smaller than
the full corrections of Table III.

Expressed in terms of the Hartree–Fock orbitals, the in-
truder state is a rather complicated wave function. In Table
IV, we have analyzed the intruder state in terms of the vari-
ous excitation levels using the Hartree–Fock orbitals. More
than 70% of the weight of the wave function arises from
sixfold or higher excitations. In Table V, we give the natural
occupation numbers and the expectation values ofr 2 for the
FCI ground state@obtained as the lowest root ofH~1!# and
for the intruder state@obtained as the second state that diago-
nalizesH0 in the space spanned by the two lowest roots of
H~20.82!#. The occupation numbers of the intruder state
shows that this state is well represented by the single elec-
tronic configuration 1s22s822p86, where the 2s8 and 2p8
orbitals are very diffuse and differ significantly from the the
canonical orbitals of the ground-state Hartree–Fock configu-
ration.

The occurrence of the highly diffuse back-door intruders
may be explained using simple physical arguments. We first
note that the zeroth- and first-order energies are usually sev-
eral orders of magnitude larger than the higher-order correc-
tions. The energy of a statek can therefore be accurately
approximated by the linear form

Ek
l ~z!5Ek

~0!1zEk
~1! . ~36!

In Fig. 5, we have used this approximation for the ground
state and for the intruder state of the two-state problem. The
zeroth- and first-order energies have been extracted from the

TABLE IV. Breakdown of wave function into weights of excitation levels
for the intruder state of Ne in aug-cc-pVDZ basis.

Excitation level Weight

8 0.093 603
7 0.258 588
6 0.350 948
5 0.203 870
4 0.071 053
3 0.017 687
2 0.003 506
1 0.000 705
0 0.000 040

TABLE V. Occupation numbersn and expectation valuesr 2 for natural
orbitals of the ground and intruder state for Ne using FCI in the aug-cc-
pVDZ basis set.

Orbitals

Ground state Intruder state

n r 2/a.u. n r 2/a.u.

1s 2.000 0.0335 2.000 0.0335
2s 1.991 1.0834 1.971 4.1472
2px , 2py , 2pz 1.979 1.2695 1.993 13.135

FIG. 4. The energy corrections for Ne in the two-state model using the
parameters in Eqs.~32!–~34!.

FIG. 5. The total energiesEg(z) ~gray line!, Eg
l (z) ~thin full line!, Ei

l(z)
~dotted line!, andE81

l (z) ~dashed line! as a function ofz.
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diagonal elements of the matricesH0 and H of Eqs. ~30!–
~31!, leading to the following linear expressions for the en-
ergies of the ground and intruder states:

Eg
l ~z!5274.432 85253.542 95z, ~37!

Ei
l~z!5266.874 13244.402 17z. ~38!

Figure 5 also contains the true energy functionEg(z), ob-
tained as the lowest eigenvalue ofH(z). The curves of the
energy functionsEg

l (z) andEg(z) are very nearly identical,
demonstrating the validity of the linear approximation.

Although the intruder state is high above the ground
state forz>0, their different slopes give rise to a crossing for
z,0. The linear approximation predicts a crossing forz
520.827, which agrees well with the true location of de-
generacy. The curve crossing is thus a consequence of the
presence of states that, compared with the ground state, have
a significantly higher zeroth-order energy but a significantly
smaller absolute value of the first-order energy. In Møller–
Plesset perturbation theory, the first-order energy is equal to
the electron-repulsion energy of the reference determinant.
Configurations with very diffuse electron distributions will
thus necessarily have a numerically small first-order energy
correction.

The above divergence of the Møller–Plesset expansion
is thus caused by crossings of the ground-state energy curve
with the curves of states that, for the physical Hamiltonian,
are located high in the continuum. To illustrate this point, we
have in Fig. 5 also given the linear energy approximation,

E81
l 5E81

~0!1E81
~1!z5265.5899228.2590z, ~39!

for a hypothetical neon state containing the two 1s electrons
and with the eight valence electrons located so far away from
the nucleus that the system can be considered a Ne81 ion.
The zeroth- and first-order energies of this ion have been
obtained from theH0 andH operator of the neutral atom in
the aug-cc-pVDZ basis. The ground-state curve is predicted
to cross the curve for the ionized atom forz520.35. As the
basis increases, states similar to this ionized state will be
included and lead to avoided crossings in this region.

The identification of back-door intruders as diffuse con-
tinuum states explains a number of puzzling features in the
observed divergences. First, it is now clear why the diver-
gences are observed only when diffuse functions are added
since only then are continuum states of low electron repul-
sion present. Second, the back-door intruders are very highly
excited since all valence orbitals change from contracted to
diffuse orbitals. Third, the divergences are more pronounced
for electron-rich systems such as neon: For such systems, the
first-order energy is numerically large with the result that
Eg(z) rises sharply into the continuum forz,0, increasing
the likelihood of crossings forz.21.

According to this discussion, an increase of the basis
should not remove the intruder states even if only contracted
functions are added. As an illustration, we have listed in the
third column of Table III the energy corrections obtained by
using the truncated aug-cc-pVTZ8 basis, obtained from the
aug-cc-pVTZ basis by removing thef functions. The energy

corrections of the aug-cc-pVDZ and the truncated
aug-cc-pVTZ8 basis are very similar and the divergence is
equally pronounced in the two cases.

The validity of the above discussion of divergence due
to diffuse back-door intruders is not restricted to the neon
atom. We have investigated a number of other atoms and
molecules with high electron densities and many interacting
electrons and observed similar crossings of the ground state
and the continuum states for negativez. In the next section,
we shall discuss HF. Here, we comment briefly on the in-
truder states for the anion F2.

As described previously,4 the F2 system diverges al-
ready from third order. A scan of the spectrum ofH(z)
shows an avoided crossing atz520.64. In a subspace
spanned by the two lowest1S roots ofH~20.64! and in the
basis that diagonalizes the zeroth-order Hamiltonian in this
subspace, we obtain a coupling element of 0.047. This cou-
pling is significantly larger than the corresponding coupling
in neon, explaining the more rapid divergence in F2.

For the less electron-rich molecules, back-door intruder
states may be observed in extended basis sets. For the BH
molecule, there are no back-door intruders in the aug-cc-
pVDZ and d-aug-cc-pVDZ basis sets. However, in the t-aug-
cc-pVTZ basis, we may identify a back-door intruder with
z6520.986531028i. However, because of the very small
coupling and the proximity of the criticalz to the unit circle,
no signs of this intruder are detected in the first 50 terms of
the Møller–Plesset expansion. As the energy corrections af-
ter the first 50 terms are smaller than 10212, we may regard
this BH expansion to be practically converged. However, if
the expansion is continued beyond order 50, the divergence
must eventually occur.

For the CH2 molecule, there are no intruders in the aug-
cc-pVDZ basis. When a second set of diffuse functions is
added at the d-aug-cc-pVDZ level, we observe a back-door
intruder. Again, the perturbation expansion can be continued
to a convergence of 10210 with no sign of divergence. For
these molecules where intruder states show up only when
two or three sets of diffuse functions are added, the coupling
to the reference state is so small that, for all practical pur-
poses, the intruders do not affect the convergence of the
expansion.

The question of convergence or divergence of perturba-
tion expansions was above analyzed using the FCI states
obtained by diagonalizingH(z). However, a examination of
the zeroth- and first-order energy corrections of the different
configurations is usually sufficient to answer the question of
convergence. We shall discuss this point in a separate com-
munication.

D. HF: Examples of calculations containing both
back-door intruders and low-lying excited states

We first consider calculations on HF at the equilibrium
geometryRHF in the cc-pVDZ basis. In Fig. 6, we have
plotted information about the lowest two roots ofH(z) for
this system. The upper plot contains the energy of the lowest
state, the second plot contains the difference between the
energies of the two lowest roots, the third plot contains the
coefficient of the ground-state determinant for the lowest
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root, and the fourth and lowest plot gives the expectation
value of x2 for the lowest root. Thex axis is orthogonal to
the molecular axis and the expectation value ofx2 measures
the diffuseness of the state. No avoided crossings are ob-
served in the intervalz5@21,1#: there is no minimum in the
excitation-energy curve and the ground-state wave function
is dominated by the Hartree–Fock determinant for allz. Con-
sequently, we expect the Møller–Plesset expansion to con-
verge, as confirmed by the Møller–Plesset energy correc-
tions plotted in Fig. 7.

Adding the diffuse functions to the basis at the equilib-
rium geometry, we obtain the scan in Fig. 8. There is now a
pronounced avoided crossing atz520.743. The shape of
the energy-difference curve~i.e., the near-degeneracy of the
energies and the absence of interaction whenz is slightly
larger than20.743! indicates that the coupling between the
ground state and the intruder state is very small. To quantify
the coupling and the gap shift, calculations were performed
in the subspace of the two lowest1S states ofH~20.743!. In
this subspace, the zeroth-order states give the matrices

H05S 254.659 80 0.000 00

0.000 00 249.410 60D , ~40!

U5S 244.910 05 0.000 34

0.000 34 237.842 47D , ~41!

which correspond to

e512.316 78, ~42!

g527.067 58, ~43!

FIG. 7. The energy corrections for HF at equilibrium geometry in the cc-
pVDZ basis.

FIG. 8. Information from an energy scan on the real axis for HF at the
equilibrium geometry in the aug8-cc-pVDZ basis. The upper panel contains
the energy of the lowest state, the second panel contains the energy differ-
ence between the two lowest states, the third panel gives the coefficient of
the Hartree–Fock configuration in the lowest state, and the lowest panel
gives the expectation value ofx2.

FIG. 6. Information from an energy scan on the real axis for HF at equilib-
rium geometry in the cc-pVDZ basis. The upper panel contains the energy
of the lowest state, the second panel contains the energy difference between
the two lowest states, the third panel gives the coefficient of the Hartree–
Fock configuration in the lowest state, and the lowest panel gives the ex-
pectation value ofx2.
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d50.000 34. ~44!

The coupling element is indeed small. The weak coupling
arises since the intruder is dominated by quadruple and
higher excitations into the diffuse functions. The predomina-
tion of excitations into diffuse orbitals is reflected in the
expectation value ofx2, which changes abruptly at the
avoided crossing. The location of the crossing may again by
estimated from linear expansions of the energies of the
ground state and the intruder state. Obtaining the zeroth- and
first-order energies from Eqs.~40! and ~41!, we predict an
avoided crossing atz520.743, in perfect agreement with
the value obtained from the energy scan.

The Møller–Plesset expansion for HF is thus divergent
in the aug-cc-pVDZ basis. The divergence is clearly seen in
Fig. 9, where we have plotted the Møller–Plesset energy
corrections for this system. The sign of the energy correc-
tions alternate, as predicted from Eq.~21!.

Turning next to the results for the stretched bond, we
give in Fig. 10 the results of the scan in the cc-pVDZ basis.
In the energy-difference curve, we observe two avoided
crossings: a shallow minimum atz50.8 and a sharp mini-
mum at z520.598. We shall investigate these avoided
crossings separately, using the two-state model.

For the avoided crossing atz50.8, the two-state Hamil-
tonian is defined by the matrices

H05S 256.374 951 0.000 00

0.000 00 255.974 842D , ~45!

U5S 243.565 86 0.1195

0.1195 243.878 70D , ~46!

which give

e50.087 27, ~47!

g50.3128, ~48!

d50.1195. ~49!

The points of degeneracy are obtained from Eq.~13! as z6

50.8060.62i. The relatively strong coupling is consistent
with the large separation between the curves at the avoided
crossing. The point of degeneracy is predicted to be just
outside the unit circle. In general, when a point of degen-
eracyz* having a significant imaginary component is close

to the boundary of the unit circle, it may be necessary to
determine the eigenvectors ofH(z* ) in the full CI space to
establish whether the point of degeneracy represents an in-
truder state. As the gap shift and the coupling are of similar
magnitude, the simple one-term expansion in Eq.~21! cannot
be used. In Fig. 11, we have plotted the perturbation expan-
sion using Eq.~12! with the above obtained values. Although
not evident from Fig. 11, the perturbation series is ultimately
converging.

FIG. 9. The energy corrections for HF at equilibrium geometry in the
aug8-cc-pVDZ basis.

FIG. 10. Information from an energy scan on the real axis for HF at the
stretched geometry in the cc-pVDZ basis. The upper panel contains the
energy of the lowest state, the second panel contains the energy difference
between the two lowest states, the third panel gives the coefficient of the
Hartree–Fock configuration in the lowest state, and the lowest panel gives
the expectation value ofx2.

FIG. 11. The energy corrections for HF in the two-state model using the
parameters in Eqs.~47!–~49!.
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The avoided crossing atz520.598 is much more pro-
nounced. Accordingly, the two-state model using the two
lowest states ofH~20.598! gives a sharp crossing atz5
20.598. The Hamiltonian matrices of this model are given
by

H05S 256.419 51 0.000 00

0.000 00 244.296 16D , ~50!

U5S 242.817 676 231028

231028 222.542 57D , ~51!

giving a point of degeneracyz652.59811.231029i,
which corresponds to a back-door intruder very close to the
real axis.

The dominant contribution to the intruder state may be
written as 1s22s823s821p8x

21p8y
2, where 2s8 is the anti-

bonding sigma orbital, 3s8 the most diffuse hydrogen func-
tion, and thep8 orbitals consist of the hydrogenp orbitals
orthogonal to the molecular axis. Thus, the intruder repre-
sents a state with six electrons in the most diffuse hydrogen
functions. We also note that the reason for the occurrence of
the back-door intruder at the stretched geometry~as opposed
to the equilibrium geometry! is not an increased first-order
correction—in fact, the first-order ground-state energy is
2.3Eh lower at the equilibrium geometry than at the stretched
geometry ~245.4802Eh vs 243.1801Eh!. Rather, the in-
truder is stabilized by a reduced zeroth-order gapEi

(0)

2Eg
(0) that arises from a lowering of the virtual orbital ener-

gies and a simultaneous raising of the occupied orbital ener-
gies. Thus, the antibonding orbital has a negative orbital en-
ergy of 20.129 57Eh at the stretched geometry, whereas the
lowest energy for a totally symmetric virtual orbital at equi-
librium is 0.183 85Eh . The intruder state is again stabilized
compared to the ground state by a numerically much smaller
first-order energy. Within the two-state model, the first-order
energy of the intruder state and the ground state is thus
222.542 57Eh and242.817 68Eh , respectively.

In Fig. 12, we have plotted the MP sequence to order 50.
The series behaves in a manner that reflects the presence of
both avoided crossing discussed above. Thus, after a few
irregular corrections, corrections 10–30 exhibit a slowly un-
dulating pattern that is determined by the interaction with the
strongly coupled would-be front-door intruder. For higher
orders the interaction with the weakly coupled back-door

intruder takes over and the series begins to alternate and
diverge in a manner typical of such intruders. Note that, even
though the most strongly coupled electronic state governs in
lowest order, the fate of the series is eventually determined
by the weakly coupled back-door intruder.

The last case to be studied is the HF molecule at the
stretched geometry in the diffuse basis. In Fig. 13, we have
listed the results of the corresponding scan ofH(z). For
positivez, there is a very weak avoided crossing around 0.9
and a pronounced avoided crossing atz520.51. For the
avoided crossing atz50.9, there is no obvious change of the
character of the wave function, whereas the avoided crossing
at z520.51 is associated with abrupt changes of the lowest
state: a sharp drop in the weight of the Hartree–Fock deter-
minant and a sudden increase in the diffuseness of the state.

The two-state model reveals that the weak avoided
crossing is associated with the points of degeneracy 0.92
60.53i, which are sufficiently far removed from the unit
circle that we can rule out the possibility of an intruder.
Conversely, for the degeneracy at negativez, we obtain from
the two-state model@employing the two lowest eigenvectors
of H~20.51!# z652.5106631025, indicating the pres-
ence of an intruder. The small imaginary part of the points of
degeneracy agrees with the very small energy gap at the
avoided crossing. Figure 14 gives the MP series to order 15,

FIG. 12. The energy corrections for HF at stretched geometry in the cc-
pVDZ basis.

FIG. 13. Information from an energy scan on the real axis for HF at the
stretched geometry in the aug8-cc-pVDZ basis. The upper panel contains the
energy of the lowest state, the second panel contains the energy difference
between the two lowest states, the third panel gives the coefficient of the
Hartree–Fock configuration in the lowest state, and the lowest panel gives
the expectation value ofx2.
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showing a divergent, alternating series already at third order.

E. Relations between low- and high-order
convergence

From perturbation calculations through order 6, Cremer
and He2 have classified molecules as belonging to either
class A or class B. Class A systems have perturbation cor-
rections that are monotonically decreasing while class B sys-
tems have perturbation corrections that alternate in sign. In
accordance with the previous discussion, class B molecules
contains electron-rich atoms whereas class A molecules con-
tain atoms with fewer electrons. Our calculations and analy-
sis show that that it is difficult, and not in general mathemati-
cal motivated, to extrapolate from low-order to the
asymptotic behavior. In particular, the question of conver-
gence or divergence cannot be determined by a study of the
lowest orders energy contributions. An example is HF,
which is a class B system with the initial energy corrections
alternating in sign. However, in calculations at the stretched
geometry with a nonaugmented basis, the perturbation cor-
rections only alternate in sign up to order ten, after which the
corrections have the form of a damped sinus function with a
period of about 20. From about order 30 the series starts to
diverge with perturbation corrections alternating in sign.

F. Alternative partionings

In the previous discussion, we have restricted our atten-
tion to the Møller–Plesset theory. It may be of interest to
comment briefly on other partitions. The diagonal of the
Hamiltonian in the Slater determinant or configuration state
basis is occasionally used as the zeroth-order Hamiltonian
leading to the Epstein–Nesbet partitioning. As the first-order
energy vanishes trivially for this partitioning, there are, of
course, no back-door intruders due to numerically large first-
order energies. A scan for HF at the equilibrium distance
RHF in the diffuse aug8-pVDZ basis shows accordingly no
intruderstates. Instead an avoided crossing atz'21.1 is ob-
served. This avoided crossing is due to the interaction be-
tween the reference state and an excited state dominated by
singly and doubly excited configurations. The Epstein–
Nesbet perturbation expansion is thus convergent for HF us-

ing the aug8-pVDZ basis. If the HF bond is stretched to
2RHF, the Epstein–Nesbet perturbation expansion exhibits
rapid divergence.

An alternative modification of the Møller–Plesset parti-
tioning is based on the use of modified virtual orbitals. How-
ever, in this approach the occupied orbitals are usually not
modified, so the energy of the reference state will again rise
into the continuum for negative values ofz.

IV. CONCLUSIONS

We have demonstrated how the convergence patterns of
MP series can be understood in terms of a simple mathemati-
cal model, which can be given a simple physical interpreta-
tion. The computational complexity of the analysis is much
larger than the complexity of solving the FCI problem and
thus cannot be used as a practical remedy for a divergent MP
series.

For molecules with low-lying double excited states, as
CH2, BH, and HF at the stretched geometry, we have ob-
served points of degeneracy in the half-plane with a positive
real value. For CH2, BH, and stretched HF using the
aug8-cc-pVDZ basis, these points of degeneracy were defi-
nitely outside the unit circle. For stretched HF using the cc-
pVDZ basis, this point of degeneracy was detected to be just
outside the unit circle. Studying the two-state problem in the
space spanned by the ground state and the low-lying double
excited state, we observe a significant coupling between the
two zeroth-order functions, and the zeroth-order energy gap
severely overestimates the energy gap. The large coupling
element causes the corrections in the initial orders to be
large, whereas the large overestimation of the energy gap in
zeroth order causes the very slow decrease in the energy
corrections. These observations explains the initial slow
monotonic convergence of the MP series for these mol-
ecules. As the above points of degeneracy all are located
outside the unit circle, they do not cause divergence.

All molecules examined in the present paper exhibit
back-door intruders in basis sets containing sufficient diffuse
functions. For the molecules BH and CH2, where the back-
door intruders only occur when double or higher augmented
basis sets are used, the MP series converge to better than
10212 in energy, and no signs of divergence occur in the
lowest 50 orders. Although the MP series in these cases may
be considered practically converged, the sequences ulti-
mately diverge.

The divergences of the MP series for the electron-rich
molecules are not related to numerical instabilities nor to
basis-set artifacts but are rather inherent to the Møller–
Plesset partitioning of the Hamiltonian. The divergences can
be reproduced using a simple mathematical analysis based
on the two-state model. We believe that it is now firmly
established that the divergence for even simple systems such
as neon and HF are due to highly excited diffuse back-door
intruders, that couple only weakly to the ground state. In our
earlier study of the divergences, basis sets of double-zeta
quality augmented with diffuse functions were considered.
The present calculations include basis sets of triple-zeta qual-
ity augmented with diffuse functions, and we find the same
divergences in these calculations. In short, the divergences

FIG. 14. The energy corrections for HF at stretched geometry in the
aug8-cc-pVDZ basis.
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occur whenever the basis contains sufficient flexibility to
give a reasonable description of the highly excited, diffuse
back-door intruders. As such, divergence is the rule rather
than exception in MP theory, which converges only in small
basis sets. Even though the inherent divergence of the MP
series does not invalidate the use of the highly successful
MP2 level of theory, higher-order corrections should always
be treated with caution.
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