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ABSTRACT 

The existence of four types of the closed shell Hartree-Fock instability thresholds is established. 
The potential energy surface behaviour at the threshold is analyzed. 

The nonlinearity of the Hartree-Fock (HF) equations is most distinctly 
revealed in the behaviour of their solutions near the instability threshold. It is 
exactly the point where additional to the linear problem solutions appear. The 
physical importance of such peculiar solutions of the HF problem has been 
emphasized by Slater [l] and Mott [2]. Additional solutions in the four-elec- 
tron n-system of butadiene have been considered in refs. 3-6. It was shown in 
ref. 7 that the condition of their existence is equivalent to vanishing of one the 
instability frequences 1. Ciiek and Paldus emphasized the nonanalytic behav- 
iour of the solution at the branching point in the benzene molecule [ 81. 

Further progress in the general investigation of the problem was achieved in 
the paper by Fukutome [9] who advanced the idea of the perturbation at the 
UHF-instability threshold. These results are also outlined on p. 988 of his 
review [lo]. A similar idea was exploited within the RHF theory in matrix 
formulation (see ref. 11 where the relation of the approach used to the Fuku- 
tome technique has also been discussed). In the present note we report a com- 
plete description of the closed shell instability threshold types in the framework 
of the scheme of ref. 11. Further details may be found in ref. 12. 

Our starting point is the closed shell HF equation [F,Y] _ = 0 for the in- 
volutive counterpart Y of the Fock-Dirac density matrix: Y2 = I. If the core 
Hamiltonian matrix H receives an increment A the corresponding change of 
Y is denoted by P. The perturbation theory for the density matrix Y corrections 

(1) 
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near the p-fold degenerate instability threshold is based on the equations 

[F,P] _ + [A+G(P),Y +P] _ = 0 (Y+Pp = I (2) 

Here F = H+ G (I + Y ) is the Fock operator, G(X) is the averaged electron 
interaction operator depending on its argument density matrix X. Matrix Y 
obeys the same system (2), in which perturbation is absent (P = 0, A = 0), 
and is supposed to be known. Correction T is that part of the whole perturba- 
tion P which is determined by the threshold properties. Its remaining part is 
built by means of the standard coupled Hartree-Fock perturbation theory [ 121. 
Matrices Dtuj fulfill the threshold equation 

N)w ) = 0 

and the condition 

(3) 

tD,dl + = 0 (4) 

Operator n is the same that is used in inhomogeneous equations of the coupled 
perturbation theory. It acts according to the rule 

A(D) = - [FY,D]+ +G(D)-YG(D)Y (5) 

Matrices D,,, as well as Y are assumed to be known. 
All the peculiarities of the threshold perturbation theory are contained in 

the nonlinear equations for coefficients t, from eqn. (1) . These follow from 
eqns. (2) and depend on the properties of the perturbation A and on the 
threshold nature. 

If even one of the coefficients 

a, = SP AD,,, u = 1,2,...,p 

is nonzero, the equations for t, are quadratic (case “a”) 

u = 1,2,...,p 

where the threshold parameters 

g U”W = 3Sym(u,u,w)(SpD(,,G(tD(,,,D(,,l+Y)) 

are symmetric in all subscripts u,u,w. 
If all a U = 0 the system is modified (case “b”) 

(6) 

(7) 

(8) 

(9) 

The new perturbation parameters are 
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b au” uo = -4 C guviai/Ai au0 = SPA[DC~J JJ,“, I+ Y 

b, = 2 C a,ia:/li-4 C g@iaj/(AiiIj) 
(10) 

i Li 
where D(i), D,, in contrast to Dtu) from eqn. (3) belong to the nonzero eigen- 
values Ai, Aj of A, and ai, aj are defined by means of eqn. (6) through D(i), D,,. 

In special cases, when all the threshold parameters g,,, are zero, the systems 
corresponding to eqns. (7) and (9) are 

u = 1,2,...,p (11) 

(12) 

respectively, (cases “c” and “d”). The four-subscript values h,,,, are defined 

by 

h - Sym(ww){iSp(G(Q) [D~u~9[D~,~9D~w~ ]+I+ U”WX - (13) 
-Y [DC,, *D(o) I+ G(Y [D(w) 3(r) I+ 1) + C giuugiwx/Ai i 

Systems “a’‘-“d” demonstrate explicitly that all peculiarities which follow 
from the nonlinearity of the HF-equations are conditioned solely by electron 
interaction since g,,, = 0 as well as h,,,, = 0 for G = 0. 

It can be shown [ 121 that the signs of increments of the total energy and the 
stability eigenvalue II are opposite in all the cases “a”-“d”. Thus the energy of 
the stable solution is decreased from the maximum on the threshold and that 
of the unstable one is increased from the minimum for the growing perturbation. 

In the one-dimentional case 0, = 1, g = gill, h = hIIll, a = a,) solutions 
of all equations are presented in Table 1. 

In the first three cases “a’‘-“c” RHF solutions emerge from the threshold or 
have a cusp. In the fourth case “d” the pairs of degenerate new solutions branch 
out smoothly from the already existing solution which changes its stability 
type. For h > 0 initial and appeared (double-degenerate) solutions are unstable 
whereas nondegenerate solution becomes stable after the threshold. Such a 
situation is met in the case of core double vacancies [ 131. Here the unstable 
solution formed is responsible for the observed decrease of the core ionization 
potential [ 141 and for the correct asymptotic behaviour of the wavefunction 

1131. 
For h<O the initial and resulting degenerate solutions are stable whereas 

the nondegenerate solution is unstable after the threshold. The last mecha- 
nism is typical for the axial-spin (triplet) and complex instability and also for 
the appearance of new solutions of the “allowed” type (according the Pariser’s 
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TABLE 1 

Parameters for nondegenerate threshold 

Threshold type 

Emergence 1,2 

+I!!? a _ 
0 g 

b -(b,, + (b:, +4gb,)“2) + (b:, +4gb,)“’ 

% 
&- & (A3+b,,A’+2gb,b,,) 

Branching (g=O) 

0 
I ,:1 

c a E E 

z 

h>o h<o 

h>o h<o 

d .b,,, 2h, b” 
EE+” e, C 

16h 

“Notation: -unstable, ~ stable solution. 

classification) in alternant hydrocarbons. Space unsymmetrical solutions also 
branch out from the symmetric one if the threshold matrix Dcl) belongs to the 
one-dimensional but not the identity representation of the symmetry group 
[ 121. However in the latter case, e.g. in butadiene, and in asymmetric systems, 
e.g. heteronuclear diatomic molecule [ 151 the new solution emerges “from the 
air” according to eqn. (7). 

Near the two-dimensional threshold the latter type of behaviour may lead 
to a rather complicated structure of the potential energy surface (see for ex- 
ample, Fig. 1). 

If the perturbation is characterized by more than one degree of freedom, e.g. 
by symmetric and antisymmetric combinations of nuclear displacements, the 
threshold on the two-dimensional potential surface is the origin of the Whithey 
fold (Fig. 2, point T) . 

The pictures corresponding to cases “d” and “c”, respectively are observed 
in two orthogonal sections passing through the threshold T while in the dis- 



Fig. 1. The potential energy surface at the double-degenerate emergence point. 

Fig. 2. The threshold on the two-dimensional energy surface. 

placed sections (where g#O) we have pictures corresponding to case “a”. The 
upper unstable sheet contains the symmetric minimum, and the lower degen- 
erate stable minimum is situated on the self-intersection line of the potential 
surface. The dynamic instability, which means the potential surface negative 
curvature (in a section Q, = const ) 

dF 
k= b-2CaF/li - 

i 
SP aQ, D(i) = oi 

appears in the point A’ which precedes the threshold T when going along a 
symmetric coordinate towards the instability region. 

The parameters which determine the position of the potential surface char- 
acteristic points are expressed through the threshold parameters h, a 

(15) 
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and through the displacement Q, > 0 of the considered cross section from the 
threshold along the symmetric coordinate. The heights of the points EP, El and 
B relative to A are approximately, - n2 Q,2/48h, n2 QE/6h, n2 Qt/l6h. The slopes 
of the curves E,BE: and EhBE1 at E2, E2 and at B are 5 ( -nQs/6h)b/4 and 
+ ( - nQJ2h) fu, respectively (h < 0). The curvature of E2AE2 is decreased by 
$u2/nQ, when going from A to E2. 

It is worthwhile noting that positions of the unstable A and stable point B 
and the slope at B may be obtained by means of a standard calculation of the 
HF potential energy surface without any use of the threshold theory. Then 
varying the symmetric coordinate x (space scale factor) and repeating calcu- 
lation of the quantities mentioned for several values of x: we can determine the 
threshold parameter combinations n2/h, and a”/n and its distance QS from the 
considered points A, B if the x-dependence of EA - En is approximated by a 
suitable parabola: EA - En = -n2/16h(x-8,)“. After this we can build the 
curve 01002 in the (Q,, Q,)-plane: Q, = KQ& where K = -3 (2hu2) f/n = 
- 3 ( 2u2/n:n2/h) f and reconstruct the positions of the points E2, E; which 
cannot be found by means of a standard calculation. The displacement of the 
minima M, from that in the Q, = 0 plane (M) can be also calculated: energy 
lowering is 4u2nQ,/9hk. 

The space-projected HF solution, i.e. the arithmetic mean of the two HF 
wavefunctions existing in the point B, lowers the position of the point B and 
smooths the curve E,BE’,. This lowering (-nA/8h)Q, is linearly increased 
and may exceed that of M, if the energy of singlet excitation at the threshold 
A is greater than gu2/k. 
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