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Some comments on the general Hartree-Fock method 
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A study is made of the general Hartree-Fock (GHF) method, in which the basic spin-orbitals may be mixtures of functions 
having (Y andp spins. The existence of the solutions to the GHF equations has been proven by Lieb and Simon, and the nature of 
the various types of solutions has been group theoretically classified by Fukutome. Some numerical applications using Gaussian 
bases are carried out for some simple systems: the beryllium and carbon atoms and the BH molecule. Some GHF solutions of the 
general Fukutome-type “ torsional spin density waves” (TSDW) were found. 

The independent-particle model (IPM) in which 
each particle moves under the influence of the outer 
potential and the average potential of all the other 
particles in the system, has had its most successful 
formulation in the modem quantum theory of the 
electronic structure of atoms, molecules, and crystals 
in the form of the Hartree-Fock (HF) scheme [ 11. 
In this approach, the total wavefunction for a N-elec- 
tron system is approximated by a single Slater de- 
terminant, built up from N spin-orbitals !&k(x) with 
x= (r, i) having the general form 

wk(x)=wk(c 5)=uk(r)cw(r)+Vk(r)B(i) . (1) 

By starting from the Hamiltonian H for the many- 
electron system and applying the variation principle 
6(H) ~0, one could derive the equations for the op- 
timum choice of the spin-orbitals: 

which have become known as the Hartree-Fock 
(HF) equations. Slater had pointed out that - ex- 
cept for an irrelevant factor - the determinant D is 
invariant under a nonsingular linear transformation 
of the one-electron functions {I& vz, w, . . . . wN}, 
which hence span a subspace of the total one-elec- 
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tron Hilbert space, and that this set without loss of 
generality may be chosen orthonormal. The Lagran- 
gian multipliers Ajl, form a Hermitean matrix A= {J&k}, 
and it could then be shown that the eq. (2) could be 
brought by a unitary transformation to the simple 
form 

F(1)~k(Xl)=%~k(Xl) 9 (3) 

where the eigenvalues Ek were interpreted as one- 
electron energies. There are different types of solu- 
tions for various types of Lagrangian multipliers 
2=(&k} - some are for instance localized - and it 
should be observed that the so-called canonical 
Hartree-Fock functions defined by ( 3) are always 
linear combinations of the other solutions. The ef- 
fective Hamiltonian F( 1) is often referred to as the 
Fock operator. Fock could show that, if tbe one-elec- 
tron functions v={w,, v2, vJ, . . . . v~} are chosen to 
be orthonormal, so that ( wk] v,) = S,, then the prop- 
erties of the system are described by the density 
matrix 

+1,x,)= F v/k(xI)~/;:(x2) 9 (4) 

where p(xi, x2) is the kernel of an operator p= 
1 y) (~1 having the properties 

p’=p, pt=p, Trp=N. (5) 

The properties of the Hartree-Fock scheme were 
further investigated by Dirac [ 21, who showed that 
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the Fock operator may be represented in the simple 
form 

F(l)=H, Se’ 
5 

dx2 P(L 2)-P(l, 2)P,* 
r12 

=H, +Jl -K, , (6) 

ff, =pNm-- e2 c -qr,, , (7) 
8 

J,=e* dx2-, s P(2>2) 
r12 

P(1,2)P,2 
, 

ri2 
(8) 

where J, and K, are referred to as the Coulomb and 
exchange operators in the Hartree-Fock scheme, and 
P,, is a permutation or exchange operator defined 
through the relation Plz u ( 1) = u( 2). It is then easily 
shown that the operator F has the property 
(vlFu> = (Fvl u), i.e. that the Fock operator is a 
self-adjoint one-electron operator. The kernel p( 1, 
2) is often referred to as the Fock-Dirac density ma- 
trix, and it is evident that the operator p is the pro- 
jector on the subspace spanned by the None-electron 
functions. The one-electron energies ek have finally 
been given a simple physical interpretation by 
Koopmans [ 3 1. 

The canonical Hartree-Fock equations (3) are a 
system of rather complicated non-linear integro-dif- 
ferential equations combined with an eigenvalue 
problem, and - following an idea by Hartree - they 
were usually solved by an iterative process until there 
were no more changes in the significant figures, and 
the solutions become self-cans&tent. Even today lit- 
tle is known whether this self-consistent-field (SCF) 
procedure is mathematically convergent or not. 

In the quantum theory of atoms, molecules, and 
crystals, symmetry properties of the many-electron 
Hamiltonian H are of fundamental importance, and 
in the applications of the HF scheme it was from the 
very beginning assumed that these symmetry prop- 
erties would be reflected in eqs. ( 3 ) , particularly since 
it had been shown that such an assumption would be 
self-consistent [ 41. In view of later experiences, this 
approach is today known as the restricted Hartree- 
Fock (RHF) scheme. In the 1950s it was found that, 
if one lifted some of these symmetry restrictions and 

developed an unrestricted Hurtree-Fock (UHF) 
scheme, one may obtain lower energies than before 
[ 51, In 1963, the occurrence of a symmetry dilemma 
[ 61 in the Hartree-Fock method was pointed out. It 
implied that, even if a symmetry requirement is self- 
consistent, it is still a constraint which will increase 
the energy (H), and the associated optimum value 
of (H) is hence only a local minimum; on the other 
hand, if one looks for the absolute minimum of (H), 
the associated Slater determinant may well be a mix- 

ture of various symmetry types. It is evident that 
some of the optimum values of (H) are not even 
local mimima, and the study of the nature of the op- 
timum values by means of the second-derivaties or 
the Hessians has become one of the most intensely 
studied problems [ 71 in the current literature. 

Even in the UHF scheme, one assumed as a rule 
that the basic one-electron functions would be of pure 
(Y or /.I type, whereas it is evident that the most gen- 
eral form would be a mixture of type ( 1) corre- 
sponding to a general Hartree-Fock (GHF) scheme, 
and that such a scheme would be identical to the 
original HF scheme if one avoids any additional 
symmetry assumptions. In solid-state theory, 
Overhauser [ 8 ] #I found that such mixtures would 
have a lower energy than the plane waves, and one 
became interested in spin-density waves (SDW) and 
charge-density waves (CDW). 

The general Hartree-Fock equations (3) are rather 
complicated integro-differential equations of a non- 
linear nature with bifurcations etc., and it was hence 
of fundamental importance when Lieb and Simon 
[ lo] in 1977 could show the mathematical existence 
of solutions to these equations. There are still some 
mathematical problems associated with the Hartree- 
Fock scheme, particularly the connection between 
the starting point of the calculations and the final re- 
sult, which is usually associated with a “local min- 
imum” of the energy (H) . We note further that the 
concept of “self-consistency” is related to some form 
of “numerical convergence” in a specified number 
of significant figures in the calculations and not to 
the concept of mathematical convergence, which is a 
problem that has so far not been suffkiently inves- 
tigated. It should also be observed that the SCF pro- 

#’ For a survey of some applications 10 solid-state theory, see e.g. 
ref. [9]. 
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cedure is an iterative procedure which is subject to 
the laws discovered by Schriider [ 111 (see also ref. 
[ 121, particularly Appendix A) in 1870, which may 
be used to speed up the convergence or to change an 
obviously divergent process into a convergent one. 

A tremendous step forward was taken when 
Fukutome [ 131 starting in 1968 discovered that the 
Fock operator (6) has certain intrinsic symmetry 
properties, which make it possible to classify the so- 
lutions to the general Hartree-Fock equations into 
eight different classes by means of group theory, and 
that this classification scheme applies both to nu- 
clear physics and the electronic structure of matter. 
To describe the solutions he introduced the terms 
time-reversal-invariant closed shell solutions (TICS), 
charge-current waves (CCW ), axial spin waves 
( ASW ) , axial spin-current waves ( ASCW ) , axial spin 
density waves (ASDW), torsional spin waves 
(TSW), torsional spin-current waves (TSCW ), and 
torsional spin density waves (TSDW )_ In a study of 
the properties of the polyacetylenes by means of the 
Pariser-Parr-Pople (PPP) approximation, Fuku- 
tome [ 141 showed that this scheme could be applied 
susccessfully to molecular systems. 

The authors were interested in making some ex- 
ploratory ab initio calculations to some small atomic 
and molecular systems in order to get some experi- 
ence in solving the GHF equations. it is somewhat 
remarkable that the solution of the GHF equations 
follows the same lines as the solution of the standard 
RHF or UHF equations, except that one has now 
twice as many orbitals as before and that they may 
be of complex character. Substituting the relation 
y=uar+u/3 into the formula p= I y) (VI, one gets 

P=P ++aa+p+-ap+p-+pa!+p--~/l, (9) 

where one is now dealing with four space compo- 
nents of the density matrix. For the Coulomb op- 
erator J, defined by (8), one gets in particular 

J, =e2 I dr, P++(2,2)+P--(2,2) 
7 uoi 

r12 

whereas for the exchange operator K1 it is conve- 
nient to introduce the four components 

P”“( 1,2)& 
, 

r12 
(11) 

where p, v=+, -, and the permutation operator 
Pi2 works only on the orbital coordinates. In study- 
ing the Hartree-Fock equations (3) in the con- 
densed form F( 1) I= ~6, where e is the diagonal 
matrix formed by the eigenvalues tk, one can now 
easily separate the (Y and j3 components, and using 
( 10) and ( 11)) one obtains directly 

H, +J, -K:+ -fC- 
-Kr+ H, +J, -K-- 

u(l) 
= Y(1) I I E* (12) 

We note that these equations for the 2N orbital func- 
tions u and u are identical to the original Hartree- 
Fock equations and that no additional assumptions 
have been made. These equations are then easily 
generalized to the MO-LCAO approach or to any ap- 
proximate method using a finite basis. 

Since the general spin-orbitals ( GSOs) of type ( 1) 
contain twice as many orbital functions as the one- 
electron functions used in the UHF scheme, one 
could perhaps expect that, even for atomic and mo- 
lecular systems, the GHF method would give a lower 
variational energy than the UHF method [ 151. Ap- 
plications to some two-electron systems - the he- 
lium-like ions and the hydrogen molecule - by Lunell 
(see ref. [ 16 1, particularly p, 96 and ref. [ 17 1, par- 
ticularly p. 495) showed, however, that the GHF 
scheme converged to exactly the same energy as the 
UHF scheme. Physically this probably depends on 
the fact that a two-electron system has its lowest en- 
ergy when the two electrons have opposite spins. As 
an introduction, we repeated these calculations by 
means of somewhat different computational tools - 
with starting points also in the complex plane - with 
the same result, but we still have not been able to 
give a simple mathematical proof that, for two-elec- 
tron systems, the GHF and the UHF methods give 
the same result. This is hence still an open question. 

The simplest system for which a specific GHF so- 
lution has been obtained is the Be atom treated at 
the STO-6G level. Table 1 summarizes the energy 
values obtained for the ( l~)~( 2s)’ ground state of 
this atom by the RHF, UHF, and GHF, as well as 
those obtained for the triplet and singlet excited 
states, In Fukutome’s terminology, the GHF solu- 
tion was a torsional spin density wave (TSDW). 
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Table I 
Energies of the Be Atom calculated using a STO-6G basis set 

Wavefunction 

RHF 
UHF(S,=O) 
GHF(TSDW) 

triplet (UHF, S,= 1) 

Energy (au) 

- 14.503361 
- 14.505074 
- L4SO5190 

- 14.442082 

singlet ( ls)2(2p)z - 14.172547 

Table 2 
Energies of the carbon atom calculated using 4-31G and 6-3 1G 
basis sets 

Wavefunction 

RHF 
UHF (&=O) 
GHF 
triplet (UHF, S,= 1) 

Energies (au) 

4-31G 

- 31.544557 
- 37.60405 
-37.61263 
- 37.63505 

6-31G 

-37.588204 
-37.647030 
-37.655524 
-37.677837 

The next system under consideration was the car- 
bon atom. Table 2 shows the energies obtained for 
the carbon atom by using 4-3 1 G and 6-3 1G basis sets. 
The overall behaviour of the solutions is similar to 
that in the beryllium case. For carbon, however, the 
true ground state is a triplet in accordance with 
Hund’s rule. The GHF energy obtained is signifi- 
cantly lower than the singlet RHF one, but it is higher 
than the triplet UHF value. This means that the GHF 
wavefunction obtained represents a mixture of sin- 
glet and triplet states, which leads to a stationary 
value of the energy but not to its absolute minimum. 
In Fukutome’s terminology, the GHF solution was 
again a torsional spin density wave (TSDW) . In such 
a case, it is probably not meaningful to discuss to 
what extent electron correlation is accounted for by 
the GHF method. It does not seem to be excluded 
that another GHF solution with an energy lower than 
the triplet UHF may exist, but we made no special 
search for such a solution, since we wanted to go on 
to the molecular case. 

Several calculations for the BH molecule at the 4- 
31G level were performed. This molecule is a very 
interesting species: it is a closed-shell o-system which 
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is, at the same time, paramagnetic. In the RHF or 
conventional (spin-unrestricted) UHF approaches, 
all the xc-orbitals are empty; its characteristic mag- 
netic behaviour may then tentatively be connected 
with the low excitation energies needed to transfer 
an electron to the low-lying excited n-levels. The re- 
sults are illustrated in figs. la and lb. 

For the BH molecule six different solutions of the 
GHF equations were obtained: one RHF solution, 
three different UHF solutions, and two different 
genuine GHF solutions of TSDW type. A part of 
these solutions exists only at some values of the in- 
termolecular distance; there is, however, a narrow 
interval for which all six solutions were obtained si- 
multaneously; see fig. lc. 

The multiplicity of the Hartree-Fock solutions ob- 
tained for the BH molecule motivated us to perform 
a special study to clarify which ones of these solu- 
tions correspond to true (local) minima, and which 
ones correspond to saddle points on the energy hy- 
persurface, and to determine the bifurcation points 
in which new types of solutions appear as exactly as 
possible. For that reason we have investigated the 
Hessians for some of the RI-IF, UHF and GHF 
wavefunctions mentioned above. As is well-known 
[ 7 1, the Hessian is defined as a matrix H = {ffij) with 
the elements 

Hc = a2E/&i &j ) (13) 

where E is the total energy and the quantities Cl are 
the independent parameters defining the wavefunc- 
tion Sunder consideration. If all the eigenvalues of 

H are positive, the stationary point considered is a 
true minimum; if one or more of the eigenvalues are 
negative, it is a saddle point. A zero eigenvalue in- 
dicates that there exists a parameter, of which the 
energy is independent at least up to the second order. 
We note that, so far, one has no criterion for the ex- 
istence of an absolute minimum. All the results of the 
studies of the Hessians agree completely with the bi- 
furcation points of the energy curves for the various 
solutions, and they give further valuable additional 
information about the nature of the solutions. Some 
numerical results for the BH molecule are given in 
tables 3-5. 

Table 3 
Four lowest eigenvalues of the Hessian for the RHF solution of 
the B-H molecule ‘) 

R (A) Eigenvalues of Hessian 

1.25 -0.05184 0.06456 0.14580 0.21050 
1.3 -0.04970 0.06639 0.14541 0.18786 
1.4 -0.04529 0.06992 0.14406 0.14339 
1.5 -0.04079 0.07303 0.14179 0.10150 
1.6 -0.03632 0.07548 0.13848 0.06319 
1.65 -0.03415 0.07639 0.13642 0.04547 
1.7 -0.03202 0.07705 0.13412 0.02871 
1.75 -0.02997 0.07747 0.13158 0.01285 
1.78 -0.02877 0.07760 0.12995 0.00375 
1.79 -0.02838 0.07762 0.12939 0.00078 
1.8 -0.02799 0.07763 0.12882 -0.00215 
1.85 -0.02610 0.07752 0.12586 -0.01634 
1.95 -0.02259 0.07652 0.11946 -0.04251 

a) One eigenvalue becomes negative at a “branching” or “criti- 
cal” point. 

Table 4 
Some lowest eigenvalues of the Hessian for the usual UHF (DODS) solution of the B-H molecule ‘) 

R (A) Eigenvalues of Hessian 

1.25 -0.00705 0.02991 0.08076 0.08688 0.23784 0.24419 
1.4 -0.00620 0.03968 0.08332 0.07749 0.16368 0.16983 
1.6 -0.00504 0.05191 0.08519 0.06394 0.07644 0.07786 
1.75 -0.00420 0.05903 0.0849 1 0.05384 0.02232 0.02399 
1.8 -0.00394 0.06083 0.0844 I 0.0506 1 0.0063 0.00787 
1.82 -0.00384 0.06147 0.08415 0.04934 0.00015 0.00167 
1.83 -0.00379 0.06 I76 0.08400 0.0487 1 - 0.00287 -0.00137 
1.85 -0.00369 0.06231 0.08369 0.04747 -0.00881 -0.00736 
1.95 -0.00322 0.06424 0.08162 0.04151 -0.03653 -0.03532 

n) This solution is denoted UHF/2 on fig. 1, The table contains the four eigenvalues of the Hessian which are the lowest ones at the 
smaller internuclear distances and two which become negative around R = 1.82 A (“branching” or “critical” point). 
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Table 5 
Six lowest eigenvalues of the Hessian for the GHF solution of the B-H molecule ‘) 

R (A) Eigenvalues of Hessian 

1.25 0.00000 0.00757 0.05 141 0.08557 0.13345 0.24275 
1.4 0.00000 0.00666 0.05847 0.07646 0.13220 0.16852 
1.6 0.00000 0.00542 0.06660 0.06325 0.13102 0.07808 
1.75 0.00000 0.00452 0.07076 0.05334 0.12534 0.02373 
1.8 0.00000 0.00424 0.07158 0.05016 0.12304 0.00761 
1.82 0.00000 0.00414 0.07183 0.04892 0.12206 0.00142 
1.824 0.00000 0.00411 0.07187 0.04867 0.12186 0.00020 
1.83 0.00000 0.00408 0.07 194 0.04830 0.12156 - 0.00162 
1.85 0.00000 0.00398 0.07211 0.04708 0.12054 - 0.00760 
1.95 0.00000 0.00348 0.07231 0.04124 0.11500 - 0.03553 

‘) This solution is denoted GHF/ 1 on fig. 1. One eigenvalue becomes negative at a “branching” or “critical”  point. 

Our study shows as a side results that, in the so- 
lution of the SCF problem at any level, it is essential 
to understand in much greater detail the problem of 
the connection between the starting point of the SCF 
procedure and thefinal SCF solution than we do to- 
day. In our opinion, it would be worthwhile to de- 
vote more research to this problem - both mathe- 
matically and numerically. 

The results reported in this Letter are of a prelim- 
inary nature. A much more detailed description of 
the work connected with this Letter is given in ref. 
[ 181. It contains a more extensive review of the his- 
tory of the Hartree-Fock scheme including refer- 
ences, as well as an outline of the numerical work, 
and an illustration of the results in the form of nu- 
merous graphs. It is also hoped that the experiences 
we have gained in this work will be of value in study- 
ing the projected Hartree-Fock (PHF) method based 
on general spin-orbitals of type ( 1). 
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