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BACKGROUND: Singularities are critical points
for which the behavior of a mathematical model
governing a physical system is of a fundamentally
different nature compared to the neighboring
points. Exceptional points are spectral singu-
larities in the parameter space of a system in
which two or more eigenvalues, and their cor-
responding eigenvectors, simultaneously co-
alesce. Such degeneracies are peculiar features
of nonconservative systems that exchange
energy with their surrounding environment.
In the past two decades, there has been a
growing interest in investigating such non-
conservative systems, particularly in connec-
tion with the quantummechanics notions of
parity-time symmetry, after the realization
that some non-Hermitian Hamiltonians ex-
hibit entirely real spectra. Lately, non-Hermitian
systems have raised considerable attention

in photonics, given that optical gain and loss
can be integrated as nonconservative ingre-
dients to create artificial materials and struc-
tures with altogether new optical properties.

ADVANCES: As we introduce gain and loss in
a nanophotonic system, the emergence of ex-
ceptional point singularities dramatically alters
the overall response, leading to a range of exotic
functionalities associated with abrupt phase
transitions in the eigenvalue spectrum. Even
though such a peculiar effect has been known
theoretically for several years, its controllable
realization has not been made possible until re-
cently and with advances in exploiting gain and
loss in guided-wavephotonic systems. As shown
in a range of recent theoretical and experimental
works, this property creates opportunities for
ultrasensitivemeasurements and for manipu-

lating themodal content ofmultimode lasers. In
addition, adiabatic parametric evolution around
exceptional points provides interesting schemes
for topological energy transfer and designing
mode and polarization converters in photonics.
Lately, non-Hermitian degeneracies have also
been exploited for the design of laser systems,
new nonlinear optics phenomena, and exotic
scattering features in open systems.

OUTLOOK:Thus far, non-Hermitian systems
have been largely disregarded owing to the
dominance of the Hermitian theories in most
areas of physics. Recent advances in the theory
of non-Hermitian systems in connection with
exceptional point singularities has revolution-
ized our understanding of such complex sys-
tems. In the context of optics and photonics,
in particular, this topic is highly important be-

cause of the ubiquity of
nonconservative elements
of gain and loss. In this
regard, the theoretical de-
velopments in the field
of non-Hermitian physics
have allowed us to revisit

some of the well-established platforms with a
new angle of utilizing gain and loss as new
degrees of freedom, in stark contrast with the
traditional approach of avoiding these elements.
On the experimental front, progress in fabri-
cation technologies has allowed for harnessing
gain and loss in chip-scale photonic systems.
These theoretical and experimental develop-
ments have put forward new schemes for
controlling the functionality of micro- and
nanophotonic devices. This is mainly based on
the anomalous parameter dependence in the
response of non-Hermitian systems when op-
erating around exceptional point singularities.
Such effects can have important ramifications
in controlling light in new nanophotonic device
designs, which are fundamentally based on en-
gineering the interplay of coupling and dis-
sipation and amplification mechanisms in
multimode systems. Potential applications of
such designs reside in coupled-cavity laser
sources with better coherence properties, cou-
pled nonlinear resonators with engineered dis-
persion, compact polarization and spatial mode
converters, and highly efficient reconfigurable
diffraction surfaces. In addition, the notion of
the exceptional point provides opportunities
to take advantage of the inevitable dissipation
in environments such as plasmonic and semi-
conductor materials, which play a key role in
optoelectronics. Finally, emerging platforms such
as optomechanical cavities provide opportunities
to investigate exceptional points and their asso-
ciated phenomena in multiphysics systems.▪
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Ubiquity of non-Hermitian systems, supporting exceptional points, in photonics. (A) A
generic non-Hermitian optical system involving two coupled modes with different detuning, ±w1,2,
and gain-loss values, ±g1,2, coupled at rate of m.The real part of the associated eigenvalues in a two-
dimensional parameter space of the system, revealing the emergence of an exceptional point (EP)
singularity. a1 and a2 are themodal amplitudes. (B toE) A range of different photonic systems,which
are all governed by the coupled-mode equations. (B) Two coupled lasers pumped at different rates.
(C) Dynamical interaction between optical and mechanical degrees of freedom in an optomechan-
ical cavity. (D) A resonator with counter-rotating whispering gallery modes. CW, clockwise; CCW,
counterclockwise. (E) A thin metasurface composed of coupled nanoantennas as building blocks. C
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Exceptional points are branch point singularities in the parameter space of a system at which
two or more eigenvalues, and their corresponding eigenvectors, coalesce and become
degenerate. Such peculiar degeneracies are distinct features of non-Hermitian systems, which
do not obey conservation laws because they exchange energy with the surrounding
environment. Non-Hermiticity has been of great interest in recent years, particularly in
connection with the quantum mechanical notion of parity-time symmetry, after the realization
that Hamiltonians satisfying this special symmetry can exhibit entirely real spectra.These
concepts have become of particular interest in photonics because optical gain and loss can be
integrated and controlled with high resolution in nanoscale structures, realizing an ideal
playground for non-Hermitian physics, parity-time symmetry, and exceptional points. As we
control dissipation and amplification in a nanophotonic system, the emergence of exceptional
point singularities dramatically alters their overall response, leading to a range of exotic optical
functionalities associated with abrupt phase transitions in the eigenvalue spectrum.These
concepts enable ultrasensitive measurements, superior manipulation of the modal content of
multimode lasers, and adiabatic control of topological energy transfer for mode and
polarization conversion. Non-Hermitian degeneracies have also been exploited in exotic
laser systems, new nonlinear optics schemes, and exotic scattering features in open systems.
Here we review the opportunities offered by exceptional point physics in photonics, discuss
recent developments in theoretical and experimental research based on photonic exceptional
points, and examine future opportunities in this area from basic science to applied technology.

H
ermiticity is a property of a wide variety
of physical systems, under the assump-
tions of being conservative and obeying
time-reversal symmetry. Hermitian oper-
ators play a key role in the theory of linear

algebraic and differential operators (1–4), and
they are known to exhibit real-valued eigenvalues,
a property that stems from energy conservation.
For a set of dynamical equations described through
a Hermitian operator, the relation between initial
and final states is governed by a unitary operation.
Hermiticity has long been considered one of the
pillars of mathematical and physical models, such
as in quantum mechanics and electromagnetics.
The elegance of such theories lies in powerful prop-
erties, including the completenessandorthogonality
of the eigenbasis of the governing operators (1).
However, thesemodels are based on idealizations,
like the assumption of complete isolation of a
system from its surrounding environment. In prin-
ciple, nonconservative elements arise ubiquitously
in various forms; thus, a proper description of a
realistic physical system requires a non-Hermitian

Hamiltonian.Generally,nonconservativephenome-
na are introduced as small perturbations to
otherwise Hermitian systems. Thus, the overall
behavior of non-Hermitian systemshasbeen large-
ly extracted from their Hermitian counterparts.
However, recent investigations have revealed that
non-Hermitian phenomena can drastically alter
the behavior of a system compared to its Hermi-
tian counterpart. The best example of such devi-
ation is the emergence of singularities, so-called
exceptional points, at which two or more eigen-
values, and their associated eigenvectors, simul-
taneously coalesce and become degenerate (5).
The term “exceptional point” was first intro-

duced in studying the perturbation of linear non-
Hermitian operators (6), described by a general
class of matricesH(z) parameterized by the com-
plex variable z = x + iy, where x is the real part,
i is the imaginary unit, and y is the imaginary
part. The eigenvalues sn(z) and eigenvectors
jynðzÞi ofH can be represented as analytic func-
tions except at certain singularities z = zEP (EP,
exceptional point). At such exceptional points,
two eigenvalues coalesce, and the matrixH can
no longer be diagonalized. The physical impor-
tance of exceptional points was pointed out in
earlyworks (7,8), inwhich the terminology of non-
Hermitian degeneracy was used to distinguish
such critical points from regular degeneracies oc-
curring in Hermitian systems (9, 10). In addition,
exceptional points were referred to as branch-
point singularities in investigating the quantum

theory of resonances in the context of atomic, mo-
lecular, and nuclear reactions (11). Early exper-
iments onmicrowave cavities revealed the peculiar
topology of eigenvalue surfaces near exceptional
points (12, 13). The emergence of spectral singular-
ities was also pointed out in the analysis of multi-
mode laser cavities (14, 15) and in time-modulated
complex light potentials for matter waves (16).
Recently, interest in these peculiar spectral

degeneracies has been sparked in a particular
family of non-Hermitian Hamiltonians, the so-
called parity-time (PT) symmetric systems. A
Hamiltonian is PT symmetric as long as it com-
mutes with thePT operator, that is, ½H;PT � ¼ 0,
where the parity operatorP represents a reflection
with respect to a center of symmetry and the time
operator T represents complex conjugation. It has
been realized that PT-symmetric Hamiltonians,
despite being non-Hermitian, can support entirely
real eigenvalue spectra (17). More interestingly, it
has been realized that commuting with thePT
operator is not sufficient to ensure a real spec-
trum, as formally PT-symmetric Hamiltonians can
undergo a phase transition to the spontaneously
broken symmetry regime, in which complex eigen-
values appear. The phase transition happens as a
result of a parametric variation in the Hamiltonian.
Quite interestingly, the symmetry-breaking thresh-
old point exhibits all properties of an exceptional
point singularity (17–23).
Although these theoretical explorations origi-

nated in the realm of quantummechanics, optics
and photonics have proven to be the ideal plat-
form to experimentally observe and utilize the
rich physics of exceptional points (24–27). Owing
to the abundance of nonconservative processes,
photonics provides the necessary ingredients to
realize controllable non-HermitianHamiltonians.
Indeed, dissipation is ubiquitous in optics, be-
cause it arises frommaterial absorption as well
as radiation leakage to the outside environment.
In addition, gain can be implemented in a locally
controlled fashion through stimulated emission,
which involves optical or electrical pumping of
energy through an external source, or through
parametric processes. Therefore, photonics pro-
vides a fertile ground to systematically investigate
non-Hermitian Hamiltonians and exceptional
points. Recent theoretical developments in the
area of non-Hermitian physics have opened ex-
citing opportunities to revisit fundamental con-
cepts in nonconservative photonic systems with
gain and loss, such as lasers, sensors, absorbers,
and isolators. In these systems, exceptional points
open pathways for totally new functionalities and
performance. The interested reader may find
detailed overviews of non-Hermitian and, in par-
ticular, PT-symmetric systems in the context of
optics and photonics in recent review papers
(28–32). In the present work, we discuss instead
more broadly the concept of exceptional points
in non-Hermitian systems. In the following, we
provide an introduction to exceptional point
physics and explain some of the fundamental
concepts associated with such critical points.
We then draw the connection with optics and
photonics and show the universal occurrence of
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exceptional points in optical settings. Finally, we
review recent theoretical and experimental ef-
forts in observing exceptional points in optics
and their peculiar functionalities in practical
devices, presenting an outlook for the future of
this exciting area of research.

Theoretical background

We begin by investigating exceptional points in a
generic two-level system. Assuming that a1,2 are
the modal amplitudes of two states that evolve
with the variable x , representing the evolution
time or propagation distance, the coupled mode
equations can be generally written as

d

dx
ð a1
a2

Þ ¼ �i

 
w1 � ig1 m

m w2 � ig2

! 
a1
a2

!

ð1Þ

where w is the resonance frequency of the two
coupledmodes, m is the coupling coefficient, and
g is their decay rate. This particular choice of
Hamiltonian system, shown in Fig. 1A, represents
a large class of structures and devices of large
relevance in photonics, examples of which are
given in Fig. 1, such as coupled cavities (Fig. 1B)
(33), coupled waveguides (Fig. 1C) (34), polar-
ization states in the presence of small pertur-
bations in an optical waveguide (Fig. 1D) (35),
counter-propagating waves in Bragg gratings
(Fig. 1E) (36), wave mixing in nonlinear crystals
(Fig. 1F) (37), coupled optical and mechanical
modes in an optomechanical cavity (Fig. 1G) (38),
and a two-level atom in a cavity (Fig. 1H) (39).
In the case of coupled optical resonators, for
instance, w1,2 in Eq. 1 represent the individual
frequencies of each element, g1,2 describe their
loss or gain rate, and m represents the mutual

coupling. Assuming, harmonic solutions of the
form ða1; a2Þ ¼ ða1; a2Þe�isx, the eigenvalues of
the system are

sT ¼ wave � igaveT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ðwdiff þ igdiffÞ2

q
ð2Þ

where wave = (w1 + w2)/2 and gave = (g1 + g2)/2,
respectively, represent the mean values of res-
onance frequencies and loss factors, whereas
wdiff = (w1 − w2)/2 and gdiff = (g1 + g2)/2 are the
differences between their resonance frequencies
and loss factors.
The Hamiltonian in Eq. 1 is a function of mul-

tiple parameters. In Fig. 2, A and B, we evaluate
the evolution of real and imaginary parts of the
eigenvalues in the parameter space (wdiff, gdiff),
assuming a constant coupling coefficient m. An
exceptional point occurs when the square-root
term in Eq. 2 is zero, as the two eigenvalues co-
alesce. Assuming a real coupling constant, this
happens for (wdiff = 0; gdiff = ±m). Figure 2, A and
B, highlights the interesting topology of the
branch point singularity at the exceptional point,
which has important implications in the optical
response of the system around this parameter
point, as we discuss in the following sections.
The two-body problem investigated here is the

simplest case of a non-Hermitian system. In gen-
eral, exceptional points appear ubiquitously in
systems with spatially discrete or continuous
degrees of freedom of multiple dimensionalities.
In principle, when more than two eigenvalue
surfaces are involved, it is also possible thatmore
than two surfaces simultaneously collapse at one
point, creating a higher-order exceptional point
(40, 41). A third-order exceptional point, for
example, is formed when three eigenvalues simul-
taneously coalesce. In this scenario, the square-
root dependence of the eigenvalues around the
exceptional point in Eq. 2 is replaced by a cubic
root. It is worth stressing that at an exceptional
point, the coalescing eigenvalues do not support
independent eigenvectors, implying that, in dis-
crete systems described by a matrix Hamiltonian,
the Jordan form is no longer diagonal (42). This is
notably different from accidental degeneracies,
which occur when two eigenvalueswith different
eigenvectors cross. In a two-dimensional parameter
space, such accidental degeneracies appear when
two eigenvalue surfaces form a double cone or
“diablo,” forming diabolic points (43). In contrast
with exceptional points, at the diabolic points, the
eigenvectors remain linearly independent.Diabolic
points emerge in various Hermitian systems,
most notably in molecular reactions (44) and
in the electronic band diagram of graphene (45).
Exceptional point singularities are closely

related to the phenomenon of level repulsion,
which has been originally explored in the con-
text of quantum chaos, because it explains the
scarcity of closely spaced levels in Wigner dis-
tributions (46). In photonics, level repulsion is
of great interest because it marks strong cou-
pling and hybridization between states, which is
manifested as a repulsion between closely spaced
eigenvalues when a parameter is adiabatically
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Fig. 1. A generic two-level system and its different realizations in optics and photonics.
(A) A schematic representation of a generic two-level system composed of two coupled entities.
(B) Two coupled optical cavities with spatially separated resonator modes. (C) Two evanescently
coupled optical waveguides with spatially separated waveguide modes. (D) Coupled orthogonal
polarization states in an optical waveguide. (E) Counter-propagating waves in a volume Bragg grating.
(F) Signal and idler frequency components in a parametric amplifier. (G) Photonic and phononic degrees
of freedom in an optomechanical cavity. (H) Coupling between a two-level atom and an optical cavity
mode.The different platforms represented in (B) to (H) can be treated under a unified model depicted
schematically in (A).The universality of nonconservative processes in these settings calls for a systematic
understanding of non-Hermiticity in a basic two-level system as a first step toward a rigorous bottom-up
approach for designing complex photonic systems in the presence of gain and loss.The arrows indicate
electromagnetic waves, and different colors indicate different frequencies.
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tuned (47). They typically occur near an excep-
tional point in the real or complex parameter
space. For instance, Fig. 2, C to E, shows cross
sections of the eigenvalue surfaces in Fig. 2, A
and B, for different values of gdiff, highlighting
level repulsion in either their real (Fig. 2C) or
imaginary part (Fig. 2E) for values of gdiff re-
spectively larger or smaller than the critical value
gdiff = gEP, corresponding to the exceptional
point condition (Fig. 2D). Level repulsion in the
real (imaginary) part is accompanied by level
crossing of the imaginary (real) part, as shown
in Fig. 2, C to E (48, 49). At the critical condition
gdiff = gEP, both real and imaginary parts of the
eigenvalues coalesce, and an exceptional point
is achieved. The different behavior in the three
cases is determined by the topology of the in-
volved Riemann surfaces at the given cross sec-
tion. As a special case, level repulsion can arise
also in Hermitian systems, such as in the case of
two lossless optical resonators, in which level
repulsion occurs as we detune their resonance
frequency (33). Consistent with Fig. 2C, this
phenomenon is associated with an exceptional
point in the complex parameter space, as we
operate at gdiff = 0 < gEP.

In the context of exceptional points, an espe-
cially relevant class of non-Hermitian two-level
systems are those satisfying PT symmetry. In the
context of quantum mechanics, a Hamiltonian
H is PT symmetric when ½H;PT � ¼ 0, whereP
and T respectively represent parity and time
operators. In photonics, this corresponds to the
case in which loss in one region is balanced by
gain in another symmetric region (50). For the
two-level system of Eq. 1, considering that the
parity and time operators respectively act as
Pða; bÞ ¼ ðb; aÞ and T ða; bÞ ¼ ða�; b�Þ, where a
and b are two variables, the conditions of PT
symmetry are satisfied for w1 ¼ w2 ≡ w and
g1 ¼ �g2 ≡ g . The response of this system is
governed by the interplay of two major processes:
the gain and loss contrast g and the mutual cou-
pling m. An exceptional point arises at the critical
condition m = g. Here, the exceptional point
marks the onset of a transition from purely real
eigenvalues, associated with oscillatory solutions
expðTijsTjxÞ, where x is the evolution variable, to
purely imaginary eigenvalues associated with
growing or decaying solutions expðTjsTjxÞ. This
transition is often referred to as spontaneous
symmetry breaking, because the eigenvalues

change their behavior despite the fact that the
governing evolution operator preserves its sym-
metry. The behavior of the eigenvalues of a PT-
symmetric system is shown in Fig. 3A, highlighting
the bifurcation associated with the spontaneous
symmetry breakdown at the exceptional point.
In Eq. 1, we assumed that the coupling m is a real

parameter, whereas in principle, it can become
complex, involving dissipation. For instance, in
several scenarios, coupling between two states
is mediated through a continuum of radiation
modes, for which the energy partially leaks to
the outside environment (51). Examples include
radiative coupling between subwavelength nano-
particles (52) aswell as channel-mediated coupling
of microring lasers (53). Independent of the cou-
plingmechanism, exceptional points also arise in
this case. According to Eq. 2, assuming a purely
imaginary coupling m = imi, exceptional points
emerge for (wdiff = ±mi; gdiff = 0). In this case, the
exceptional point arises for a frequency detuning
equal to the mutual coupling between cavities.
The discussion on exceptional points pre-

sented so far has been built on Hamiltonian sys-
tems, or, in broader terms, on dynamical systems,
that evolve in time and space through a linear
operator. A large body of photonic systems,
however, are open, coupled to a continuum of
radiation modes, as in the case of optical wave-
guides coupled to cavities or finite-sized scat-
terers illuminated by impinging optical fields.
Such systems are better described through a
scatteringmatrix, which directly relates outgoing
waves and incoming waves. The scatteringmatrix
can be compared with the time-evolution oper-
ator, that is, U ¼ expð�iHxÞ in Hamiltonian
systems. Indeed, in a scattering mediumwithout
material gain or loss, the scattering matrix is
unitary, with all its eigenvalues located on the
unit circle (54). In the presence of loss and/or
gain, however, the norms are not preserved,
and the eigenvalues can, in general, be located
inside or outside the unit circle. Quite interest-
ingly, similar to Hamiltonian systems, excep-
tional points can also emerge in the scattering
matrix formalism when two or more eigenvalues
and their associated eigenvectors coalesce (55).
A basic example is a PT-symmetric Fabry-Perot
resonator involving two materials with balanced
gain and loss (Fig. 3B). At a given frequency, for
an increasing gain and loss contrast, the scattering-
matrix eigenvalues bifurcate from the unit circle
at an exceptional point singularity, as shown in
Fig. 3B. Here, the exceptional point marks the
onset of the broken symmetry regime, in which
amplification of the wave excitation becomes the
dominant response of the PT-symmetric scatterer.

Exceptional points in photonics

Exceptional points arise in several optical and
photonic systems. In the previous section, we
introduced a general class of two-level systems
described through coupled-modeequations, point-
ing out the conditions to achieve a second-order
exceptional point. Integratedphotonicwaveguides
and cavities, in particular, provide a controlla-
ble platform to observe exceptional points. In
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Fig. 2. Exceptional points in a non-Hermitian two-level system. (A and B) Evolution of the real
(A) and imaginary (B) parts of the eigenvalues of the system described by Eq. 1 in the two-
dimensional parameter space (wdiff, gdiff). These panels illustrate the exotic topology of the eigenvalue
surfaces near an exceptional point singularity. (C to E) Eigenvalues versus wdiff for different values of
gdiff, that is, cross sections of the surfaces depicted in (A) and (B). Owing to the presence of the
exceptional point (gdiff = gEP; wdiff = wEP), depending on the value of the secondary parameter,
different parameter dependence is observed for the eigenvalues. (C) For gdiff > gEP, level repulsion
occurs in the real part of the eigenvalues, whereas the imaginary parts cross. (D) For gdiff = gEP, the
real and imaginary parts coalesce at wdiff = wEP. (E) For gdiff < gEP, level crossing governs the real parts
of the eigenvalues, whereas the imaginary parts repel each other.
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integrated photonic platforms, exceptional points
and phase transitions have been observed in
coupled passive optical waveguides, where con-
trollable loss in one of the channels was utilized
(56) (Fig. 4, A and B). In the context of PT sym-
metry, spontaneous symmetry breaking at the
exceptional point was demonstrated in a coupled
arrangement of optical waveguides with balanced
gain and loss (50). In other works, coupled optical
cavitieswith gain and losswere utilized to observe
a PT-symmetric phase transition (57, 58) (Fig. 4,
D and E). The first demonstration of exceptional
points in periodic structures was achieved in
time-domain lattices (59) (Fig. 4C), induced
through the propagation of short laser pulses
in two coupled fiber loops of a slightly different
lengths with alternating gain and loss. This prop-
agation creates a quantum walk of pulses gov-
erned by PT-symmetric evolution equations,
described through a peculiar band structure as
in spatially periodic structures. In addition, ex-
ceptional points have been demonstrated in pho-
tonic crystal slabs (60), in which out-of-plane
radiation losses due to the finite thickness of
the dielectric slab result in the merging of two
eigenfrequency bands, inducing a ring of excep-
tional points in the wave number space. Among
other realizations, exceptional points have also
been experimentally demonstrated in chaotic
optical cavities (61). In all these photonic sys-
tems, operation around the exceptional points
enables a singular optical response.

The peculiar properties of exceptional points
have also been investigated in open scattering
systems involving gain and loss. In particular,
it has been shown that a PT-symmetric Fabry-
Perot cavity, similar to the one discussed in Fig.
3B, can simultaneously act as a laser and a co-
herent perfect absorber at the exceptional point
(55, 62). This interesting behavior, occurring as
a result of the coalescence of a pair of poles and
zeroes of the scattering matrix eigenvalue, has
been recently demonstrated in an integrated
semiconductor resonator with active and passive
regions (63). Non-Hermitian optical gratings with
alternating layers ofmaterialswith different levels
of loss or gain reveal another interesting aspect
of exceptional points (64, 65). In such systems,
whereas reciprocity enforces equal transmission
in both directions, the reflection coefficients can
be completely different. In a Hermitian system,
equal transmission coefficients also require equal
magnitude of the reflection coefficients, but in
non-Hermitian systems, this is not the case. The
contrast in reflection amplitudes is maximized at
the exceptional point, where the reflection from
one direction becomes zero and the reflection
from the other direction can be very large, thus
inducing unidirectional invisibility (65). In a
similar fashion, it has been shown that a two-
layer structure with gain and loss can exhibit
one-way reflectionless behavior at a particular
frequency, thus inducing an anisotropic trans-
mission resonance (66). At the exceptional point,

the photonic bandgap closes,whereas the coupling
between counter-propagatingwaves becomes un-
idirectional (67). Unidirectional invisibility has
been observed in different settings, including in
integrated semiconductor waveguide gratings
(68), organic composite films (69), time-domain
lattices (59), and coupled acoustic resonators
(70). Similar ideas have been utilized in micror-
ing resonators to create integrated laser devices
supportingmodes with definite angularmomen-
tum when the system is biased at an exceptional
point (71). In addition, it has been shown that
properly engineered defects in microring reso-
nators can create an exceptional point that in-
stead induces chirality between counter-rotating
modes (72–74). It has also been shown that non-
Hermitian scattering systems operating around
the exceptional points can induce other interest-
ing phenomena, such as negative refraction (75)
and unidirectional cloaking (76, 77).
Coherently prepared, multilevel warm atomic

vapors provide another controllable platform
to realize complex optical potentials. In such sys-
tems, strong pump laser beams can create wave-
guiding effects for weak probe beams where,
under proper detuning, both gain and loss can
be achieved in Raman-active systems (78). In this
regard, the realization of complex potentials
supporting exceptional points have been theo-
retically proposed in three- and four-level atoms
(79, 80) and experimentally demonstrated in
coupled atomic vapor cells (81), as well as in PT-
symmetric optical lattices (82).
Even though the discussion here is primarily

focused on linear operators, it is important to
also stress the relevance of exceptional points
in nonlinear systems. The connection of non-
Hermiticity to nonlinear systems is multifold:
First, most nonlinear configurations in optics
and photonics are accompanied by losses, and
second, active devices are, by nature, nonlinear.
Therefore, lasers, amplifiers, and saturable ab-
sorbers are all examples of devices in which
nonlinearity and non-Hermiticity coexist. In ad-
dition, nonlinear optical effects can create inter-
actions between different wave components. A
high-intensity pump, for example, initiates energy
exchange between lower-intensity wave compo-
nents that are governed by a linearized operator.
Such an operator is, by essence, non-Hermitian,
given the energy exchange between pump and
probe through the nonlinearity.
The interplay of nonconservative and non-

linear effects is of special interest, given that
optical materials with strong nonlinearities
necessarily suffer from large absorption (83).
Therefore, concepts from non-Hermitian
physics are sought to provide strategies to take
advantage of losses in such nonlinear materials.
In this regard, the conjunctive use of nonlinear
processes with gain and loss have been sug-
gested as a viable route to achieve optical non-
reciprocity (84, 85). In addition, it has been
shown that laser systems exhibit exotic behavior
such as anomalous pump dependence near the
exceptional point singularity (86, 87), as well as
reduced lasing threshold with increased losses
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Fig. 3. PT symmetry in closed and open systems. PT-symmetric systems form an interesting
class of non-Hermitian settings, which share certain similarities with Hermitian systems.
In the case of a two-level system (Fig. 1), PT symmetry is realized for w1 ¼ w2≡w and g1 ¼ �g2≡g,
that is, when the individual levels share the same real part but exhibit opposite values of the
imaginary parts (gain and loss). (A) A PT-symmetric system of two coupled waveguides (top)
with gain (red) and loss (blue), and the corresponding eigenvalues (bottom) versus the gain-loss
contrast g. This figure reveals a transition in the eigenvalues from purely real (exact PT symmetry)
to purely imaginary (broken PT symmetry). Interestingly, the PT symmetry–breaking threshold
point reveals all the properties of an exceptional point singularity. In this figure, the arrows represent
the intensity of the eigenmodes in both the exact and broken PT regimes. (B) A PT-symmetric
Fabry-Perot resonator (top) and the eigenvalues of its scattering matrix (bottom) evolving
as a function of the frequency of excitation. In this case, an exceptional point marks a transition
in the eigenvalue evolution, breaking away from the unit circle. The geometries of (A) and (B)
represent examples of Hamiltonian and scattering settings.
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(88). The impact of non-Hermiticity on non-
linear waves in bulk and periodic systems has
been also explored, after the realization that PT-
symmetric potentials support optical solitons (89).
Indeed, although dissipative nonlinear systems
have been largely investigated (90), recent de-
velopments in the area of PT symmetry have
sparked interest in the exploration of new in-
tegrated nonlinear systems combining gain and
loss (29, 91, 92). In addition, solitary waves in
PT-symmetric potentials have been experimen-
tally demonstrated in time-domain lattices (93).
Nonlinear wave-mixing processes, such as sum
and difference frequency generation and optical
parametric amplification, are other examples of
non-Hermitian systems in which external cou-
pling through a pump beam mediates the inter-
actions (94).
At this point, it is worth stressing that ex-

ceptional points are not necessarily difficult to
find in optical setups because they occur ubiq-
uitously in the wave number space, even in con-
servative systems in which no gain or loss is
involved. In these scenarios, a part of aHermitian
system can be considered non-Hermitian, be-
cause it exchanges energy with the rest of the
system. Possibly the best-known example of
these trivial exceptional points is the total in-
ternal reflection at the interface of twomaterials.
In this case, light transmitted at the interface of
two media critically depends on the incidence
angle of the impinging light. In particular, at a
critical angle, a phase transition occurs in the
propagationwave number of the secondmedium,

which goes from being real to complex valued.
Other well-known examples of exceptional points
in the wave number space are the cut-off fre-
quency of a closed waveguide or the edge of a
photonic bandgap in periodic structures. In
addition, a volume Bragg grating, in which alter-
nating layers of two different materials with
refractive indices n1 and n2 create a photonic
bandgap for a range of incoming frequencies,
supports an exceptional point. In this structure,
the wave number of the counter-propagating
waves follows a square-root dispersion in terms
of the incoming wave frequency. Whereas in the
propagation band thewavenumber is real, inside
the bandgap it becomes complex, and an excep-
tional point marks this transition. Similar to the
exceptional points emerging in complex poten-
tials, the photonic bandgap in gratings exhibits
interesting properties, such as a vanishing group
velocity (95).

Applications in nanophotonics

The exotic properties of exceptional points open
interesting possibilities for advanced light ma-
nipulation. In this section,we present an overview
of someof the recent theoretical and experimental
developments in the exploration of exceptional
points for applications in photonics. As in other
areas of physics, in photonics, perturbation theory
is an important mathematical tool to tackle a
range of problems without having to deal with
complex full-wave equations. Owing to the sin-
gularity at exceptional points, as well as the di-
mensionality collapse in the eigenvector space,

standard perturbation theory, however, does not
apply at such points. The perturbation problem
can be introduced as H ¼ H0 þ eH1 where we
want to find the behavior of the eigenvalues sn(e)
and eigenvectors jynðeÞi ofH for e≪1, where e is
the perturbation parameter. In general, such a
perturbation problem can be divided into regular
and singular problems (96). In the regular case, a
power-series solution with integral powers of e

exists, that is,sðeÞ ¼ s0 þ
X∞
n¼ 1

cnen, where cn are

the series coefficients, with a finite radius of
convergence. However, in the case of an excep-
tional point singularity, such a solution does not
converge. At a singularity, the exact solution at
e = 0 is of a fundamentally different nature
compared with its neighboring points e → 0
(96). At a second-order exceptional point, the
series solution

sTðeÞ ¼ s0 þ
X1
n¼1

ðT1Þncnen=2 ð3Þ

exists, where s0 is the eigenvalue at the ex-
ceptional point. The radius of convergence of
this series in the complex e plane is deter-
mined by the nearest exceptional point. In a
similar manner, for a kth-order exceptional
point the nth term in the perturbation series
is en/k, with a dominant first-order term of e1/k.
For small perturbations, this term is considera-
bly larger than the linear term e, which occurs
at regular points, enabling extra sensitivity to
the parameter e of a system when biased at the
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Fig. 4. Experimental demonstration of exceptional points in various
optical settings. (A and B) Coupled integrated photonic waveguides (A)
fabricated through a multilayer AlxGa1−xAs heterostructure (B), for which
thin layers of chromium of different widths were utilized to impart different
amount of losses in one of the waveguides (56). In this setting, couplers
with different losses on one arm were used to observe mode symmetry
breaking beyond the critical loss contrast associated with the exceptional
point. (C) The propagation of laser pulses in coupled fiber loops of slightly
different lengths (DL) with alternating gain and loss creates a quantum
walk of pulses which is governed by a PT-symmetric operator (59). In this
temporal lattice, the onset of complex eigenvalues associated with the

band merging effect at the exceptional point was experimentally demon-
strated. PM represents a phase modulator that creates an effective
potential for the light pulses. (D and E) Coupled microring resonators with
gain and loss have been used to probe the exceptional point through the
mode splitting of the resonance eigenmodes (57, 58). In (D), the numbers
indicate the four ports that are used to probe the system, and orange and
green arrows represent waves propagating in forward and backward
directions, respectively. [Credits: (A) and (B) reprinted with permission
from (56), copyright 2009 by the American Physical Society; (C), (D),
and (E) reprinted from (59), (57), and (59), respectively, with permission
from Springer Nature]
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exceptional point singularity. This property has
been proposed to achieve enhanced mode split-
ting between counter-propagating whispering
gallery modes of a microring resonator in the
presence of nanoparticles (97). The prospect of
utilizing exceptional points for enhancedmode
splitting has been experimentally demonstra-
ted in microtoroid cavities (98, 99) (Fig. 5A). In
addition, integrated microring resonators with
externally controllable perturbations have been
utilized to induce second- and third-order excep-
tional points, where ½ and ⅓ power-law expo-
nents in mode splitting have been demonstrated

(100) (Fig. 5B). Although it has been pointed out
that enhanced sensitivity at the exceptional point
does not necessarily correspond to enhanced
precision in sensing instruments (101) and that
quantum noise should be considered to assess
the ultimate performance of these exceptional
point sensors (102), sensors appear to be an
interesting application area for these concepts.
In this area, it has also been shown that a scaled
form of PT symmetry can be used for enhanced
sensor telemetry (103).
Another interesting application of exceptional

points is mode discrimination in multimode

laser cavities (104). A common issue in laser
systems is that often several transverse or long-
itudinal modes may simultaneously lase. In this
regard, it has been suggested to complement the
active multimode laser cavity with a passive ca-
vity that ideally exhibits an equal amount of loss.
In this scenario, the overall level of loss is in-
creased in the entire system, given that eachmode
overlaps with the loss region, and thus the gain
threshold is expected to increase.However, a large
discrimination between lasing thresholds of dif-
ferent modes is obtained at the exceptional point
supported by this PT-symmetric system. In this
case, the modes are split into two classes that are
equally distributed between the active and pas-
sive regions, as well as modes that are localized
either in the gain or loss cavity. The first class of
modes remains neutral, whereas the modes lo-
cated in the gain enter the gain regime. As a result,
the passive cavity prevents some of the modes
from lasing. More interestingly, this structure
creates a large discrimination between the lasing
thresholds of the fundamental mode with its
closest competing counterpart. Assuming g0 and
g1 to be the gain coefficients for fundamental and
competing modes, respectively, in the coupled-
cavity system, the discrimination is governed byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g20 � g21
p

, which can be considerably larger than
g0 − g1 in a single laser cavity. This approach has
been utilized to enforce single longitudinal-
mode operation in coupled microring lasers
(105) (Fig. 6A) and in single ringswith embedded
active-passive gratings (106) (Fig. 6B). Similar
strategies have been utilized to filter out trans-
verse modes in ring resonators with large cross
sections (107), in optically and electrically pumped
stripe lasers (108, 109) (Fig. 6C), and in microdisc
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Fig. 5. Demonstration of enhanced perturbation near an exceptional point singularity.
(A) Sensing a nanoparticle with a microtoroid resonator biased at an exceptional point (99). Blue
arrows and curve indicate light pulses propagating in counter-rotating whispering gallery modes, and
the red arrow and curve indicate a backscattering pulse due to the presence of additional scatterers
(shown with two gray circles), which help to bias the system at an exceptional point. (B) Three
coupled microring resonators creating a third-order exceptional point (100).k represents the
strength of coupling between adjacent microrings. [Credits: (A) and (B) reprinted from (99) and
(100), respectively, with permission from Springer Nature]

Fig. 6. PT-symmetric laser arrangement
and its different realizations. (A) Coupled
active-passive microring resonators (105),
with a scanning electron microscope (SEM)
image shown at the bottom. (B) SEM image
of a microring resonator with an embedded
gain-loss grating (106). (C) SEM image of
coupled stripe lasers (109). (D) A schematic
of integrated coupled microring lasers (left)
and a photograph of the fabricated system
(right), where the scale bar represents 200 mm
(111). PM, phase modulator; SOA, semi-
conductor optical amplifier. [Credits: (A)
and (B) reprinted from (105) and (106),
respectively, with permission; (C) reprinted
from (109) with permission from John Wiley
and Sons; (D) reprinted from (111) with
permission from Springer Nature]
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lasers (110). In addition, integrated coupled mi-
croring lasers have been demonstrated with
single-mode operation at telecommunicationwave-
lengths (111) (Fig. 6D).
As illustrated in Fig. 7A, an interesting aspect

of exceptional points consists of their exotic
topological features in the parameter space. This
discussion falls into the broad context of topo-
logical photonics, an area of optics research that
has produced considerable excitement in recent
years. Inspired by the unusual physics of topo-
logical insulators in condensed-matter physics,
topological phenomena in photonics have been
shown to arise in sophisticated periodic struc-
tures, ranging from gyromagnetic photonic crys-
tals (112), arrays of helical waveguides (113), arrays
of microring resonators (114), bianisotropic or
magnetized metacrystals (115), dielectric chiral
metasurfaces (116), and time-modulated lattices
(117). In these systems, highly unusual photon
transport, characterized by one-way propagation
along the edges of the sample, arises within
bandgaps delimited by bands with distinct to-

pological properties. That their optical properties
are related to a topological feature makes the
response inherently robust to disorder and im-
perfections. Analogously, exceptional points rep-
resent an interesting example of topological
features arising in simple coupled dynamical
systems as a result of the interplay between
interaction and dissipation. According to Fig. 7A,
a loop of eigenvalues that encircle a base point
identifies a topological object, given that it can-
not be continuously deformed to a single point
without crossing the base point.
The rigorous analysis of these features can be

carried out using results from condensed-matter
physics, in which the topological band theory of
non-Hermitian Hamiltonians has been rigorously
investigated in (118). Specifically, it was shown
that non-Hermitian band structures exhibit a
topological invariant associated with the gra-
dient of the band in momentum space (119).
Inspired by the periodic table of topological
insulators, a systematic classification of topo-
logical phases of non-Hermitian systems has

also been presented (118). An interesting prob-
lem in this context is to adiabatically change the
parameters of a non-Hermitian system such that
the exceptional point is dynamically encircled, as
depicted in Fig. 7B. In a Hermitian system, when
adiabatically changing the parameters along a
closed path, the two eigenvectors are bound to
return to their original form, apart from acquir-
ing a possible geometric phase (120). In the case
of non-Hermitian systems, instead, parametric
cycling an exceptional point interchanges the
instantaneous eigenvectors, whereas only one
picks up the geometric phase (13, 121–123). In
principle, this behavior does not occur, even for
arbitrarily slow dynamic cycling of the excep-
tional point, given that the adiabatic theorem
breaks down in case of non-Hermitian systems.
Indeed, under such conditions, depending on
the direction of rotation, one of the two eigen-
states dominates at the end of the parametric
cycle. This interesting topological response pro-
vides a scheme for topologically robust energy
conversion between different states.
On the basis of this principle, topological

energy transfer has been recently demonstra-
ted in a multimode optomechanical cavity in
which two mechanical modes of a membrane
are coupled and coherently controlled through
a laser beam (124) (Fig. 7C). In addition, dynam-
ical cycling of exceptional points is explored in a
microwave waveguide in which a robust asym-
metric transmission between even and oddmodes
is demonstrated (125) (Fig. 7D). In addition, it has
been shown that this concept can provide op-
portunities for polarizationmanipulation (126, 127).
In particular, one can create an omnipolarizer in
which the output light is polarized along a
specific direction irrespective of the polarization
of the input state (Fig. 7E). For propagation along
the opposite direction, on the other hand, the out-
put is populated in the orthogonal polarization.

Conclusions and outlook

The peculiar features of exceptional points, as-
sociatedwith their unusual parameter dependence
in the eigenvalue spectrum of non-Hermitian
systems, enable exciting opportunities for a wide
range of applications. These applications arise in
scenarios in which interaction among different
modes in the presence of dissipation and/or amp-
lification is involved. In such circumstances,
coupling and gain-loss mechanisms can be
engineered and utilized to induce and control
exceptional points, to take advantage of the strong
and anomalous parameter dependence of the
system around them.
We envision future opportunities to exploit

these singular responses in photonics for ad-
vanced dispersion engineering. As a relevant
recent example, level repulsion in the group
velocity dispersion between coupled cavities has
been used to control the modal dispersion of an
individual cavity. This has been utilized to create
anomalous dispersion, which is of great impor-
tance in four-wave mixing and parametric fre-
quency comb generation (128–130). However,
the full potential of coupled waveguide or cavity
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Fig. 7. Chiral mode conversion through dynamically cycling an exceptional point. (A) The
eigenvalue surfaces near an exceptional point (left). Although a loop of eigenvalues containing
a base point can be continuously deformed into a circle, it cannot be shrined into a point without
crossing the base point (right) (118, 119). p1 and p2 represent two parameters. (B) Two different
possibilities of encircling an exceptional point (EP) cycling along opposite directions. (C) The
experimental probing of the complex eigenvalues of two mechanical oscillators driven adiabatically
through optical fields (124). The cross indicates the location of the exceptional point. (D) Asymmetric
conversion between the even and odd modes of a waveguide, when the loss and detuning are
adiabatically controlled in order to encircle an exceptional point (125). Blue and red curves indicate
two modes of the waveguide, and the arrow indicates the direction of propagation. (E) An adiabatic
conversion between orthogonal polarization states (126). Green arrows show the propagation
direction, yellow arrows indicate the polarization state, P is the pumping, and w is the channel width.
[Credits: (A) reprinted with permission from (118), copyright 2018 by the American Physical Society,
and (119); (C) and (D) reprinted from (124) and (125) with permission from Springer Nature; (E)
reprinted with permission from (126), copyright 2017 by the American Physical Society]
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arrangements for dispersion manipulation is
still largely unexplored, and multiple coupled
cavities or metamaterials may be envisioned to
take full advantage of exceptional points in the
context of dispersion engineering.
In a similar fashion, coupled-cavity arrange-

ments offer exciting prospects to design new
semiconductor lasers with highly desired func-
tionalities. Althoughmodern semiconductor laser
sources exist in the entire optical spectrum, their
coherence properties are not sufficient for many
applications. In particular, key requirements for
laser sources, such as stable and narrowband fre-
quency operation, as well as frequency tunability,
can be achieved through coupled-cavity geo-
metries (131–134) (Fig. 8B). Even though this
scheme has been previously applied to semi-
conductor lasers at specific frequencies, it re-
mains to be explored in other, arguably more
practical, sources and at different frequencies.
In this regard, coupled-cavity techniques in
conjunction with non-Hermitian designs pro-
vide an exciting strategy to systematically ad-

dress the current challenges in integrated laser
sources by taking advantage of the strong pa-
rameter dependence of such structures near
exceptional points.
Mode conversion in a compact integrated

photonic device is another important function-
ality that can largely benefit from exceptional
points, in terms of reduced footprint and inherent
robustness to disorder. Even though rigorous op-
timization techniques allow for inverse design
of such structures, often resulting in complex
structures that require advanced fabrication
technologies, alternative designs with reduced
complexity are highly desirable. In this vein,
adiabatic perturbation of a structural parameter
inducing an exceptional point–induced control-
lable level repulsion can provide a simple ap-
proach for hybridization and adiabatic exchange
of modes. Recently, it has been shown that in
optical ridge waveguides with different cladding
and buffer materials, varying the waveguide
width induces a strong coupling between trans-
verse electric and magnetic polarizations of

different spatial orders (135). As a result, adia-
batic tapering of the waveguide width along the
propagation direction can efficiently convert
polarization states as well as spatial-mode orders
(136, 137). As shown schematically in Fig. 8C, the
inclusion of selective gain and loss in such
geometries provides an alternative degree of
freedom to control the mode-conversion ef-
ficiency. In addition, hybridization betweenmul-
tiple modes through higher-order exceptional
points can initiate the simultaneous conversion
among a large number of modes. The full ram-
ifications of these concepts become very pow-
erful new tools in photonic engineering.
The quest for integration of optical setups on a

chip requires integrated implementation of
fundamental elements such as laser sources
with critical power and coherence demands, iso-
lators and circulators, mode convertors, and so
on. In this regard, multimode structures have
proven to provide a great opportunity to achieve
desired functionalities and realize compact de-
vices. This trend naturally calls for a bottom-up
approach in designing photonic devices in an
abstract modal picture in which three ingre-
dients are relevant: (i) modal detuning, (ii) mode
coupling, and (iii) modal gain and/or loss. The
role of the first two processes has been largely
explored in the past in the context of coupled-
mode theory. The thirdmechanism, on the other
hand, has been largely unexplored. As we dis-
cussed in this survey, the interplay of these
phenomena can result into totally new oppor-
tunities for photonics, associated with the emer-
gence of exceptional points that notably alter
the eigenvalue surfaces. Therefore, notions from
exceptional point physics can provide new de-
signs for realizingmultimode integrated photonic
devices. This creates opportunities for theoretical
and experimental research focused on exploring
the fundamental bounds of accessible perform-
ance, such as bandwidth and sensitivity, of
photonic devices operating at exceptional points.
It is worth stressing that inducing exceptional
points through gain and loss imposes difficulties
in experimental photonics. This is because op-
tical gain is limited to certain materials and is
not generally compatible with all platforms, and
loss is generally undesired for various purposes.
At the same time, suitable settings for investigat-
ing and fruitfully exploiting exceptional points
arise in systems that inherently involve optical
gain or loss, such as semiconductor lasers, sat-
urable absorbers, and plasmonic structures, among
others.
Along different lines, remaining to be inves-

tigated are the interesting physics arising from
the propagation of classical light at exceptional
point singularities. Recent theoretical investiga-
tions, for example, suggest dynamical slowing
and stopping of light in coupled waveguides at
exceptional points (138), as well as photonic
catastrophe in optical lattices (139). In addition,
a point of interest would be to explore these
phenomena in newplatforms. An emerging play-
ground to explore the rich physics of exceptional
points is provided by hybrid photonic platforms
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Fig. 8. Application of exceptional points in multimode photonic integrated circuits and new
platforms to investigate exceptional points. (A to C) Applications. (A) Hybridization of
eigenfrequencies in coupled microring resonators (top) creates two branches with strong dispersion
(bottom) (130). The anomalous dispersion can be utilized for frequency comb generation. (B)
Wavelength manipulation in three coupled-cavity lasers through a strong dispersion at a third-order
exceptional point (133). (C) Level repulsion of modes with different polarization provides an
opportunity for compact polarization mode conversion (135, 136). A parametric evaluation of the
eigenmodes of a rib waveguide (top left) versus the waveguide width reveals a level repulsion
between transverse electric (TE) and transverse magnetic (TM) polarizations (bottom). Therefore,
tapering of the waveguide width over a finite distance (top right) can result in an adiabatic
polarization conversion. (D to F) New platforms. (D) Multimode optomechanical cavities provide
a flexible platform for investigating exceptional points. (E) Exciton-polaritons in semiconductor
cavities offer an alternative multiphysics structure for realizing exceptional points. (F) Coupled
nanoantennas can be designed as non-Hermitian building blocks of optical metasurfaces.
[Credits: (A) reprinted from (130) with permission from Springer Nature; (B) reprinted from
(133) with permission from AIP Publishing; (C) reprinted with permission from (135) and (136),
copyright 2011 and 2012, respectively, Optical Society of America]
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that integrate other degrees of freedom beyond
optics, exploiting the interaction between dif-
ferent phenomena. In particular, cavity optome-
chanics, relying on the strong coupling between
optics and mechanical motion, offers a reconfig-
urable, inherently non-Hermitian platform that
can be externally controlled through pump lasers
with proper intensity and phase (140) (Fig. 8D).
Operating in the red and blue sideband detuning
of the pump beam can effectively control loss or
gain for the optical modes involved, opening ex-
citing opportunities for PT symmetry and ex-
ceptional points in a low-noise nanophotonic
integrated environment. Similarly, cavity polar-
itons, because of their inherent non-Hermitian
properties, can provide another platform for in-
vestigating and utilizing exceptional points (141)
(Fig. 8E).
Finally, it is worth mentioning the potential

of utilizing exceptional point singularities in op-
tical scattering problems, where the coupling
between discrete localized metastable states and
a continuum of radiation states is concerned.
Interest in photonic bound states embedded in
the continuum is increasing, owing to their in-
teresting properties (142–144). Such settings can,
in general, be treated as non-Hermitian prob-
lems, for which a point of interest would be to
explore the connection between radiation leak-
age and exceptional points emerging in the con-
tinuum, as observed in recent experiments (145).
In addition, similar concepts can be utilized in
designing coupled optical nanoantennas as non-
Hermitian building blocks of metasurfaces in
order to create scattering surfaces with desired
phase, frequency, and polarization response
(Fig. 8F). In addition to the radiative losses of
dielectric inclusions, the inherent loss inmetallic
inclusions at optical frequencies can be turned
into an opportunity to realize and exploit excep-
tional points in properly designed geometries
(146). We envision exciting opportunities in trans-
lating the concepts of exceptional point physics
to quantumnanophotonic and low-photonhybrid
systems.
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