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Abstracts 

Perturbation theory in the vicinity of an RHF closed-shell instability threshold is developed. 
Equations determining the appearance of new solutions are formulated solely in terms of the electron 
interaction operator. 

Une thtorie des perturbations au voisinage d’une instabilitt d’une fonction RHF pour une couche 
ferinee a CtC developpee. Des tquations, qui dtterminent l’apparition des nouvelles solutions sont 
formultes entikrement en termes de I’optrateur de l’interaction electronique. 

Eine Storungstheorie fur die Nachbarschaft einer Instabilitat der RHF-Funktion fur eine abgesch- 
lossene Schale wird entwickelt. Gleichungen, die das Auftreten neuer Losungen bestimmen, werden 
ausschliesslich durch den Elektronenwechselwirkungsoperator formuliert. 

1. Introduction 

The Hartree-Fock (HF) equations nonlinearity, which results from electron 
interaction, leads to a self-consistent method of their solution. Sometimes this 
tedious procedure hides physically more interesting peculiarities connected with 
the nonlinearity. Such a problem is the appearance of additional solutions of the 
HF equations caused by an increase in their power as compared to a linear 
problem. These new solutions, which are impossible in principle if the electron 
interaction is neglected, may reveal collective features of electronic movement. 
The most successful progress in searching the additional solutions of the HF 

equations has been achieved in MO LCAO approximation [ 1-10]. 
It seems that the density matrix technique may be applied as a convenient tool 

for the investigation of this problem. In terms of the residual charge-bond-order 
involutive matrix Y the HF problem looks like 

Y 2 = I  (1) 

[F, Y]=O, F = H + G ( Y )  (2) 

Here H is the screened core energy matrix and G( Y )  is the electron interaction 
matrix which is a linear function of Y elements: 
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The requirement of conservation of electron number N = 2n is 

S p Y = N - m  (4) 

where m is the basis dimension. It should be emphasized that Eqs. ( l ) ,  (2), and (4) 
do not determine unambiguously the matrix Y as a consequence of nonlinearity of 
(1) even in the absence of G term in Eq. (2). They have as many as (T) solutions for 
Y [7]. This ambiguity is quite natural because the HF equations are necessary but 
not sufficient conditions of the energy minimum: 

E = $Sp(I+ Y)(2H + G (  Y - I ) )  ( 5 )  

They guarantee only the first E variation to vanish. Any solution of Eqs. ( l) ,  (2), 
and (4) corresponds to some distribution of n units among m eigenvalues of Y, 
which are equal to *1 according to Eq. (1). In other words, it means a certain 
choice of n eigenvectors filled in the ground state. In principle, this choice should 
be concretized after calculation of E from Eq. ( 5 )  for every of (T) possible 
solutions. 

After these preliminaries it should be noted that we are interested here not in 
the variety of solutions mentioned but just in the additional solutions that appear 
as a result of inclusion of the G term in Eq. (2) and that have been defined above as 
“peculiar.” It seems that the first paper in which the ambiguity of solutions of the 
HF equations was emphasized was Slater’s work [l], where it has been shown that 
for a large separation of nuclei in hydrogen molecule two types of solutions exist. 
In the first case the electrons are symmetrically distributed between the nuclei and 
in the second electrons are concentrated in the vicinity of one nucleus. This 
problem for two-electron molecules has also been considered by Coulson and 
Fisher [2] and especially by Fukutome [3]. Slater’s idea, in fact, has been 
developed by Stanton [4], who calculated the number of possible solutions of the 
HF equations when the system falls into different regions described by nonover- 
lapped orbitals. Additional solutions in the four-electron 7r system of butadiene 
molecule have been considered by Chirgwin [5]  and Hall [6]  in terms of the 
charge-bond-order matrix. But as it was shown in Ref. 7 (see also Ref. 8) new 
solutions obtained by Hall are due to the redistribution of electrons between the 
empty and filled orbitals and do not belong to the type we are concerned with. The 
condition that guarantees the existence of additional solutions caused by electron 
interaction in butadiene has been formulated in Ref. 7 .  The investigation of the 
problem in larger molecules is restricted to the benzene molecule where Cizek and 
Paldus discovered the bond-order wave-type solution [9]. 

The same authors have connected the appearance of a new solution to the 
instability problem and have shown that, if the system is unstable, a new solution 
appears, which violates some space or spin symmetry [lo]. For example, spin 
density waves do exist in the infinite polyenes as a result of triplet instability, as has 
been demonstrated by Fukutome [ l l ] .  In the Hubbard approximation the solu- 
tions of the spin density wave type in long polyenes have been obtained in the 
explicit form by Ovchinnicov and Misurkin [12]. Overhauser, without using the 
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LCAO approximation, has discovered in the electron gas the low-lying Hartree- 
Fock state in the form of helical spin polarization waves [13]. 

However, it should be noted that all the solution types just mentioned are not 
in the framework of the restricted HF method, violating the double occupancy of 
orbitals. In the present paper we shall confine ourselves only to the restricted HF 
scheme in order not to deal with the complications of ŝ ’ problem. Therefore, it is 
worthwhile to mention that the example of butadiene [ 141 confirms the 
appearance of totally symmetric additional solutions simultaneously with the 
vanishing of one of the internal instability frequencies, as well as in the case of 
destroyed symmetry. Thus the appearance of HF peculiar solutions, defined 
above, at the instability threshold may be considered as their characteristic 
feature. Fukutome’s important work [15] is devoted to the detailed general 
investigation of the unrestricted HF solution behavior in the vicinity of the 
instability threshold. We shall consider a similar problem for the restricted HF 

method using quite a different technique. It should be mentioned that in Ref. 15 
the order of some small quantities has not been taken into account very strictly. 
Therefore, our final results differ somewhat from those of Ref. 15. We shall 
demonstrate that the emergence of a new solution is directly conditioned by the 
presence of the Coulomb-exchange term in the HF equations (2). 

For these reasons we consider here the solution branching conditions together 
with the restricted HF perturbation theory in the vicinity of the instability 
threshold. The branching equation will be formulated solely in terms of the G 
operator. According to the terminology proposed [ 161 only the internal instabili- 
ties may give rise to a new solution of a given method, whereas external 
instabilities may lead to solutions of some more general scheme. 

2. Perturbation Theory 

The convenience of matrix Y (  1) is that it allows one to separate in any matrix 
A two components: A+,  which commutes with Y, and A _ ,  which anticommutes 
with it. Suitable components of two arbitrary matrices are mutually orthogonal 

A = A + + A - ,  A , = i ( A i  YAY) ,  SpA+B.-=O (6) 

Because of this property it is not difficult to calculate the energy (5) variations: 

6E = Sp FSY = 0, S2E = $Sp s Y R ( S Y )  (7) 

where the matrix operator A is defined according to 

R ( D )  = - [N,  D]+ + 2G-(D), N = FY (8) 

h ( D )  =AD (9) 

Its eigenvalues A 

indicate whether the corresponding solution Y is stable (all A > O), or unstable 
(some A < 0) or belongs to the threshold (some A = 0). 
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From the properties of the integrals (3) it can be shown that A is Hermitian 
operator 

s p  A+A(B)  = sp A+(A)B (10) 

A+(A) = A(A+) (10’) 

which acts so that 

As a consequence of Eq. (10’) the classification of solutions D of Eq. (9) on 
Hermitian and skew-Hermitian ones is possible. Since according to Eq. (1) 
[SY, Y], = 0, it is natural to subject the solutions of Eq. (9) to the condition 

[D, Yl+=O (11) 

S p D F = O  (12) 

which leads to 

There are as many as a (m - n )  Hermitian solutions and the same number of 
skew-Hermitian ones which obey Eqs. (11) and (12). Both the solution sets are 
complete in suitable subspaces. Therefore an arbitrary matrix K- that fulfills Eq. 
( l l ) ,  e.g., a Hermitian one, may be expanded over D, 1171 

where [K-, Y], = 0. The different solutions D,, later supposed to be known, are 
orthonorma! because of Eqs. (9) and (10): 

Sp DfD, = a,, (14) 

For our purposes it is convenient to separate from the “minus” subspace the 

(13’) 

A&) = 0, i.e.,’ [F, Kill- + [G(KlJ, YI- = 0 (15) 

part belonging to the threshold and denoted by 11. From Eq. (13) 

K- = KI, + K ,  

where 

and K ,  belongs to the orthogonal to 11 subspace. 
Following Fukutome [15] let us consider the behavior of a system under a 

small perturbation of its adiabatic parameters (i.e., elements of H and (psltq)) in 
the vicinity of the threshold. This requires a perturbation theory in Eq. (2) that 
differs essentially from the HF perturbation theory in the absence of threshold [ 171 
as well as from the perturbation theory in the vicinity of a threshold, which 
neglects the electron interaction. The latter reduces in fact to the standard 
perturbation theory for a degenerate state. Actually, the matrix A ( D )  does not 
change after substitution of F by F-pI where p is an arbitrary constant. 
Therefore, if the levels of H are filled without gaps, the matrix - N  may be 
considered as a positive definite one (the constant p should be chosen between the 
highest occupied and the lowest unoccupied H level). Then the system is stable 
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and all A > 0. In the opposite case there always exist some A < 0 and the system is 
unstable. The threshold (A = 0) appears if the matrix N has zero eigenvalue, which 
is possible when the highest occupied H level is degenerate and only partly filled. 

If the parameters of the system are perturbed, the matrices Y and F in Eq. (2 )  
receive corrections T and 

U = A +  G(T)+AG(T) ,  A = A H +  AG(Y)  (16) 

[F,  T]-+[U, Y + T ] - = 0  (17) 

respectively, and Eq. (2 )  reduces to 

All the quantities that contain A are supposed to be of the first order. The main 
difference of the threshold perturbation theory from the usual approach is that T 
is not of the first but of lower order, which is determined by the equations 
themselves. As a result the order of U is less than unity. The distorted matrix 
Y + T must obey an equation of type ( l ) ,  which is identically fulfilled if T has the 
form [17, p. 2301 

T==T++T-,  T _ = ~ K ( ~ + K ~ ) - ] = ~ ( K - K ~ + .  . .), 

T+= -2YK2(1+K2)-’= - 2 Y K 2 + . . .  (18 )  
where K is an arbitrary “minus-type” matrix. Taking the commutator and 
anticommutator of Eq. (17) with Y, we can write it in projections into “+” and 
“ - ” subspaces: 

[N,T-]+-2U-+Y[U+,T-]-+Y[U-,T+]-=O (19)  

(20) [N,  T+]-+ Y [  U+, T+]- + Y [  U-, T-1- = 0 

In Eqs. (19) and (20) it has been taken into account that [ Y ,  T]+=2YT+, 
[ Y, TI- = 2 YT-. As it will be shown later only the first Eq. (19 )  is essential. 

As it is clear from Eq. ( 1 5 )  the order of KII is lower than that of K,. Retaining in 
T,  only lowest-order terms T- = 2(K11+KL), T+ = -2  YK;f because of Eq. ( 1 5 ) ,  
we put Eqs. (19) and (20) in the form 

~ G - ( K ; Y ) + ~ Y [ G , ( K , , ) ,  Kllj--A(KL) = A -  (21)  

[F, K i  1- - 2 Y[G-(KII),  Kill- = 0 (22)  

From Eq. (21)  it follows that K ,  is of first order and the order of KII is 1. Equation 
(22 )  is identically fulfilled because it is a commutator of Kll with threshold equation 
(15). After projection of Eq. (21)  on I and I( subspaces we have 

2Gll(K;f Y>  + 2( Y[G+(KII),  KIII-III =All (23) 

.h(KJ = ~ G , ( K ~ Y ) + ~ { Y [ G + ( K I I ) ,  K~ll-l,-A, (24) 
since A(K,) according to Eqs. (9) and (13) belongs to the second subspace. 

Equation (23), which determines the main contribution 2Kl1 to the density 
matrix correction, contains only the second powers of KII. Generally, it has a 
variety of solutions; therefore, it may be defined as a branching equation. For each 
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of its solutions Kll Eq. (24), which is linear in KL, determines suitable KL,  since in 
I subspace the operator A is nonsingular. The operator on the left-hand side of 
the branching equation (23) is built only of the Coulomb-exchange operator G of 
Eq. (3). Consequently this equation cannot have any analog in the theory of 
noninteracting particles. Thus solutions emerging from the threshold are those 
additional solutions of HF equations which are due to the interelectronic inter- 
action. 

3. Branching Equation 

In the case of nondegenerate threshold only one matrix Do in Eq. (9) belongs 
to zero eigenvalue of A. Therefore, KII = xDo and All = aDo, where a = Sp DoAil. 
As a result of linearity of the G operator, G I I ( K ~  Y )  = gx2Do where according to 
Eq. (13) 

g = Sp DOG(& Y )  (25) 

(26) 

In a similar way we obtain { Y[G+(K,l), K&}ll= 2x2gD0. Hence, Eq. (23) gives 
2 6gx = a, x = * ( ~ / 6 g ) ” ~  

Expression (26) means that for allowed values of perturbation parameter a (of 
the same sign as g )  two solutions Y f ( ~ / 6 g ) ” ~ D ~  emerge from the threshold Y, 
which corresponds to a = 0. The existence of the parameter a domain, in which 
suitable solution is absent, is a characteristic feature showing that on the instability 
threshold only new solutions appear. The cases of butadiene [14, 171 and the 
heteropolar two-electron system [3] illustrate such a situation. 

The energy increment in its extremum consists of the part 

A ‘ E = S p ( I +  Y ) ( A - i A G ( I + Y ) )  

independent of T and of a part determined by T 

AE =Sp  T(F+A+fG(T)+ tAG(T) )  (27) 
In the lowest order 

A E = ~ S P ( K I I + K , -  YKlf - Y[KII ,  KJ+)(F+A+$G(KII+K,-  YKlf))  

= S P  KllAll (28) 

where the sequence of relations (18), (12), (15), (8), (lo), and (23) has been used. 
For a nondegenerate threshold owing to Eqs. (25) and (26), we have 

AE = * $ a ( ~ / 6 g ) ~ ’ ~  (29) 

Thus, one of the obtained solutions is stable, the other is not. 

Here 
More than two solutions may emerge from the threshold if it is degenerate. 
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After substitution of this expansion into Eq. (23) and using the linear property of 
the operator G, we obtain for xu the homogeneous quadratic algebraic system 
with the right-hand part 

S 

2 gzuux,xu = a,, i = 1 , 2 , .  . . , s (31) 
u , u = l  

where 

g,,, = gkt + gE’ + g::), gkt = SP DIG(LDu, D,I+ Y ) ,  a, = Sp DPll 
( 3 2 )  

According to Eq. ( 3 2 )  the coefficients of Eq. (31) g,,, are invariant to any 
permutation of their subscripts i, u, ZI. 

The twofold degenerate case will be considered in greater detail. In this case 

(317 
2 2 glX:+2g2xlx2+g3x2 = a1, g2x:+2g3xlx2+g4x2 = a2 

where gl = g111, g2 = g112, g3 = g122, g4 = g222. 
The substitutions XI = y1 + y2, x 2  = a l y l  + a2y2, where al  and a2 are the roots 

of equationpcx2-qa+r=Oandp=g3-g2gl, q=glg4-g2g3, r=g2-glg3,  B =  
q2-4pr allows one to write the system (31’) in the form 

By:=p(g3+a2~4) (a1+ala ;? ) ,  By~=p(g3+alg4)(ql  + a 2 4  (33)  

In the case B > 0 the solution exists in the plane (al ,  a2)  only in one of four sectors 
which is bounded by the straight lines a + a la2  = 0 and a + a2a2 = 0 and diverges 
from the coordinate origin. For any point (a,, a2) from this sector there exist four 
solutions. In this case four branches converge in the threshold. If B < 0, then 
yz = y : ,  a2 = (YT, and there exist two real solutions for xl, x 2  in the whole plane 
(al, a2) .  Here the threshold corresponds to the intersection of solutions in the 
point (0,O) but not to the origin of them. It is clear that, if the degree of degeneracy 
increases, the situation becomes more complicated. 

It is worthwhile to note that the situation characteristic of a nondegenerate 
threshold is repeated in the more complicated case of Eq. (31‘): either the 
inhomogeneous system has a solution (if g # 0 and B # 0, respectively) or (if g = 0 
and B = 0) the corresponding homogeneous system does not impose any restric- 
tion on the unknowns (except of particular cases p = 0 or q = 0). This is an 
essential difference of the nonlinear system (31) from a linear one. Such a 
nonusual situation (g = 0, B = 0) appears in alternant hydrocarbons. For these 
molecules all matrices are naturally divided into four blocks, e.g., in Y only 
nondiagonal blocks are nonzero and matrices D may be of two types. The first 
type has the same structure as Y (“ - states” in Pariser’s notation), the second 
type of matrices are quasidiagonal (“+ states”) [17]. Since the operator G does 
not change the block structures of its argument matrix, all g,,, = 0 if the threshold 
belongs to “+ states” as it is seen from Eq. (32). 

In the special case (glU, = 0), which we consider now, the inclusion of the next 
terms of perturbation series (18) may clarify the situation. However, here the 

2 2 
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perturbation theory goes not “up” but “down.” If we include the terms of type 
K;,  it is evident that the order of the quantity 41 will not be 3 but $. Then Kl must 
contain two terms KL = L + M, where L is of order 3 and M is of the first order. 
Thus 

(34) T- = 2(Kll+L + M  - K i  ), T+ = - 2(Ki + [KII,  L]+) Y 

Substituting these expansions into Eqs. (19) and (20) and separating different 
orders we obtain the former Eq. (22) and the homogeneous analog of Eq. (21): 

2G-(Ki Y) + 2 Y[G+(Kll), 411- - A(L) = 0 (35) 

and also 
J(K11, 1 5 ) - A ( M ) = A -  

EE [KII, Ll+l- + 2[G+(41), K;f  1- + 2 Y[G-(K;f Y), KIII- 
-2Y[G-(L), Kl1]--2Y[G-(Kll), L]-=O (37) 

where 

J(KII, L )  = A(Ki 1 + ~{G-([KII, LI+ Y> + YCG+(L), K111- 

+ Y[G+(KII), LI- - YEG+(K;f Y), 411- + [G-WII), K i  I+) (38) 

As before Eq. (37), which has been obtained from Eq. (20), is fulfilled identically: 
because of the threshold Eq. (15) it is an anticommutator of Eq. (35) with Kll. 
After projection of Eqs. (35) and (36) on 11 and 1 subspaces, we have 

GII(K;f Y) + {Y[G+(KII), Klll-Ill = 0 (394 

(39b) 

(394 

A ( M ) = A L - J ~ ( K I I ,  L) ( 3 9 4  

2G,(K; Y) + ~{Y[G+(KII), Kill-lL 

2GII(CKII, LI+ Y) + 2{ Y[G+(L - K i  Y), K111- + Y[G+(KlI)> LI- 

+ CWKII), K i  l+lll =All 

The system (39) in principle solves completely the problem in given order. 
Equation (39a) is fulfilled in a consequence of a special type of the threshold, since 
Eq. (23) has no solution. Equation (39b) allows one to express L in terms of matrix 
KII. After substitution of this expression L into Eq. (39c) the latter transforms in a 
homogeneous system for Kll of the third power with the right-hand part and here 
plays the role of the branching equation. Finally, Eq. (39d) determines suitable M 
for every solution of KII. 

We shall apply Eqs. (39) only to nondegenerate threshold. Here &I= xDo, Eq. 
(25) gives g = 0 and guarantees to fulfill Eq. (39a) and (39c) leads to 

2 

x =5(a /h )”3 ,  h = ~ [ S P D , ( G ( D % ) - D , Z Y G ( D ~ Y ) I + ~ ~  (40) 
i 4Ai 

In Eq. (40) gioo should be defined according to Eq. (32), however, Di belongs not 
to the threshold but to eigenvalue Ai of A of Eq. (9). Formula (40) reveals an 
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essential difference of the present case with Eq. (26).  For all values of 
perturbation parameter a there exists now a single x which continues the 
solution on the threshold Y+xDo for perturbed system. New solutions 
do not appear. For example, in alternant hydrocarbons the threshold of 
Pariser’s + type cannot give the origin of a new solution ( h  # 0 in contrast 
to g) in agreement with the consideration of individual molecules [17]. 
The vanishing of A only indicated weaker (of order f )  influence of the 
perturbation on the matrix Y than in a standard perturbation theory, 
where the correction is of the first order. 

In the degenerate case the situation becomes highly complicated. The pertur- 
bation A may be partly or completely attributed to the equations of higher 
perturbation theory orders by means of further separation of 11 subspace. The 
analysis becomes more and more difficult as a result of an increase in equation 
power for KII, and we shall not continue it. It is clear that the branching equation 
(23) remains the main condition determining the appearance of new solutions. 

Note that Eq. (39c) as well as Eq. (23) loses its sense if the electron 
interaction is neglected (G = 0). In such a case the representation of T as a power 
series (18) is impossible. However, in this case Kll and H commute according to 
Eq. (15), and Eq. (1 1) shows that in the basis of H eigenvectors Kll have only one 
nonzero diagonal block corresponding to the highest filled degenerate level of H. 
Therefore, Eq. (17) for the perturbed system reduces to the commutation of this 
block with a suitable block of AH, and we return to the standard form of the 
perturbation theory which requires diagonalization of the mentioned block AH, as 
this was to be expected in the degenerate case. 

Finally, we shall discuss a much more peculiar situation which is characterized 
by A ,  =All = 0, i.e., A- = 0. The results (39) are also useful for its analysis. In this 
case A = A+ commutes with Y and the variation of adiabatic parameters does not 
prevent Y from satisfying the perturbed HF equations with operator F + A  (hence 
T = 0). This will be the case if Y is completely determined by Eq. (1)’ and 
symmetry conditions only. To answer whether or not some additional solutions 
appear on the instability threshold in such a rare situation, Eqs. (35)-(39) should 
be only slightly modified. Taking into account that their derivation has been based 
solely on the assumption that the orders of KII,  L, and M are related as 1 : 2 : 3, we 
see that in the homogeneous case (A-  = 0) they continue to be valid, but the order 
of Kll remains undetermined. If we suppose that it equals $, the single additional 
term from U+ of Eq. (19), namely, Y[A,  K11]-, contributes to J in Eq. (38). Thus, 
the considered peculiar situation (A-  = 0) is described by the same set (39) in 
which All and A ,  should be replaced by -{Y[A,Kll]-}ll and - {Y[A,KII] - } , ,  
respectively. It always has the trivial solution Kll= L = M = 0 corresponding to the 
initial invariant matrix Y but in principle may lead to new solutions with K i  - A .  
It should be emphasized that new solutions may appear in the peculiar case if Eq. 
(39a) allows nonzero Kll, i.e., only if this case is at the same time special. Any 
assumption about the order of Kll which is less than unity may not lead to the 
additional terms containing A in quadratic equations (23), (24), or (39a) and (39b) 
if A -  = 0. 
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For nondegenerate threshold in the peculiar special case Eq. (39c) gives 
8 x 3 h  = 2xa+, where a ,  = -$Sp DoYIA, Do]- and h is the same as in Eq. (40). 
Hence the existence of the invariant Y solution does not prevent two new 
solutions with 

x = f$(a+/h)”2 (41) 

to appear as in case of Eq. (26). This highly specific situation is met in the 
homopolar two-electron system and in the infinite polyene chain [18]. 
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