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ABSTRACT
Previous attempts to the resummation of divergent power series by means of analytic continuation are improved applying the
Cauchy integral formula for complex functions. The idea is tested on divergent Møller-Plesset perturbation expansions of the
electron correlation energy. In particular, the potential curve of the LiH molecule is computed from single reference MPn
results which are divergent for bond distances larger than 3.6 Å. Preliminary results for the Hartree-Fock molecule are also
tabulated.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5083191

I. INTRODUCTION
The Cauchy integral formula1

∮
E(z)
z − z1

dz = 2πi E(z1) (1)

for a complex function E(z) which is analytic on and inside the
boundary of the integration contour connects the values E(z)
on the contour to the values E(z1) inside the contour. In that
sense, it can be applied as a tool for analytic continuation.

In perturbation theory,2 one may consider the non-
Hermitian eigenvalue problem

H(z)Ψ(z) = (H0 + zW) Ψ(z) = E(z) Ψ(z), (2)

where z is a complex perturbation parameter, the physical sit-
uation corresponding to the value z = 1. Rayleigh–Schrödinger
perturbation theory (RSPT) consists of expanding the complex
function E(z) in Taylor series in terms of z. This power series
will be convergent for those values z whose modulus is smaller
than the convergence radius |z0|. In the domain |z| < |z0|, the

function E(z) is analytic.1 The convergence radius is deter-
mined by the location of the singularity of E(z) closest to the
origin. In problems of chemical physics, the singularities are
typically branching points appearing in complex conjugated
pairs (z0, z∗0) (see Fig. 1).

Quantum chemical applications of RSPT in the Møller–
Plesset (MP) partitioning, when the Fockian is chosen as the
zero order Hamiltonian, aim to approach the total energy
treating electron correlation as a perturbation. These calcu-
lations, especially when performed in large basis sets and/or
for molecular systems far from their equilibrium structures,
frequently run into the problem of divergence.

Treating divergent perturbation series is an old, but still
open problem.3–8 In a previous paper,9 we proposed a proce-
dure to scale down the divergent series by small real num-
bers to make it convergent. In the knowledge of scaled,
converged values, an extrapolation technique was used to
estimate the exact infinite order result. Very recently,10 we
generalized this procedure by using complex scaling parame-
ters and applying analytic continuation by solving the Laplace
equation.
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FIG. 1. Schematic contours on the complex plane exhibiting the (outer) unit circle,
the location of the closest singularities z0, z∗0, the convergence radius |z0|, the
domain of convergence (inner circle), and an area bordered by an artificial contour
to be used for the application of the Cauchy integral formula (shaded domain).

The aim of this paper is to use, instead of the labo-
rious numerical solution of the Laplace equation, Cauchy’s
integral formula [Eq. (1)], which we found to be a much
more robust procedure for analytic continuation of complex
functions.

It has to be noted that analytic continuation is not the
only method to resum divergent PT series. Besides the ref-
erences given above, we mention the Levin–Weniger trans-
formation11,12 as an important resummation tool, with which
a few comparative calculations will also be presented in this
paper.

II. THEORY
Suppose that we know individual terms of an infinite

series, convergent or divergent,

En =

n∑
i=0

E(i) (3)

up to a certain order n. We are interested in the limit of this
series, E, when n → ∞. One can formally write it as a power
series introducing parameter z as

En(z) =
n∑
i=0

ziE(i), (4)

the physical situation corresponding to the value z = 1. In gen-
eral, complex values for z are permitted. Assume further that
(4) is an expansion of some complex function E(z) around the
origin z = 0. As known, this expansion is convergent in the
n → ∞ limit for those values of z for which |z| < |z0|, where
z0 is the location of the singularity of E(z) closest to the origin,
in other words, within the convergence radius (the inner circle

in Fig. 1). The “physical” series (3) is convergent if |z0| > 1, while
the case in Fig. 1 illustrates a divergent situation.

Even if the series (3) is divergent, we can always scale indi-
vidual members of the series by z, meeting criterion |z| < |z0|.
For these values, we can sum up (4), and if n is sufficiently
large, we can determine the unknown complex function E(z)
to a given numerical accuracy within the convergence radius.
Then the question arises whether we can extrapolate func-
tion E(z) to the point z = 1 by means of analytic continuation
techniques.

In this paper, we apply the Cauchy integral formula (1)
as a tool for analytic continuation. To do this, we set up the
following procedure:

1. Choose a value for n, as large as possible, and determine
individual terms of series (3). In the quantum chemical
practice, this could mean performing MPn calculations.

2. Design a contour on the complex plane so that a signif-
icant part of it embeds z values within the convergent
region |z| < |z0|, but extending it to contain the point
z = 1 of physical interest (the contour enclosing the
shaded area in Fig. 1). The overlap of this shaded domain
and the convergent domain can be called the trusted
region. This contour should not enclose any singularity
to ensure that function E(z) is analytic inside. The shape
of the contour is otherwise arbitrary.

3. Choose many values of z1 within the trusted domain and
sum up Eq. (4) for these values. In practice, the radius
of the inner circle is chosen somewhat less than |z0|
to ensure fast convergence of the En(z1) values. These
summed values represent the unknown function E(z1) up
to some numerical accuracy.

The reference points inside the trusted region were
chosen as z1 = x + iy, where (x, y) are the points of a
grid starting at x = xmin, with a uniform grid length of
0.01 in both x and y directions. xmin was between 0.6
and 0.65, and points too close (closer than 0.01) to the
contour were left out. This resulted in 40-50 reference
points. The reason for not choosing reference points in
the entire trusted region is that points farther from our
point of interest z = 1 are less sensitive to the value
of f(z = 1).

4. Knowing E(z) within the trusted domain, the next step
is to initialize E(z) on that part of contour of the shaded
domain which is out of the trusted region, including the
point z = 1. This can be done by any extrapolation pro-
cedure, and when the cycle of this iteration procedure
converges, the initial values have little importance. We
have used a simple polynomial extrapolation procedure
by fitting a 5th order polynomial to 6 points in the trusted
region.9 Having done this, we have values for E(z) all along
the boundary of the shaded domain: accurate, summed
values within the trusted region and approximate extrap-
olated values outside. The latter ones were represented
by 8-10 selected points including the point of interest
E(z = 1). They are initialized by the extrapolation just
mentioned and used as the parameters of optimalization
described under step 7.
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5. In the knowledge of the values E(z) on the boundary,
invoke Eq. (1) to evaluate values E(z1), for several values
z1 in the trusted region. To evaluate the contour integral,
we used polynomial interpolation between the selected
points, which ensures the continuity of E(z) along the
contour.

6. Compare the results of this integration to the scaled
(numerically exact) results obtained in step 3 and form
a measure of the error by the square root of the average
of squared deviations.

7. Modify values E(z) on the contour outside the trusted
region so that the error of step 6 should decrease.
This is an optimization procedure what we have carried
out with the BFGS (Broyden-Fletcher-Goldfarb-Shanno)
algorithm.13 As optimizable parameters of BFGS, we
selected the values of E(z) at 8-10 points on the bound-
ary (these are the values initialized under step 4). The
gradient vector provided to BFGS was obtained from a
numerical finite difference procedure.

At the end of this procedure, one has converged val-
ues for E(z) within the shaded domain as well as on its
boundary, including E(z = 1). This latter value can be consid-
ered as a resummation of the original, eventually divergent
series (3).

III. RESULTS
In this section, we shall apply this procedure to extrapo-

late and resum MPn values obtained for the correlation energy
of quantum chemical systems.

A. The dissociation of the LiH molecule
We begin with the calculation of the potential curve of the

LiH molecule using single reference MP perturbation theory
to account for correlation effects. The correlation energy is
defined as the difference between the exact and the Hartree-
Fock (HF) energy.

Relying on RSPT and using MP partitioning, and denot-
ing the ith order contribution to the total electronic energy
by E(i), the Hartree-Fock energy is given by EHF = 〈Ψ(0)|Ĥ|Ψ(0)〉

= E(0) + E(1). If the “z-dependent” correlation energy is Ecorr(z)
= E(z) − 〈Ψ(0)|Ĥ(z)|Ψ(0)〉 (which for z = 1 coincides with the usual
definition of Ecorr), then the power series expansion of Ecorr(z)
is given by ∑

i=2

E(i)zi. (5)

The resummation technique described in Sec. II was applied
to this series.

For the LiH molecule, high order PT calculations were
carried out at several different geometries (i.e., at different
RLi–H distances) in the 6-311G∗∗ basis set. The MP series turned
out to be convergent at z = 1 for all RLi–H bond lengths that
were less than 3.55 Å and divergent for bond lengths greater
than 3.6 Å. In the former cases, the method could be still tested
by choosing the convergence radius to be r0 = 0.7 and only
using the power series expansion for |z| ≤ r0. In the latter

cases, the convergence radius was estimated from the terms
of divergent series by finding the largest values of |z| for which
the scaled results turn converged.9,10

For all geometries considered, the contour was chosen
to be a right-angled triangle with vertices at 0, 1 and 0.2i.
This means that the vertical leg of the triangle was completely
inside the trusted region in each case, and no singularity was
present inside this triangle. (This could be in principle checked
by the method proposed by Goodson14,15 using quadratic Padé
approximants. In the present case, the success of the ana-
lytic continuation procedure indicates the absence of any sin-
gularity inside the contour.) Table I contains the results of
the proposed analytic continuation method for the series in
Eq. (5). MP5 and MP6 refer to the total correction at fifth and

sixth order, respectively, i.e.,
n∑
i=2

E(i) for n = 5 and n = 6. Full

configuration interaction (FCI) denotes the exact correlation
energy that can be obtained in a given basis set. Table I con-
tains also the radii r0 used at different geometries. The data
for RLi–H ≥ 3.75 Å show that larger bond lengths generate
smaller convergence radii. (The seemingly contradictory value
of r0 for RLi–H ≤ 3.5 Å is intentional, as for small RLi–H value,s
r0 was chosen artificially small, to test the extrapolation
procedure.)

Figure 2 shows the potential curve calculated for the
LiH molecule. Around equilibrium, MP5, MP6, and the
energies obtained via the proposed method are close to the
FCI energy; at this scale, the lines apparently coincide. At
longer distances, the MP5 and MP6 energies start to deviate
from the exact energy, the difference becoming visible on the
scale of Fig. 2 as well. The difference of the results of the pro-
cedure described in Sec. II (denoted by “Cauchy”) from the FCI
energies is still small enough that the plot does not show it.
Therefore it is helpful to plot the deviation (with respect to
to the FCI) of these energies (see Fig. 3). The differences near

TABLE I. Correlation energy of the LiH molecule at several geometries and at various
orders of MP PT and their resummed value. Energies are in mEh. (For the meaning
of r0, see the text.)

RLi–H/Å r0 EMP5 EMP6 EFCI ECauchy

0.9 0.7 −51.680 −51.868 −51.968 −51.965
1.0 0.7 −50.433 −50.602 −50.690 −50.688
1.1 0.7 −49.302 −49.459 −49.542 −49.539
1.2 0.7 −48.317 −48.468 −48.550 −48.548
1.3 0.7 −47.485 −47.634 −47.721 −47.718
1.4 0.7 −46.800 −46.952 −47.049 −47.045
1.5 0.7 −46.258 −46.420 −46.532 −46.527
1.6 0.7 −45.857 −46.034 −46.170 −46.164
1.7 0.7 −45.594 −45.794 −45.961 −45.955
1.8 0.7 −45.464 −45.694 −45.905 −45.896
1.9 0.7 −45.459 −45.727 −45.994 −45.983
2.0 0.7 −45.570 −45.884 −46.225 −46.209
2.5 0.7 −47.611 −48.300 −49.393 −49.332
3.0 0.7 −51.760 −53.152 −56.111 −55.982
3.5 0.7 −57.978 −60.651 −66.860 −67.094
3.75 0.95 −62.019 −65.713 −73.498 −73.499
4.0 0.94 −66.842 −71.966 −80.532 −80.491
4.5 0.86 −79.382 −89.369 −94.401 −93.660
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FIG. 2. Potential curve for the LiH molecule, 6-311G∗∗ basis set.

equilibrium can be seen in the inset. In this case, the “Cauchy”
method yields very accurate results. At larger distances,
numerical errors appear in the order of the magnitude of
1 mEh. Note also that this technique does not yield variational
results.

The non-parallelity error (NPE) of the Cauchy method was
calculated according to

NPE =

√√√√√√ K∑
j=1

(∆Ej − ∆E)2

K − 1
, (6)

where ∆Ej is the difference between the Cauchy and the FCI
energies at the jth geometry, while ∆E is the average of these
differences. In other words, we define NPE as the variance of
the energy differences taken at K different geometries sam-
pled uniformly with a step of 0.5 Å. The NPE of the curve
“Cauchy” in Fig. 2 is 0.28 mEh, to be compared with the NPE
of MP5 and MP6 curves (6.12 mEh and 3.22 mEh, respectively).

To check the stability of our results with respect to the
location and number of reference points applied in the opti-
mization procedure, we report the following example. At 4.0 Å

FIG. 3. Deviation from the exact (FCI) results of the MP6 and Cauchy method for
the LiH molecule at different geometries (6-311G∗∗ basis set).

Li–H distance, we set the reference points in three different
ways:

(i) As originally, i.e., xmin = 0.65 and grid length is 0.01.
(ii) Points are located in the same area, but denser: xmin

= 0.65 and grid length is 0.001.
(iii) Points are located in a larger area, with density as in (i):

xmin = 0.01 and grid length is 0.01. The method yields
in these three cases the following estimations for the
correlation energy (in mEh): (i) −80.491, (ii) −80.751, and
(iii) −80.546, respectively.

We have also performed single-point calculations (LiH,
4.0 Å) with the Levin and Weniger transformations of the MPn
series. Of several variants, we have selected Eq. (10) of Cizek
et al.,8 which defines Levin and Weniger transformations at
various levels, depending on parameters n, l of the formula.
As indicated in the last-but-one line of Table I, the FCI cor-
relation energy at this bond length is 80.53 mEH, while the
present analytic continuation predicts 80.49 mEH. This is to
be compared with the results of Levin and Weniger transfor-
mations which were found to vary between 59.69 and 86.03
mEH for parameters n = 4 and 1 ≤ l ≤ 12 [see their meaning in
Eq. (10) in Ref. 8]. The transformations by Levin and Weniger
deviate little. Both transformations, therefore, predict the cor-
rect order of magnitude of the correlation energy in spite of
the fact that the MPn series is rapidly divergent at this geom-
etry. In the present case, the analytic continuation technique
served a more accurate estimation.

B. Results for the HF molecule
The same process was carried out for the HF molecule,

using a smaller (6-31G∗∗) basis set at different bond lengths.
For every RH–F distance, the contour of integration was cho-
sen to be a right-angled triangle with vertices at 0, 1 and
0.1i. Table II contains the calculated energies for a few cho-
sen geometries, as well as the convergence radii of the MPn
series.

At distances of 0.825 39 Å, 0.917 10 Å, and 1.834 20 Å, the
MP series converged, and the choice for r0 was 0.85. Far from
equilibrium, the error of the Cauchy method becomes greater.
This can be explained by the decrease of the convergence
radius: the smaller the r0 is, i.e., the further the z = 1 is from
the trusted region, the harder the analytic continuation is to
carry out.

To conclude, numerical results show that Cauchy’s inte-
gral formula can be trustworthily applied as a tool for ana-
lytical continuation aiming at resummation of divergent per-
turbational series. This means, e.g., that molecular potential
curves can be approximated from single reference MPn cal-
culations. Higher numerical accuracy of the method when
the PT series is convergent is regarded as a numerical test.
When resumming divergent data, millihartree accuracy can
be expected. The significant advantage of this technique
over the procedure suggested in Ref. 10 is that there is no
need to solve the Laplace equation at each iteration step.
Consequently, once the PT energy terms are available, the
procedure is practically costless. At the present stage, the
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TABLE II. Energies and energy differences obtained for the HF molecule in the 6-31G∗∗ basis set. Energies are in mEh. r0 is
the radius used for the trusted domain.

RH–F (Å) r0 EMP5 ECauchy EFCI EFCI − EMP5 EFCI − ECauchy

0.825 39 0.85 −187.020 −187.443 −187.446 −0.425 −0.003
0.917 10 0.85 −191.556 −192.087 −192.085 −0.529 −0.003
1.834 20 0.85 −250.757 −256.210 −256.211 −5.455 −0.001
2.292 75 0.80 −308.228 −308.336 −308.356 −0.128 −0.021
2.751 30 0.70 −382.505 −352.345 −354.731 27.774 −2.385

method is not yet practical since large order PT results
(occasionally a few dozen MPn terms, extracted from a FCI
run) have been used. Currently we are investigating possi-
bilities to extrapolate (and eventually resum) based on low
order MP results, rendering practical applicability to these
techniques.
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