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To get an exact idea of the probability of presence
of the second electron, one must think of this graph
as of the meridian section of a repartition around the
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TaBLe I. Mean values in atomic units without and with
correlation in a 27-term approximation.

. without with
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multiply by the weight function 73 sin 6,.. The lines norm 0.40312 0.53551
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of equal probabilities are represented in Fig. 3. With- (r-1) 1.7040 1 6883
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conversion factor from relative to absolute values is
a product

10" N-'87%a2 exp (—2ea) = 0.67 ,

where 107! stands for the scale of the graph, N7 for

TaBrLE II. Maximum and minimum of the correlation factor
for different positions of the first electron (a is in atomic units

the normalization, 8z for the angular coordinates of of length).
the Ntz triangle m space, and a® exp (—2ea) for the 0 0.25 0 50 0.75
density of probability of the first electron.
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Table 1.

Discussion on The Hartree-Fock Approximation

P. Lykos anp G. W. Prarr, Chairmen

Lowbin: I would like to comment on some peculiarities with respect to the symmetry proper-
ties. In the original atomic Hartree calculations [D. R. Hartree, Proc. Cambridge Phil. Soc. 24,
89 (1928); Repts. Prog. Phys. 11, 113 (1948); Calculation of Atomic Structures (John Wiley
& Sons, Inc., New York, 1957)] it was assumed that the resulting orbitals would be symmetry-
adapted and, in the calculations, the corresponding self consistent field potentials would always
be replaced by their spherically symmetric part. The scheme was essentially refined when Slater
[J. C. Slater, Phys. Rev. 35, 210 (1930)] and Fock [V. Fock, Z. Physik 61, 126 (1930)] suggested
that the total wave function ¥ should be approximated by a single determinant built up from
spin-orbitals, and the application of the variation principle lead then to the famous Hartree-Fock
equations [V. Fock, Z. Physik 61, 126 (1930)]. It seems to have been generally assumed that, if
the total Hamiltonian H for the many-electron system had a certain symmetry property then the
Hartree—Fock functions will also automatically be symmetry-adapted.

Delbriick [M. Delbriick, Proc. Roy. Soc. (London) A129, 686 (1930)] proved that, if the total
system is spherically symmetric and one requires the total determinant to have 'S character, then
the associated orbitals are eigenfunctions of the orbital angular momentum and of the spin. In
the case of more general types of symmetry occurring in molecular and solid-state systems, it has
later been proven [C. C. J. Roothaan, Rev. Mod. Phys. 32, 179 (1960); P. O. Lowdin, J. Appl.
Phys. Suppl. 33, 251 (1962)] that the assumption that the Hartree-Fock functions are symmetry-
adapted, i.e., form a basis for the irreducible transformation, is always self-consistent and corre-
sponds to a specific minimum of the total energy. The question I would like to raise is whether
this is really an absolute minimum or not?

The question whether the extreme values of (H) associated with the variation principle are
maxima, minima, or terrace points has been studied in some detail [D. J. Thouless, Nuclear Phys.
21, 225 (1960); W. H. Adams, Phys. Rev. 127, 1650 (1962)]. Adams uses the term “absolute
minimum”’ to denote a point where the second variation of the total energy is positive definite,
whereas we have here used the term to denote the lowest one of all possible minima. So far, how-
ever, there has not been found any simple criterion which guarantees the occurrence of an absolute
minimum lower than any other possible minima.
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Confusion may arise from the fact that the exact eigenfunction ¥ and the approximate eigen-
function in the form of a Slater determinant may have rather different properties. For instance,
if A is a normal constant of motion satisying the relation HA = AH, then every eigenfunction
¥ to H is automatically an eigenfunction to A or (in the case of a degenerate energy level) may be
chosen in that way, so that

HY = EV | AT = AV . (1)

For the exact eigenfunction, the second equation is hence essentially a consequence of the first.
Tor the approximate eigenfunction D, one replaces the first eigenvalue relation by the variation
principle D|H|D) = 0. So far, no one has proven that, out of this principle, there follows the
second equation AD = AD, and this relation should then be considered as a constraint which
necessarily raises the energy above the absolute minimum.

In the conventional treatment of the Hartree-Fock scheme, one apparently starts out from
two basic equations:

¥D|H|D) =0 ; AD = \D ; 2)

and the corresponding energy minimum could then be said to be A- adapted. It is easily shown

that, if A is a fundamental symmetric function of the one-electron operators Ay, Az, As, - - - Ay, then

the spin-orbitals ¥(x,) corresponding to the energy minimum are eigenfunctions to A, or can be

chosen in that way. This is a special case of the general theorem mentioned above. [C. C. J.

Roothaan, Rev. Mod. Phys. 32, 179 (1960); P. O. Lowdin, J. Appl. Phys. Suppl. 33, 251 (1962)].
On the other hand, if one drops the symmetry constraint and considers only the relation

&D|H|D) = 0, (3)

one obtains a nonrestricted Hartree—Fock scheme, and the solution D corresponding to the
absolute mintmum has now usually lost its eigenvalue property with respect to A, i.e., the corre-
sponding Hartree-Fock functions are no longer symmetry-adapted. For open-shell systems, this
type of behavior has been observed by several authors [J. C. Slater, Phys. Rev. 81, 385 (1951);
82, 538 (1951); Rev. Mod. Phys. 25, 199 (1953); R. K. Nesbet, Proc. Roy. Soc. (London) A230,
312 (1955); G. W. Pratt, Jr., Phys. Rev. 102, 1303 (1956); J. H. Wood and G. W. Pratt, Jr., Phys.
Rev. 107, 995 (1957); R. K. Nesbet and R. E. Watson, Ann. Phys. 9, 260 (1960); L. M. Sachs,
Phys. Rev. 117, 1504 (1960); R. E. Watson and A. J. Freeman, Phys. Rev. 120, 1125 (1960);
Phys. Rev. 120, 1134 (1960)], and the purpose of my remark is simply to emphasize that the same
may happen even in closed-shell systems.

Slater’s [J. C. Slater, Phys. Rev. 35, 509 (1930)] fundamental study of the quantum-mechanical
treatment of the hydrogen molecule and the VB- and MO-method shows that, for sufficiently
separated atoms a and b, the single determinant (ae,b8) has a lower energy that the corresponding
symmetry-adapted Hartree—Fock solution of type (s,)? depending on the fact that the latter has a
wrong asymptotic behavior for R — . The detailed behavior for the equilibrium distance R, has
not yet been investigated.

The benzene molecule has the symmetry Ds,, but the calculations reported using the alternant
molecular orbital approach [R. Pauncz, J. de Heer, and P. O. Lowdin, J. Chem. Phys. 36, 2247,
2257 (1962)] indicate that there are single determinants associated with the symmetry Dy, which
have a considerably lower energy than the corresponding determinants of symmetry Ds,; the dis-
cussion refers here to the situation at the equilibrium distance.

The most striking examples are perhaps found in solid-state theory. In considering a system
of free electrons in a uniform positive background in a box, one had always believed that the plane
waves would correspond to the solution of the Hartree-Fock equations leading to the lowest
energy. However, by studying a one-dimensional Fermi gas with §-function repulsions, Overhauser
[A. W. Overhauser, Phys. Rev. Letters 4, 415, 462 (1960); W. Kohn and S. J. Nettel, Phys. Rev.
Letters 5, 8 (1960); K. Sawada and N. Fukuda, Prog. Theoret. Phys. (Kyoto) 25, 653 (1961);
E. M. Henley and Th. W. Ruijgrok, Ann. Phys. 12, 409 (1961); E. M. Henley and L. Wilets, Ann.
Phys. 14, 120 (1961); T. Arai, Technical Report, 1961, Argonne National Laboratories (unpub-
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lished)] could show that there existed self-consistent solutions in the form of “giant spin waves”
having a lower energy than the plane-wave state. This result looks, of course, paradoxical if one
believes that the second relation in (2) follows from the first but becomes much more natural when
realizing that one actually knows very little about the symmetry properties of the self-consistent
field functions for the absolute minimum of the total energy.

In my opinion, the Hartree—Fock scheme based on a single Slater determinant D s in a dilemma
with respect to the symmetry properties and the normal constants of motion A. The assumption
that D should be symmetry-adapted or an eigenfunction to A leads to an energy (H) high above
the absolute minimum, and the energy difference amounts to at least 1eV per electron pair and
more. In the sense of Eckart’s criterion [C. Eckart, Phys. Rev. 36, 877 (1930); B. A. Lengyel,
J. Math. Analysis Appl. 5, 451 (1962)], the absolute minimum of (D|H|D) leads certainly to a
better wave function D, but the symmetry properties are now lost and the determinant is a
“mixture’”” of components of various symmetry types. An elementary theorem in linear algebra
tells us that these components are uniquely defined by D, that the ‘“‘component analysis” is con-
veniently carried out in practice by means of a set of projection operators O, and that at least one
of the components OD has a lower energy expectation value than the mixture D itself [P. O.
Lowdin, Rev. Mod. Phys. 34, 520 (1962)].

The antisymmetry requirement associated with the Pauli principle was introduced into the
self-consistent field scheme by considering the “antisymmetric component’” of the Hartree-
product 1 ()¢ (22) - - -¥w(2v) uniquely selected by the projection operator

Ouas = (N D, (—1)°P
which changed the wave function into a Slater determinant. One way to solve the general ‘“‘sym-
metry dilemma’ seems to be to continue this line of thinking and to consider the various sym-
metry components defined by D as the actual wave functions. These wave functions, ¥ = OD,
are still uniquely related to a simple Hartree product in the “independent particle model” but
have the correct symmetry properties or are eigenfunctions to A.

Since the energy was optimized with respect to D, one may now obtain a further lowering of
the absolute minimum by considering a specific component ¥ = OD and by carrying out an addi-
tional variation. This leads to the so-called “‘extended Hartree—Fock scheme” [P. O. Lowdin,
Phys. Rev. 97, 1509 (1955); Ann. Acad. Reg. Sci. Upsalien. 2, 127 (1958); Advances in Chemical
Physics, edited by I. Prigogine, [Interscience Publishers, Inc., New York (1959)], Vol. 2, p. 270;
J. Appl. Phys. Suppl. 33, 251 (1962)], and I hope to be able to comment further on this approach
in connection with Professor de Heer’s talk.

Perhaps the picture I have given of the “‘symmetry dilemma’ in the Hartree-Fock scheme is
too dark, but I definitely feel that the properties of the functions associated with the absolute
energy minimum deserve further studies.

Nusser: Several authors have indicated a belief that there might be an unrestricted Hartree—
Fock (UHF) single Slater determinant of lower energy than the usual Hartree—Fock function in
closed shell situations, such as the ground states of Be, Ne and N.. In order to discuss this issue,
we should know the theory of the symmetry properties of Hartree-Fock functions.

The UHF equations are necessary and sufficient condition for the energy of a single Slater
determinant to be stationary.

Since the UHF equations in canonical form are just linear eigenvalue equations, the canonical
UHF orbitals are symmetry-adapted with respect to the symmetry group of the Hartree-Fock
operator 3. This operator is a Hermitian quadratic form in the occupied orbitals. The essential
theorem follows from these statements [R. K. Nesbet, Proc. Roy. Soc. (London) A230, 312
(1955) ; Phys. Rev. 109, 1017 (1958) ; Rev. Mod. Phys. 33, 28 (1961)]; occupied UHF orbitals must
span a representation of the group of 3C, i.e., canonical UHF orbitals always fill closed shells with
respect to this group. Thus, the group is determined by a self-consistency condition, and in general
it will be only a subgroup of the group of the many-particle Hamiltonian. Any group which has
only one-dimensional irreducible representations is always a possible group of 3¢. In most cases
for atoms with open shell configurations, the UHF functions will distort to spheroidal symmetry
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(axial group with inversion). Thus, s, and do mix to become o, in the 2P ground state of atomic
boron.

This is a very real physical effect (core polarization) and has an important influence on hyper-
fine structure.

When the usual configuration has no open shells, the self-consistent symmetry conditions are
satisfied by a closed shell wave function. This does not rule out the possible existence of another
stationary function of lower energy for which 3¢, has lower symmetry. There is no evidence that
such UHF functions exist for closed-shell atomic ground states or for covalently bonded molecules
near equilibrium, although such functions occur at large internuclear distances [R. K. Nesbet,
Phys. Rev. 122, 1497 (1961)]. Certain ‘‘excited’”” configurations must have rather low energy for
this to occur—even for the Be atom the relevant numbers make this appear to be very unlikely.

Frouse: A Fortran program has been written to compute atomic Hartree—Fock wave functions
numerically. The techniques, including the energy adjustment, were applied to the hydrogen
equation with the resulting mean radius of a 1s wave function accurate to 5 digits, a 6s to 4 digits.
On an IBM 7090, the computing time for an atom such as sodium was about 2 minutes.

This program was used to compute wave functions for the configuration (1s)*(2s)*(2p)®(nl)
with a series of nl values, of Fe*'®, Al*? Mg" and Na. Transition integrals were computed from the
results and compared with those based on the screened hydrogenic approximation. It was found
that for transitions with An = 0 the screened approximation was remarkably accurate, but
the accuracy decreased as Z decreased. For transitions with An = 1, only in some instances was
the screened approximation fairly accurate. Another factor entered besides the value of Z, namely
the amount of cancellation in the evaluation of the integral. Those transitions for which a de-
crease in the principal quantum number is accompanied by an increase in screening have less
cancellation and were the more accurate. For An = 2, the screened approximation gave poor
results.

SinanoGLu: The Hartree-Fock approximation gives good electron densities because it deals
mainly with the long range parts of the Coulomb repulsions. The remaining parts are the “fluctua-
tion potentials” M.; in (H — H,) which are responsible for electron correlation. In contrast with
an electron gas, M ;s in most atoms and molecules are of short range in going from orbital to
orbital. Thus, they do not affect the density much, but cause pairwise additive correlation errors
in energy.

The detailed form of the exact ¥ of a many electron system

¥ = ¢o(H.F.) + {fi} + {2} + ---

shows the different correlation effects explicitly. The one electron terms arise from correlation
trying to modify the H. F. orbitals. They can be calculated in closed form. Some typical cases
show them to be negligible [Oktay Sinanoglu and Debbie Fu-tai Tuan, J. Chem. Phys. 38, 1740
(1963)]. This is why H. F. provides a norm for orbital pictures with simple correlation effects
tacked on for only some properties like energy.

Lowpin: In your scheme, the wave function has to be renormalized, and the Hartree-Fock
function gets a coefficient. I wonder whether, in this connection, it would be better to use the
definition of correlation energy given by Green?

SinaNoGLU: For nonclosed shell systems, there seem to be about nine variants of the Hartree—
Fock method. The definition of ‘“‘correlation energy’’ will depend on which H. F. method is used.

Both the calculation of the H. F. wave function itself and the theory of correlations to be
added on will be simplified if: (a) the same orbitals are used for terms arising from the same con-
figuration (e.g., for ®P, D, 1S of 1s?2s?2p*), which preserves the picture of degeneracy in a central
field; (b) if V;, the H. F. potential is the same acting on any orbital of the nonclosed shell system;
and (¢) no off-diagonal H. I. energy parameters \;; exist.

These requirements are satisfied if the average energy of the configuration [J. C. Slater, Quantum
Theory of Atomic Structure (McGraw-Hill Book Company, Inc., New York, 1960), Vol. IIJ is
varied and then in the resulting one-electron equations each V; is modified to become the same
[such a method is discussed by A. J. Freeman, Rev. Mod. Phys. 32, 273 (1960)] (“‘symmetry and
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equivalence restrictions” of Nesbet). The fractions of orbital potentials added to or subtracted
from Vs later appear as small perturbations in the correlation part.

GiLpa M. Harris: Some of the perturbation expansion and diagram classification techniques
now being used in the many-body problem, perhaps can be applied to the isolated many-electron
atom. While these methods constitute a potentially useful approach, at the present time, a formal
description of a partially ionized, multicomponent many-body system does not lead to a clear
description of the nature of the few-particle bound states of atoms and molecules in such a
“plasma.”’ Therefore, looking at the problem from the other direction, I would like to suggest that
it might also be worthwhile to make use of the progress already made in studying single atoms and
molecules in helping to describe the many-body plasma.

One way that this knowledge can be used is to start with a description of the plasma in terms
of structured components, i.e., atoms, molecules and ions rather than the more fundamental one
which considers only bare nuclei and plane-wave electrons as the initial constituents. With this
model, the total free energy of the system can be written in terms of the free energy of the com-
ponents plus their interactions.

One problem that arises is how to treat the bound states of the atomic and molecular com-
ponents included in the total system. To zero order, the energy eigenvalues of the isolated system
could be used in the partition functions for the internal degrees of freedom. Even in this approxi-
mation there is a question of how to cut off the sum of these states since, for example, the boundary
conditions on the wave functions and the energy required to ionize are different for an atom in a
plasma than for an isolated atom in infinite volume. For a more accurate treatment, the perturba-
tion of the isolated atom bound states by the surroundings should be considered. This can be done
on many levels of sophistication. For example a plausible perturbing potential can be postulated
and used in a Schrodinger equation for the isolated system to obtain new energy levels more
appropriate to the system in a plasma. These energy values can then be used in the partition
function for that species in the total free-energy expression for the plasma. The author has done
this, for example, for two approximate perturbations: considering the effect of the plasma to be
one of confinement only and also considering the effect to be a shielding of the pure Coulomb
interactions within the system. Other suggestions and specific calculations have been made, and
future ones would be most welcome.

Another problem is how to treat free-free interactions among components, i.e., repulsions and
those attractive interactions that do not lead to the formation of few-particle bound states. For
neutral-neutral and neutral-charge interactions, weak and short range potentials of interaction
can be postulated and used in a series of correction terms to the free energy of an ideal gas in the
manner of the virial coefficients. For the interactions among various charged particles, attention
must be paid particularly to that between electrons and positive ions and nuclei. We wish to
exclude from considerations those interactions which lead to bound states since these are already
included to some approximation in the partition functions for the bound states of the individual
species. Therefore some distinction must be made between free and bound electrons, allowing
only the former to interact with the free ions of the system as independent components. An energy
criterion such as a distinction between positive and negative energy electrons on an energy scale
consistent with the bound-state description can be made. This is also a currently incompletely
resolved problem.

Using some reasonable basis of the definition of a free electron, the problem remains as to how
to include charge—charge interactions in the total free energy. A first approximation to this is the
classical Debye polarization term which has been put on very sound footing as a correction to an
ideal plasma by formal perturbation expansion techniques. The completely classical Debye term
can give continuous and ever increasing negative potential energies. Therefore it is important,
when using it with a system that has bona-fide quantum mechanically allowed negative energy
states (bound states), to use it in connection with a definition of free electrons that excludes the
creation of spurious negative energy states. A more elegant way to accomplish this would be to
use the quantum mechanical Debye term which results from the treatment of plasmas starting
with bare nuclei and plane wave electrons. In this case, the dynamic shielding resulting from the
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wave nature of the electrons prevents the classically continuous negative energy distribution.
Beyond this collective Coulomb interaction, other terms corresponding to local nonbonding
Coulomb interactions could be approximated by some of the results and methods of scattering
problems.

Thus, it seems a fair conclusion to state that, within the broad problem of considering the
total energy and other properties of a many-body plasma, there are many subproblems that fall
within the realm of few-particle atomic physics.



