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The line bundles that arise in the holonomy interpretations of the geometric phase
display curious similarities to those encountered in the statement of the Borel–
Weil–Bott theorem of the representation theory. The remarkable relationship be-
tween the mathematical structure of the geometric phase and the classification
theorem for complex line bundles provides the necessary tools for establishing the
relevance of the Borel–Weil–Bott theorem to Berry’s adiabatic phase. This enables
one to define a set of topological charges for arbitrary compact connected semi-
simple dynamical Lie groups. These charges signify the topological content of the
phase. They can be explicitly computed. In this paper, the problem of the determi-
nation of the parameter space of the Hamiltonian is also addressed. It is shown that,
in general, the parameter space is either a flag manifold or one of its submanifolds.
A simple topological argument is presented to indicate the relation between the
Riemannian structure on the parameter space and Berry’s connection. The results
about the fiber bundles and group theory are used to introduce a procedure to
reduce the problem of the nonadiabatic~geometric! phase to Berry’s adiabatic
phase for cranked Hamiltonians. Finally, the possible relevance of the topological
charges of the geometric phase to those of the non-Abelian monopoles is pointed
out. © 1996 American Institute of Physics.@S0022-2488~96!03502-7#

I. INTRODUCTION

In the past ten years, since the revival of the geometric phase,1,2 by Berry,3 the subject has
attracted the attention of many physicists. The main reason for the unusual popularity of this
remarkably simple subject, particularly among the theoretical physicists, has been its rich math-
ematical and physical foundations.

Recently, it was shown that the two holonomy interpretations of Berry’s phase were linked via
the theory of universal bundles.4,5 This remarkable coincidence of the physics of geometric phase
and the mathematics of fiber bundles enables one to set up a convenient framework to analyze the
nonadiabatic phase.5 In the present paper, the results of5 are briefly reviewed and their generali-
zation to arbitrary finite-dimensional unitary systems are presented.

In Sec. II, it is shown how the study of the standard example of a spin in a processing
magnetic field directs one to the Borel–Weil–Bott~BWB! theorem of the representation theory of
compact semisimple Lie groups. In Sec. III, the relation of the BWB theorem to the phenomenon
of a geometric phase is discussed in a general setting. Section IV is devoted to a discussion of the
relation of Berry’s connection and the Riemannian geometry of the parameter space. Section V
includes the discussion of the reduction of the nonadiabatic phase problem to the adiabatic one for
the cranked Hamiltonians. Section VI consists of a short account on the classification of the
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parameter spaces and the topology of non-Abelian monopoles. Section VII includes the conclu-
sions.

II. BUNDLE CLASSIFICATION AND THE HOLONOMY INTERPRETATIONS OF THE
GEOMETRIC PHASE

There are two mathematical interpretations of Berry’s~adiabatic! phase. These are due to
Simon6 and Aharonov and Anandan.7 I shall refer to these two approaches by ‘‘BS’’ and ‘‘AA,’’
which are the abbreviations of ‘‘Berry–Simon’’ and ‘‘Aharonov–Anandan,’’ respectively.

In the BS approach, one constructs a line bundleL over the spaceM of the parameters of the
system. Then,L is endowed with a particular connection that reproduces Berry’s phase as the
holonomy of the closed loop in the parameter space.

Let us consider a quantum mechanical system whose evolution is governed by a parameter-
dependent Hamiltonian:

H5H~x!, xPM .

Assume that for allxPM the spectrum ofH(x) is discrete and that there are no level crossings.
Then, locally one can choose a set of orthonormal basic eigenstate vectors$un,x&%. As functions of
x, un,x& are smooth and single valued. By definition, they satisfy

H~x!un,x&5En~x!un,x&, ~1!

whereEn(x) are the corresponding energy eigenvalues. The Hamiltonian is made explicitly time
dependent by interpreting timet as the parameter of a curve,

C:@0,T#{t→x~ t !PM , ~2!

and setting

H~ t !:5H~x~ t !!, tP@0,T#. ~3!

Then, each closed curveC in M defines a periodic Hamiltonian with periodT. I shall discuss only
the evolution of nondegenerate cyclic states with periodT.

Under the adiabatic approximation the initial eigenstates undergo cyclic evolutions.3 If
ucn(t)& denotes the evolving state vector, i.e., the solution of the Schro¨dinger equation:

H~ t !ucn~ t !&5 i
d

dt
ucn~ t !&

ucn~0!&:5un,x~0!&, ~4!

then

ucn~T!&^cn~T!u.ucn~0!&^cn~0!u. ~5!

After a cycle is completed, the state vector gains a phase factor that consists of a dynamical (eiv)
and a geometric (eig) part,

ucn~T!&5ei ~v1g!ucn~0!&, ~6!

where
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v:52E
0

T

En„x~ t !…dt,

and

eig:5exp R
C
A, ~7!

A:52^n,xudun,x&52^n,xu
]

]xm un,x&dxm. ~8!

The one-formA is known as Berry’s connection one-form.3

In Ref. 6, Simon showed thatA could be interpreted as a connection one-form on a~spectral!
line bundleL overM ,

C→L→M , ~9!

whose fibers are given by the energy eigenrays in the Hilbert spaceH,

Lx :5$zun,x& : zPC%. ~10!

Thus, in the BS approach, Berry’s phase is identified with the holonomy of the loopC,M defined
by the connection one-formA of Eq. ~8!.

In the AA approach one considers a complex line bundleE, or alternatively, the associated
U~1!-principal bundle, over the projective Hilbert spaceP~H!5CPN, N:5dim~H!21:

C→E→P ~H!. ~11!

The fibers over the pointsh5uh&^hu of P ~H!5CPN are the corresponding rays:

Eh :5$zuh& : zPC%, ~12!

in the Hilbert spaceH. ~The topological structure ofE is determined by the topological structure
of CPN. In particular, a natural local trivialization is given by adopting the standard homogeneous
local coordinate charts forCPN. The associated transition functions ofE are determined from
those ofCPN similarly. See Sec. IV for an alternative characterization of the topology ofE.!

The AA connection one-formA ~Ref. 7! is then viewed as a connection one-form onE and
the geometric phase is identified with the corresponding holonomy of loops,

C :@0,T#{t→h~ t !PP ~H!, ~13!

in P ~H!. In the adiabatic approximation one approximatesh(t) by cn(t) of Eq. ~4!.
These two interpretations of Berry’s phase turn out to be linked via the theory ofuniversal

bundles. It is shown in Refs. 4 and 5 thatE ~with N→`! is indeed the universal classifying line
bundle,8–10 and as a result of the classification theorem for complex line bundles,9,8,11 every
complex line bundle can be obtained as a pullback bundle fromE. In particular, there is a smooth
map,

f :M→P ~H!, ~14!

such that

L5 f * ~E!. ~15!
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The mapf is simply given by

f ~x!:5un,x&^n,xu. ~16!

Furthermore, the fact that the phase is obtained from either ofA orA is a consequence of the
theory of universal connections.12,13 In fact, the AA connectionA is precisely the universal
connection, which yields all connections on all complex line bundles as pullback connections. In
particular, Berry’s connection onL is given by

A5 f * ~A!. ~17!

These results are exploited in Ref. 5 to explore the quantum dynamics of Berry’s original example:

H~x!5bx–J, xPS2,R3, ~18!

whereb is the Larmor frequency,x is the direction of the magnetic field, andJ5(Ji), i51,2,3, are
the generators of rotations,JiPso(3)5su(2). In Ref. 5, it is shown that if one considers the case
of precessing magnetic field, i.e., precessingx about a fixed axis, then one can promote Simon’s
construction to the nonadiabatic case, namely, define a nonadiabatic analog of Berry’s connection
and identify the nonadiabatic phase with its holonomy. This can be done in general unless the
frequency of precession,v, becomes equal tob. In the northern hemisphere the nonadiabatic
connectionÃ is given by

Ã5 ik~12cos ũ !df, ~19!

wherek labels an eigenvalue ofH(x) ~alternatively an eigenvalue ofJ3!, and

cos ũ:5
cosu2n

An222n cosu11
, ~20!

n:5
v

b
. ~21!

Here ~u,f! are the spherical coordinates„uP@0,p!…, and n is the ‘‘slowness parameter’’.14 The
adiabatic limit is characterized byn→0. In this limit Ã approaches to Berry’s connection,

A5 ik~12cosu!df. ~22!

Note that unlike the adiabatic case~n→0!, the cyclic states in the more general nonadiabatic
case cannot be approximated by the eigenstates of the initial Hamiltonian. They are given as the
eigenstates of the unitary time evolution operator at timeT. This operator does not generally
commute with the initial Hamiltonian, and they do not share simultaneous eigenstates.

The topology of a line bundle onS2 is determined by its first Chern number,

c1 :5
i

2p E
S2

V, ~23!

whereV is the curvature two-form. For line bundles, the curvature two-form is obtained from the
connection one-form by taking its ordinary exterior derivative.15 A simple calculation shows that
takingV5dÃ results in

c1522k, for n,1. ~24!
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This is quite remarkable since the fact thatc1 is an integer agrees with the fact thatk is a
half-integer. The first statement is an algebraic topological result, whereas the second is related to
group theory. One of the best known mathematical results that links these two disciplines is the
celebrated Borel–Weil–Bott~BWB! theorem.16–19

Equation~24! may also be viewed as an example of a topological quantization of angular
momentum. In the language of magnetic monopoles, which are relevant to the adiabatic case,
k52c1/2 corresponds to the product of the electric and magnetic charges.20,21

III. BOREL–WEIL–BOTT THEOREM AND THE BERRY–SIMON LINE BUNDLES

The BWB theorem constructs all the finite-dimensional irreducible representations~irreps.! of
semisimple compact Lie groups from the irreps. of their maximal tori. The construction is as
follows.

LetG be a semisimple compact Lie group andT be a maximal torus. LetG andY be the Lie
algebras ofG andT, respectively.G can be viewed as a principal bundle over the quotient space
G/T:22

T→G→G/T. ~25!

The homogeneous spaceG/T can be shown to have a canonical complex structure.17 SinceT is
Abelian, its irreps. are one dimensional.22 Thus, each irrep.L of T defines an associated complex
line bundleLL to ~25!:

C→LL→G/T. ~26!

Now, consider aL whose corresponding line bundleLL is an ample~positive! line bundle. Then
LL has the structure of a holomorphic line bundle. BWB theorem asserts that all the irreps. ofG
are realized on the spaces of holomorphic sections of ample~positive! line bundles,LL . In
particular, the spaceHL of the holomorphic sections ofLL provides the irrep. ofG with maximal
weightL.18,17,19

The simplest nontrivial example of the application of the BWB theorem is forG5SU~2!. In
this case,T5U(1)5S1 andG/T5S25CP1. The bundle~25! is the Hopf bundle:22

U~1!5S1→SU~2!5S3→S2. ~27!

L takes non-negative half-integers. It is usually denoted byj in QM. It is common knowledge that
j50, 1

2,1,..., yield all the irreps. of SU~2! and that thej representation has dimension 2j11. The
dimension of the spaceHL can be given by an index theorem.

18,16For SU~2!, it is obtained by the
Riemann–Roch theorem in the context of the theory of Riemann surfaces. The result is

dim~HL!5c~LL!511c1~LL!, ~28!

wherec andc1 denote the total and first Chern numbers ofLL . This means that one must have

c1~LL!52 j . ~29!

Combining ~24! and ~29!, one recovers the line bundleLL as Simon’s line bundleL of ~9! for
k52 j .

In the rest of this section, I shall try to show that there is a general relationship between the
constructions used in the BWB theorem and those encountered in BS interpretation of Berry’s
phase. To proceed in this direction, let us consider the generalization of~18! to an arbitrary
compact semisimple Lie group, namely, consider
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H~x!5e(
i51

d

xiJi , ~xi !PRd2$0%. ~30!

HereJi are the generators ofG ande is a constant with the dimension of energy. SinceH(x) is
assumed to be Hermitian,Ji must be represented by Hermitian matrices. In other words, the group
G is in a unitary representation. In this sense, the example ofG5U(N) plays a universal role.
~This reminds one of the Peter–Weyl theorem.19,22!

The system described by Eq.~30! is studied in Refs. 23 and 24. In Ref. 23, it is argued that,
in general, there are unitary operatorsU(t) that diagonalize the instantaneous Hamiltonian:

H~ t !5U~ t !HD~ t !U~ t !†. ~31!

In view of Eq. ~3!, one has

U~ t !5U„x~ t !…, ~32!

where

x~ t !5„xi~ t !…PG2$0%5Rd2$0%, ~33!

are the points of the loop in the parameter space. In fact, one can show that the parameter space
‘‘is not’’ Rd2$0%, but a submanifold of this space, namely the flag manifoldG/T.

To see this, let me first introduce the root system ofG associated withY and the correspond-
ing Cartan decomposition:

G C5YC% aG a , ~34!

where the subscriptC meanscomplexificationanda stand for the roots. Letl denote the rank of
G , $Hi% i51,2,...,l andEa be bases ofY andG a , respectively.

25,22,18,17Then, one has

@Hi , Hj #50, @Hi , Ea#}Ea , @Ea , E2a#}HaPY,
~35!

@Ea , Eb#}Ea1b , for bÞ2a.

Any group element can be obtained as a product of the exponentials of the generators of the
algebra. In particular,

U~ t !5expF i(
a

xa~ t !EaGexpF i(
i

x i~ t !Hi G . ~36!

Since any diagonal element commutes withHi ’s, it belongs toY. Hence, one has

HD~ t !5(
i
bi~ t !Hi . ~37!

Substituting Eq.~37! in Eq. ~36! and using the resulting equation to simplify Eq.~31!, one obtains
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H~ t !5expS i(
a

xa~ t !EaDHD~ t !expS 2 i(
a

xa~ t !EaD ~38!

5expS i (
a.0

@za~ t !Ea1za* ~ t !E2a# DHD~ t !

3expS 2 i (
a.0

@za* ~ t !Ea1za~ t !E2a# D . ~39!

In Eqs.~38! and~39!, xaPR andzaPC are time-dependent parameters. It is shown in Ref. 23 that,
in general, the geometric phase is given in terms ofxa’s, or alternatively in terms ofza’s, and it
does not depend onHD(t). It is not difficult to see that indeedxa correspond to the coordinates of
the points of the flag manifoldG/T. Alternatively, one can use the complex coordinatesza . This
is reminiscent of the fact thatG/T has a canonical complex structure.17 This completes the proof
of the claim that the true parameter space of the system described by~30! isG/T, or a submanifold
of G/T. I will come back to this point in Sec. VI. The fact thatG/T can be viewed as embedded
in G is useful because it allows one to work with the global Cartesian coordinates systems on
G5Rd.24A natural embedding ofG/T is provided by taking a regular~nondegenerate! elementH0
of Y and considering the adjoint action ofG on G . The orbit corresponding toH0 is a copy of
G/T. Thus, one might note that in Eq.~30!,

x5~xi !PG/T,Rd. ~40!

The fact that the phase information is encoded inU(t) of Eq. ~31! can be used to simplify the
problem, namely one can restrict to the case where theHD(t)5HD(0)5H0 is kept constant, i.e.,

HD5(
i
biHi5:H0PY, bi5const. ~41!

The Hilbert spaceH of the quantum state vectors provides the representation space. It can be
decomposed into irrep. spaces. I shall assume thatH ~or the subspace ofH relevant to the
geometric phase! corresponds to an irrep. with maximal weightL.18 The weights are the simul-
taneous eigenvectors ofHi ’s.

25 They are conveniently denoted byul1,...,ll&, or collectively byul&,
where

Hi ul&5l i ul&, ; i51,...,l . ~42!

Clearly, the weight vectorsul& are the eigenstate vectors of the initial Hamiltonian. Here, I have set
U~0!51 in Eq. ~31!.23 In general, this can be achieved by appropriately choosing the maximal
torusT. Thus, one has

H„x~0!…5HD5H0 ~43!

and

HDul&5(
i51

l

bil i ul&. ~44!

Making the dependence ofHD(H0) on the initial pointx0 :5x~0! explicit, one can write Eq.~44!
in the form
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H0~x0!ul,x0&5El~x0!ul,x0&, El~x0!:5(
i51

l

bil i~x0!. ~45!

The weight vectorsul,x0& are precisely the eigenvectorsun,x0& of the instantaneous Hamiltonian
H0(x0). Sincex0 can be chosen arbitrarily, one can simply drop the subscript ‘‘0,’’ i.e., replacex0
by x andH0(x0) by H(x).

The BS line bundle, in this case, is obtained as the pullback bundle from the universal
classifying bundleE,

Ll
BS:5 f * ~E!, ~46!

induced by the map

f :MPx→ul,x&^l,xuPP ~H!,CP`.

Recalling some basic facts about the flag manifolds and their relation to projective spaces,18 one
finds that, in fact,Ll

BS corresponds to the line bundleLL of the BWB theorem, if the weight vector
ul,x0& is chosen to be the maximal weightL of the representation. First, let us recall18,17 that flag
manifolds are projective varieties, i.e., there exist embeddings ofM into CP`,

i :M�CP`. ~47!

Indeed, one can obtainM5G/T as a unique closed orbit of the action ofG onP ~CN11!5CPN, for
some~N11!-dimensional irrep.~Ref. 18, Sec. 23.3!. The line bundleLL is then the restriction
~pullback under the identity map! of E:

LL5 i * ~E!. ~48!

Let uv0& be a nonzero vector in the representation~Hilbert! space of theL representation of
G,GC be the complexification ofG, and consider the map

F:GC→P ~H!,

defined by

F~ g̃!:5@U~ g̃!uv0&]5U~ g̃!uv0&^v0uU~ g̃!†. ~49!

Here U(g̃) is the representation ofg̃PGC and [U(g̃)uv0&] denotes the ray passing through
U(g̃)uv0&. F is clearly not one to one. LetP be the closed subgroup ofGC defined by

P:5$h̃PGC : U~ h̃!uv0&5cuv0&, for some cPC2$0%%. ~50!

By construction the mapF induces a one-to-one map onGC /P:

F̂:GC /P→P ~H!. ~51!

Now, let us choose

uv0&:5uL,x0&, ~52!

and denote byB the Borel subgroupof GC generated byHi andEa.0. Then,B,P and conse-
quentlyGC/P is a compact submanifold~subvariety! of GC/B. However, one has the identity

GC /B5G/T,
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where by equality I mean the diffeomorphism of homogeneous spaces.17 Thus, in general,
GC/P,G/T.

The extreme case is whenP5B, i.e., M5GC/P5G/T. However, in general,B may be a
proper subgroup ofP, in which case the parameter manifold can be restricted to the submanifold
GC/P of G/T. This depends on the representation, i.e., onL.

Let us consider the general case, i.e.,M5GC/P. The basic vectorsul,x& are parametrized by
the points ofGC/P,G/T and the mapf of ~16! becomes

f :GC /P{x→ul,x&^l,xuPP ~H!. ~53!

In view of the fact thatGC/P,G/T, one may work with the representative ofx5[g]PG/T rather
thanx5[ g̃]PGC/P for the parametersx. The next logical step is to compare the mapF̂ of ~51!
with f . Let xPM,G/T; then every eigenstate vectorul,x& can be obtained by the action ofG on
a nonzero vector. In particular, there is agxPG such that

ul,x&5U~gx!ul,x0&. ~54!

Combining Eqs.~52!, ~53!, ~54!, and specializing tol5L, one finds

f ~x!5U~gx!uv0&^v0uU~gx!5@U~gx!uv0&#. ~55!

Recalling the procedure according to whichx is assigned to represent the parameter~40! of the
system~30!, one can identify [gx]PGC/P,G/T with x, i.e.,

U~gx![U~x!,

and consequently,

f ~x!5@U~x!uv0&]5F̂~x!. ~56!

For the special case ofP5B, the mapF̂ becomes the mapi of ~47!. Thus, according to Eqs.~48!
and ~56!, the following identity is established:

LL5 f * ~E!. ~57!

Equation~57! is valid generally, i.e., even whenPÞB. In this case,M5GC/P is a proper sub-
manifold ofG/T, and the role of the embeddingi of Eq. ~47! is played by

i 8:M�G/T�
i

CP`.

Comparing Eq.~57! with Eq. ~46!, one arrives at the desired result, namely that the bundleLL of
the BWB theorem is identical to the BS bundleLL

BS. In particular, the dimension of the irrep., i.e.,
the Hilbert spaceH is given by the number of the linearly independent holomorphic sections of
LL
BS. The latter is a topological invariant ofLL

BS.
It is well known that the topology of a complex line bundle is uniquely determined by its first

Chern classĉ1.
26,5 ĉ1 is represented by a closed differential two-form onM . It can be character-

ized by a set of@p:5dimH2~M ,Z!# integers by integrating it overp compact two-dimensional
submanifolds ofM , which are called the 2-cells ofM . For example, ifG5SU~2!, M5S2 and the
spaceS2 is the only 2-cell. Therefore,ĉ1 is determined by a single integerc1 via Eq. ~23!.

In general, the following modification of Eq.~23! provides the necessary integers,

c1
a5 ĉ1~sa!:5

i

2p E
sa

V, ~58!
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wheresa is theath 2-cell ~a51,...,p!, c1
a is the first Chern number associated withsa , andV is

the curvature two-form of the line bundle.
For the case of the BWB–BS line bundle,c1

a determine the irreps. On the other hand, the
irreps. are given by the maximal weightL of the representation. The latter can be written as a
linear combination of the so-calledfundamental weights~Ref. 18, Sec. 14.1!, with non-negative
integer coefficients. Let us denote these byLb , b51,...,l . Then,

L5 (
b51

l

kbLb , kbPZ1ø$0%. ~59!

This means that to determine thekb’s and hence the irrep. one needs preciselyl ‘‘independent’’
first Chern numbers. These are obtained by integrating~58! over the 2-cells ofG/T. The 2-cells
are l copies ofS2 that correspond to the canonical SU~2! subgroups ofG. These are generated by
the triplets of the generators (Ea ,E2a ,Ha), wherea’s are thel simple roots ofG , andEa andHa

are as in Eq.~35!. Denoting theseSU~2! subgroups and their maximal tori byGa and Ta ,
respectively, the 2-cells are given by

sa :5Ga /Ta5SU~2!/U~1!5S2. ~60!

The restriction of the curvature two-formV onsa yields Berry’s curvature two-form.
3 Integrating

these two-forms onsa gives rise tol identities of the form~24!. Incidentally, in view of the
relevance of the system of Eq.~18! to magnetic monopoles21 ~30! corresponds to a generalized
magnetic monopole whose charge has a vectorial character with integer components. I shall return
to the discussion of monopoles in Sec. VI.

IV. BERRY’S CONNECTION AND THE RIEMANNIAN GEOMETRY OF THE PARAMETER
MANIFOLD

One of the rather interesting facts about the geometric phase is that the AA connectionA is
related to the Fubini–Study metric on the projective spaceCPN.27 In the language of fiber bundles,
the Riemannian geometry of a manifoldX means the geometry of its tangent bundleTX. In
particular, the Riemannian metric~the Levi–Civita connection! is a metric~resp., a connection! on
TX. The statement that the AA connection is related to the Riemannian geometry ofCPN is
equivalent to say that the universal~AA ! bundle,

E:C→E→CPN,

is related to the tangent bundle,

TCPN:CN→TCPN→CPN.

This is easy to show topologically. The precise relation is demonstrated in the form of the follow-
ing identity:

Det@TCPN#5E* ^E* , ~61!

where Det means the determinant bundle:
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` stands for the wedge product of the vector bundles,E* is the dual line bundle toE, and^ is
the tensor product.8 To see the validity of Eq.~61!, it is sufficient to examine the first Chern
classes of both sides. In fact, sinceCPN has a single 2-cell, namelyCP15S2, one can simply
compare the first Chern numbers. It is well known10 that

c1~E!521. ~62!

Furthermore, for any vector bundleV,

ĉ1@Det V#5 ĉ1@V#. ~63!

Also, it is not difficult to show that

c1~TCP
N!5c1~TCP

1!5x~S2!52, ~64!

wherex stands for the Euler–Poincare´ characteristic. Equations~63! and ~64! imply that

c1@Det TCP
N#52.

The last equality, together with the fact that

c1~E* !52c1~E!

and Eq.~62!, are sufficient to establish the validity of Eq.~61!.
The existence of this relationship between the AA connection and the Riemannian metric on

CPN has triggered the investigation of a similar pattern in the BS approach.28 In Ref. 28, the
authors discuss the case of a general Hamiltonian with a dynamical groupG and a parameter
spaceG/H, whereH is a closed subgroup of symmetries of the Hamiltonian. The analysis pre-
sented above seems to include all these cases. In the following section, I will show that the system
of Eq. ~30! has a universal character. In other words, all the cases discussed in Ref. 28 can be
reduced to the one given by~30!. In all these cases the parameter space,G/H, is a submanifold of
FU(m):5U(m)/Tm, Tm:5[U(1)]m, which is itself embedded intoCP`. Hence, the results of
Ref. 28 are expected because~i! the BS bundle~connection! is the pullback~restriction! of the
universal bundleE; and ~ii ! E is related toTCPN, via Eq. ~61!.

V. REDUCTION OF THE NONADIABATIC PHASE TO THE ADIABATIC PHASE FOR THE
CRANKED HAMILTONIANS

Let us consider an arbitrarym3m HamiltonianH acting onH5Cm. H can be viewed as an
element of the~real! vector space of all complexm3m-dimensional Hermitian matrices. It is very
easy to compute the real dimension of this space and find out that it is equal tom2. Thus,H can
be written as a linear combination ofm2 linearly independent Hermitian matrices. Incidentally, the
generatorsJi of U(m) form a set ofm2 such matrices. This simply indicates that one can always
expressH in the form of Eq.~30!. This may be seen as a realization of the Peter–Weyl theorem.19

The particular representation ofH given by Eq.~30! with G5U(m) for somemPZ1 might not be
a practical choice. For example, the quadratic Hamiltonian,

H5 (
i , j51

3

Qi js i ^ s j ,

with si being Pauli matrices,28,29 is more manageable in this form than in the form of Eq.~30!,
with Ji chosen to be the generators ofU~4!. However, in principle, one can always use the linear
representation, Eq.~30!.
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Actually, one can use the generators ofSU(m) rather thanU(m). This is emphasized in Ref.
23. It can be directly justified by recalling that the~m221! generators ofSU(m) are also linearly
independent, and these together with the (m3m) identity matrixI provide a basis for the space of
(m3m) Hermitian matrices. The HamiltonianH can then be written as a linear combination in
this basis. Clearly, the term proportional toI does not contribute to the geometric phase. This is
often used as an indication of the geometric nature of Berry’s phase.30

An advantage of the linear representation is that it allows one to use the knowledge about the
universal bundles and BWB theorem directly. In particular, in some cases, it is possible to obtain
the nonadiabatic analog of the BS line bundle and the connectionA. The first example of this is
presented in Ref. 5. In this section, I will show that since the above argument does not refer to the
adiabaticity of the system, one can always reduce the Hamiltonian to the linear form. Moreover, if
the time dependence of the corresponding linear Hamiltonian is realized by cranking of the initial
Hamiltonian along a fixed direction,24 then one can obtain a nonadiabatic analogÃ of Berry’s
connectionA as a pullback connection one-form. The geometric phase is then identified with the
associated holonomy of the loops in the space of parameters. This is remarkable because it means
that, as far as the geometric phase is concerned, one does not need the full solution of the
Schrödinger equation. The essential ingredient is the functionF that inducesÃ as a pullback
one-form from the adiabatic connection one-formA.

Wang24 has presented a procedure that essentially computesF. Nevertheless, he does not even
label this function, nor does he implement the idea of universal bundles. Let us see how the
conditions introduced in Ref. 5 are realized in for cranked Hamiltonians. These conditions are the
following.

~1! The cyclic states are the eigenstates of a Hermitian operatorH̃ that depends parametrically
on the points of the parameter manifoldM , i.e., the cyclic states are eigenstates ofH̃(x0) with
x05x(t50).

~2! H̃ is related to the Hamiltonian according to

H̃~x!5H„F~x!…5~HoF!~x!, ~65!

whereF:M→M is some smooth function, such that in the adiabatic limit,F approaches the
identity map.

Let us first see how the first condition is fulfilled for any periodic Hamiltonian. According to
a result of Floquet theory,31 the time evolution operator for any periodic Hamiltonian is of the
form

U~ t !5Z~ t !eitH̃ , ~66!

whereH̃ is a time-independent Hermitian operator andZ is a periodic unitary operator with the
same period as the Hamiltonian, i.e.,

Z~ t1T!5Z~ t !, Z~0!51. ~67!

Clearly, one has

U~T!5eiTH̃, ~68!

which justifies the first condition. The second condition can be seen to hold for the cranked
Hamiltonians, either by referring to the work of Wang24 or following the argument used in the
discussion of the transformation of the Hamiltonian into the linear form. The latter is quite
straightforward. One simply starts by realizing that sinceH̃ is Hermitian, it can also be written in
the linear form:
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H̃~x0!5(
i51

d

x̃0
i Ji , ~69!

where x̃0 :5( x̃0
i )PM must depend on the Hamiltonian~30!, and consequently onC,M . How-

ever, for the cranked Hamiltonians the time dependence of the Hamiltonian is governed by the
action of a one-parameter subgroup ofG, i.e., the operatorU(t) of Eq. ~32! is given by

U~ t !:5exp@ ivtnaEa#, with na5const,

wherev and ~na! are called the cranking rate and direction, respectively. It is clear that for such
systemsx̃0 can only depend on the initial Hamiltonian and thus onx0. The functionF is defined
by

x̃05:F~x0!. ~70!

The only problem is that in some cases, depending on the value of the slowness parametern~v!,
F may be discontinuous or even multivalued. This happens in the case of Eq.~18! for n5v/b51.
But in the generic caseF is smooth and the second condition holds as well. The nonadiabatic
analog of the BS line bundle is then given by

L̃:5F* ~L !. ~71!

It is endowed with the nonadiabatic connection one-form,

Ã:5F* ~A!. ~72!

For completeness, let me briefly review the arguments of Ref. 5, which lead to Eqs.~71! and~72!.
The basic idea is that the existence ofH̃ that satisfies Eq.~69! allows one to imitate Berry’s
treatment of the adiabatic systems. The energy eigenstate vectorsun,x& are replaced by the eigen-
state vectorsuñ,x& of H̃(x). In view of Eq. ~65!, these are given by

uñ,x&5un,x̃&5un,F~x!&. ~73!

The nonadiabatic line bundleL̃ is obtained from the universal line bundleE via the nonadiabatic
analog of the mapf of Eq. ~14!. Denoting the latter byf̃ :M→P ~H!, one has

f̃ ~x!:5uñ,x&^ñ,xu5un,F~x!&^n,F~x!u5~ f oF!~x!.

Then, using the functorial property of the pullback operation, one shows that

L̃5 f̃ * ~E!5~ f oF!* ~E!5~F* o f* !~E!5F* ~L !, ~74!

where in the last equality Eq.~15! is used. This proves Eq.~71!. The proof of Eq.~72! is identical.
An important observation is that unlikeun,x0&, the initial state vectorsuñ,x0& undergo exact cyclic
evolutions.

VI. MORE ON PARAMETER SPACES AND MONOPOLES

In the discussion of the the relation between the BS connection and the Riemannian structure
on the parameter space, the parameter space is taken to beM5G/H, for some arbitrary closed
subgroupH of G.28 It can be shown that all these cases are included in the analysis of the linear
system Eq.~30!.

In Sec. III, I argued that depending on the~maximal weightL of the! irrep. ofG,M is of the
form GC/P,G/T, whereP is defined by Eq.~50!. Let us consider the Weyl chamberW of Y*
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with respect to which the positive and the negative roots are distinguished.18 If L happens to lie on
at least one of the walls ofW , thenB is a proper subgroup ofP, otherwiseP5B. The universal
character of the linear Hamiltonian is also realized, in that all the homogeneous spaces ofG can
be obtained asGC/P by choosingL appropriately. In fact, this is the basic idea of the classification
of the compact homogeneous spaces of semisimple Lie groups. Therefore, in principle, one should
be able to reproduce the results of28 using the relation of Berry’s phase to the theory of universal
bundles.

Let us consider the groupG5SU~3! in its defining~standard! representation. SU~3! is of rank
l52. So any irrep. is given by two integers. The standard representation is itself a fundamental
representation, namely~k151, k250!.18 The maximal weight is on a wall ofW and the Borel
subgroup of upper triangular matrices inSL~3,C!5SU~3!C is a proper subgroup ofP. The sub-
groupP of SL~3,C! consists of the elements of the form

F * * *

* * *
0 0 *

G ,
where * are complex numbers.18 The parameter space isM5SL~3,C!/P5SU~3!/U~2!
5CP25P ~H!. It is interesting to see that in this case the parameter spaceM and projective
Hilbert spaceP ~H! are identical. In fact, this is true for all SU(N11) groups. The defining
representation corresponds to~k151, k25•••5kN50! and the parameter space is
M5SU(N11)/U(N)5CPN5P ~H!. Therefore, the inducing mapf mapsCPN to itself for all
N.1.

The situation is different for the octet representation of SU~3!. In this case one hask15k251.
L lies in the interior ofW , P5B, and the parameter space is the full flag manifoldM5SU~3!/
U~1!3U~1!. The mapf mapsM into P ~H!5CP7. @Note that this representation is eight dimen-
sional, i.e., the representation space forSL~3,C! is C8. Hence,H5C8.#

For G5SU~2!, it is well known that the system of Eq.~18! is related to the magnetic
monopoles.21 The relation of monopoles to the gauge theories and their generalization to arbitrary
compact semisimple gauge groups have been studied in the late 1970s.20 These generalized mono-
poles are callednon-Abelianor multimonopolesfor general groups andcolor monopolesfor
SU(3).32 They are topologically classified by an associated set ofl integers, wherel is the rank.
These are called thetopological chargesof the monopole and they are defined as elements of the
second homotopy groupp2(G/H), whereH is the group of the symmetries of a ground state of the
Higgs fields~a minimum of Higgs potential!.20 ForG5SU(3), there are two possibilities. Either

~ I! H5U~2! or ~II ! H5T5U~1!3U~1!.

These cases have been studied in almost every article written on this subject, e.g. see Refs. 33, 20
and references therein.

If G is simply connected, then a result of algebraic topology indicates that

p2~G/H !5p1~H !.

Applying this result toG5SU~3!, one finds

~ I! p2„SU~3!/U~2!…5p1„U~2!…5Z,

~ II ! p2„SU~3!/U~1!3U~1!…5p1„U~1!3U~1!…5Z%Z.
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Thus, for~I! and~II ! one has, respectively, one and two topological charges. This is precisely the
case with the topological charges of the geometric phase defined earlier. The same correspondence
holds for arbitrary compact, connected semisimple Lie groups.

The possible relevance of the topological charges of monopoles to the representations of the
group have been conjectured by Goddardet al..34 Although the analysis of the present paper does
not prove their conjecture, it provides a formula for the topological charges as integrals of the first
Chern class, defined by Berry’s connection, over the 2-cellssa of Sec. III. There is a simple
topological explanation for the correspondence of the topological charges of the monopoles and
those of the geometric phase. This can be summarized in the identity

p2~G/H !5H2~G/H,Z!,

whereH2~•,Z! denotes the second homology group. This identity is a consequence ofHurewicz
theorem,35 where one uses the fact thatp1(G/H)5H1(G/H)50. The 2-cellssa are indeed the
generators ofH2~G/T,Z!. ForHÞT, some of them may be smashed to a point, as is the case for
G5SU~3! andH5U~2!.

VII. CONCLUSION

The relationship between the phenomenon of Berry’s phase and the Borel–Weil–Bott theorem
is a direct consequence of the application of the universal bundles in the Aharonov–Anandan
definition of the geometric phase. This relationship is appealing, not only because it links quantum
mechanics to yet another central mathematical result, but also because it offers a better under-
standing of the theoretical foundations of geometric phases. The implications of the fact that the
A–A bundles are indeed the universal bundles of mathematics for the study of nonadiabatic phases
is a typical indication of the importance of this observation.

The identification of the mathematical structures used in the holonomy interpretations of the
geometric phase with those employed in the Borel–Weil–Bott theorem sheds light on a number of
unresolved issues. Among these are the determination of the appropriate parameter space and the
relation between the geometry of the parameter space and the geometric structure of the phase.
The BWB theorem leads to the introduction of a set of topological charges, which determine the
topology of the BS line bundles and thus encompass all the topological content of the phase. These
charges seem to be related to, if not identical with, the topological charges of non-Abelian mono-
poles. The integral nature of these charges is a consequence of the topological properties of the
first Chern class. The latter is essentially the reason for the quantization of the charges of the
monopoles.
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