
PHYSICAL REVIEW VOLUM E 97, NUM BER 6 MARCH 15, 1955

Quantum Theory of Many-Particle Systems. III. Extension of the Hartree-Fock Scheme
to Include Degenerate Systems and Correlation Effects*

PER-OI.ov I owDIN
Departmertt of Physics, Massachusetts Irtstitute of Techssology, Camhridge, Massachusetts, arsd

Imstitute of Mecharsics artd Mathematical Physics, Uppsula University, Uppsala, Sweders

(Received July 8, 1954)

In treating a system of S antisymmetric particles, it is shown that, if the total Hamiltonian 3!,„is
degenerate, the eigenstates of the operator used for classifying the corresponding degenerate states may
be selected by means of a "projection operator" 8. If the total wave function is approximated by such a
projection of a single determinant, the description of the system may be reduced to the ordinary Hartree-
Fock scheme treating this determinant, if the original Hamiltonian is replaced by a complete Hamiltonian
Q,&=8 No~6 containing also many-particle interactions. This approach corresponds to a "6xed" con-
Ggurational interaction, but the scheme has preserved the physical simplicity and visuality of the Hartree-
Fock approximation. The idea of "doubly 61led" orbitals is abandoned, and the orbitals associated with
different spins will automatically try to arrange themselves in such a way that particles having antiparallel
spins will tend to avoid each other due to their mutual repulsion.

HK Hartree-Fock scheme for treating a system of
S antisymmetric particles has a physical sim-

plicity and visuality due to the fact that a single deter-
minant is the simplest wave function based on the
"independent-particle" model with the correct sym-
metry. However, it is well known that this scheme
cannot properly treat states and systems having spin
or orbital degeneracies and that further "correlation
e6ects" associated with particles having diferent spins
are not taken into account in constructing the single-
determinant wave function. The purpose of this paper
is to show that there exists a form of "fixed" configura-
tional interaction, based on the use of "projection oper-
ators, "which may be considered as an extension of the
ordinary Hartree-Fock scheme to include degenerate
systems and correlation eGects, since it preserves the
physical simplicity and visuality of the original scheme.
This extended scheme is an intermediate stage between
the ordinary Hartree-Fock approximation and the exact
method of complete con6gurational interaction, treated
in Parts II and I, respectively. '

1. TREATMENT OF SPIN AND ORBITAL
DEGENERACIES BY PROJECTION

OPERATORS

I et us consider a system of S antisymmetric particles
having a Hamiltonian operator in configurational space
of the form

X„.We let further + be an arbitrary wave function
associated with the space of degeneracy, having an
expansion of the form

(2)

where %J, is an eigenfunction to A belonging to the
eigenvalue Xs. We note that, since the factor (A —X„)
annihilates the term for k=p in this expansion, the
operator

(3)

takes out only the term for k=l, i.e., it gives the
"orthogonal projection" of 4 on the eigenstate of A

having the eigenvalue A, ~.

8 i'II' =A g )) (4)

we can then easily derive the relation

where we have used the terminology of Part I, Sec. 5.
The operator t9& is therefore also a Proj ectiort oPeratorP

which, in matrix representation, fulfills the Cayley-
Hamilton equation (A —X&)8& =—0. Since the factors in
(3) may be written. in the form

(A —Xs)/(Xt —Xs) =1+(A —Xt)/(Xt —Xe), (5)

1 1x.o ——x(p)+p x;+—p' x;,+—p' x,ts+. , (1)
2 t si 3! &ZJc

8) = 8i)

characteristic for the projection operators.

(6)

analogous to (I, 2). If its eigenstates are degertertste, we

will assume that they may be classified by an operator A.

having a finite number of discrete eigenvalues X~,

*This work was supported in part by the U. S. Once of Naval
Research under its contract with Massachusetts Institute of
Technology.' P. O. Lowdin, preceding paper LPhys. Rev. 97, 14'74 and 1490
(1955)g. These papers are in the following referred to as Parts I
@nd II, respectively.

Spin Degeneracies

As an example, we will now consider the projection
operators associated with the spin degeneracy of S
antisymmetric particles having spin one half, as elec-
trons, or nucleons. Measuring the spin in units of

s J.v. Neumann, Math Gruadtagee der Qttart.teamechum'h (Dover
Publications, New York, 1943), p. 4j.,
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k, we know that 5' has the eigenvalues l(l+1), where
/=E/2, (cV/2) —1, (lV/2) —2 0 or —,

' depending on
whether lV is even or odd. According to (3), the operator
for selecting a state of multiplicity (2l+1) is then

(2)+') 8=g {S'—k(k+1)}/{l(l+1)—k(k+1)}, (7)

where the product is to be taken over all kW/ from 0
or -', to X/2. For 5' we may here use one of the ex-
pressions

52=+ S; S,

=S+5 +5,2—S,
= —~Ã(cV —4)+-,'Q (1+," .)

i&j'

where TI, is the sum of all diferent determinants, ob-
tained by k interchanges of the spin functions between
the two originally given groups (a) and (f)) of orbitals;
Tp is identical with the given determinant (10).In (12),
we have used Pratt's symbolic way of "multiplying"
determinants: T~ is the "product" of two factors, each

containing
I k

I terms, and Tp consists therefore of a

(221 '
sum of I k, I determinants

Ek)
In order to evaluate 52', we will use the form (9),

where we observe that P,&; I';; commutes with the
antisymmetrization operator used in forming the deter-
minant (10) from a simple product. Counting the pos-
sible spin interchanges, we find that S'T~ may be
expressed in T~ », T~, and TI+» with the following coef-
6cients:

= ——,'Ã(lV —4)+Q I',P.
iCj'

(9)

We will now investigate the eGect of the spin pro-
jection operator (7) on a single determinant built up
from E spin-orbitals. For the sake of simplicity, let us
assume that 1V is even (X=2)2) and that we are inter-
ested in states with 5,=0, i.e., having an equal number
of a and p spins. Let us further assume that we have lV

orbitals a», a2, . a„, b», b2, . b„at our disposal, and
that the first e orbitals are occupied by particles with

plus spin and the last e orbitals are occupied by par-
ticles with minus spin. The corresponding Slater deter-
minant

Ts .. —p'iV(lV —4)+22(n —1)+2k(22—k)
(13)=N(2k+1) —2k'

(22' '
( 22

& k+1)

which gives the basic formula

52Tp= (22—k+1)2T(, )

+[22(2k+ 1) 2k2]Ts+ (k+—1)2T(,+(, (14)

(lV.) '* det{a)a, ((2a, a~aI b)p, b2t(, .b~p} (10) with the definition T )=T„+)=0understood. Since the
projection operator (7) is a polynomial in 5', we have

may then be denoted by the abbreviated symbol then proved that there exists an expansion of the form

0!Q '6

showing the spin distribution over the E orbitals taken
in their given order.

Pratt' has recently described a spin-operator for-
malism for constructing sieglets, but, since he has not
used the projection operator idea, his treatment is con-

siderably more complicated than here. Using his nota-
tions, we will now introduce the quantities

Tp= {aa aIPP P}

Tt= {(P«)+(aPa )+ I (aPP. .)

(2)+1)()T Q c ())T
@=0

The coefFicients in this expansion may be determined

by using (14) and the relation

52(pp cpT),) = l(l+1)gp cpTp,

which leads to the recurrence formula

(ts—k)2cp+)+ [22(2k+ 1)—2k' —l (l+1)]c(,

+ksc( )——0. (17)

T2={(PPa . )+(PaP ")+.".I(«~. .)
+(aPa . )+ }

For the important cases of lowest and highest multi-

plicity (l=0 and l= I), we obtain particularly

(18)

T ={PP PIaa a}
2 6. |vV. Pratt, Jr., Phys. Rev. 92, 278 (1953).

(ps+1)BT C (ta) P T& (19)
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and, in general, we have for the 6rst coefficients

ci«&/cs&'& =Pl(l+1) r—tj/rt'

cs&' /&c 0&' &= LIs(t+1)'—(4tt —2)l(t+1)
+ 2n (tt 1—))/Is (tt 1—)'

therefore obtain

I(1+1)—rt
(X )A I TO Xo TO(dx)+

(20) S2

T0*X.,Ti(dx)

gives the same expansion as Pratt's rather complicated
spin-operator; except for a constant factor, the two
operators must therefore be identical.

The Energy Formula for Various Multiplets

As an example of the applications of the projection
operator formalism, we will calculate the energy of a
spin state of multiplicity (21+1) having a wave function
obtained by projection of a single determinant

@—(2 l+1) (c)g (22)

for a spin-free Hamiltonian of the special form (I, 11)
with X;;=e'/r, ; Since t). is an Hermitean operator in
our configurational space, we obtain by using (7) and

(»):

f t'

J
@*X 4(dx) = T0*(OtX, 8)T0(dx)

=Q cst'& J"T0*X.,TA(dx),
lt;=0

(23)

and similarly:

t %W(dx) =Q ca&'&)t T0*TA(dx) (24)

In the simple case when all orbitals a~, a2, ~ .a„,
fr&, f&s, . f&„ involved are strictly orthogortak (as they
would be for singly filled molecular orbitals), there will
be contributions to the energy only for k=0 and k=1
and to the normalization integral only for k=0 accord-
ding to (I, 49). By using the first relation (20), we

The explicit form of the higher coeKcients for an
arbitrary l will be omitted, since they are rather com-
plicated.

For the applications, the value of co is usually unes-
sential, but, by considering a system with doubly
occupied orbitals, i.e., aI, ——b~, the value of co for the
singlet operator is easily determined: c0"'——(n+1) '.

We note that (18) is just the Clebsch-Gordan ex-
pansion from which Pratt' started his investigations,
and we have then shown that our projection operator
for constructing singlets

't& = (1—5'0/1. 2) (1—S'/2 3) .L1—Ss/rt(rt+1)], (21)

= Xtsl+Z(t I Xilt )+0 Z( vl X»lt v)
pv

() spins—
0 2 (tvlX»lvt)

l(l+1)—rt

P (a;f, I X»If,a;), (25)

where the spin is eliminated in the matrix elements,
and p, and v are to be summed independently over all
orbitals u;, 5,.

Since the exchange integrals for Coulomb forces are
always positive as "self-potentials, " formula (25) shows
that, under our specific assumption of orthogonality, the
state with the highest multiplicity will always have the
lowest energy. This extension of Hund's rule was
recently proved in a still more complete form by Koster4
by using Dirac's vector model.

Spin degeneracy problems have previously been
treated by either Slater's determinant method' or
Dirac's vector model. ' Ke note that, even if we have
taken over some elements, as the spin permutation
operators in (9), from Dirac's theory, our approach is
6rmly based on Slater's determinant idea with the
wave function (22) expressed as a sum of determinants.
However, there is also a connection with the vector
model, and, if we form the mean value of the energy
(25) for all possible distributions of n and P electrons
over the orbitals a~, a2, u~, b&, b~, b„, we obtain

(«")A.)"=Xisi+Z.(t I Xilt )

+-. 2" (t v
I X»I t v)

1 4/(1+1) —3N—P'(t vl X»lt v), (2t )
N (N —1) ov

which is just the average energy given by the vector
model. '

Let us now consider all pure spin states which may be
constructed according to formula (22). We note that

4 G. F. Koster, Quarterly Progress Report of Solid-State and
Molecular Theory Group at M.I.T., July 15, 1953 (unpublished),
p. 37.' J. C. Slater, Phys. Rev. 34, 1293 (1929).' P. A. M. Dirac, Proc. Roy. Soc. (London) A123, 714 (1929);
PrznciPles of Quantum Mechanics (Oxford University Press,
Oxford, 1935); see also references in E. M. Corson, Perturbation
Methods in the Quantum Mechanics of n Etectron Systems -(Blackie,
London, 195j.).

7 See also F. Bloch, Z. Physik 57, 545 (1929), p. 550; and W,
Heitler, Z. Physik 47, 835 (1928).
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there are
~ ~

di6erent ways of distributing the equal
En

number of n and P electrons over the given orbitals,
and each distribution corresponds to a determinant Tp,
from which a series of pure spin states may be con-
structed by using (22). On the other hand, Bloch' has
shown that the independent number of spin states of
multiplicity (2l+1) is only

t
N

)
= (2&+1)N!/(n —I)!(n+&+ 1)!,

&n—I) En I —1&—
(22)

8i=nt '(1—8")/(1—ei
—'0)

m i P g
—APTS

k=P
(30)

If qp is an arbitrary spin-orbital without any par-
ticular symmetry properties, its projection de6ned by

m—1 m—1

Pi ——8ipo=m ' P 0~ "Q~ "go=a—' P e '~'"«~pl, (31)
k=p t!e=p

According to (3), the corresponding projection operator
is then given by

and this means that the I ~ states given by (22)(n
cannot be linearly independent. In the general method
of "configurational interaction, "it is important that the
basic functions form a linearly independent orthonor™
malized set, and this leads to the problem how to form
such a set from the functions given by (22). For the
singlets, Pratt' has solved this problem by using the
"branching diagram, " and his formulas may also be
translated into the projection operator formalism. How-
ever, a more general approach may be obtained by
treating all the functions given by (22) on an equal
basis and to construct the independent orthonormalized
set by a slight generalization of the orthonormalization
procedure previously described by the author.

We will later see that part of the degeneracy problem
mentioned above will disappear when we start to take
"correlation eQ'ects" into account; see Sec. 3. The
orbitals at our disposal will then be naturally divided
into two groups (a;) and (b,), associated with different
spins, since the particles with diferent spins try to
avoid each other. In this connection, it is also necessary
to genera1ize formulas (23) and (24) to basic sets having
nonorthogonality integrals essentially diferent from
zero,

Ayylications to Systems Having Cyclic Symmetry

As another example of the projection operator for-
malism, we will consider the problem of the form of the
total wave functions and the corresponding spin-
orbitals in a system having a certain cyclic symmetry of
order m, like a crystal or a benzene ring. Let us assume
that O~ is the basic symmetry operation, which fulfills
the condition

This may be considered as a Cayley-Hamilton equation
in a certain matrix representation, and it is then clear
that, in such a representation, the only possible eigen-
values of 0' are given by the roots of unity:

9;=exp(2sij/nt), j=0, 1, 2, ~ nt —1. (29)

8 See Part II, footnote 11;more details will be given in a forth-
coming paper.

has the correct cyclic symmetry and ful6lls the relation

O~P —e2w ~«wy (32)

The spin-orbital (31) is, of course, nothing but the
function constructed by Hloch' by solving a secular
equation, and (32) is the so-called Bloch condition. The
same arguments may also be applied to the total wave
functions.

We note 6nally that, in treating wave functions
formed by projection operators, we may use the basic
formula for adjoint matrices:

Vi8&2(dx) = 0'g8 4i(dx), (33)

only if the operator 8 is de6ned in the coordinates of
the configuration space (dx) under consideration. The
simplifications rendered by (33) in combination with
(6) may therefore be obtained only if 8 is operating in
the ordinary con6gurational space, or, if by some formal
arguments, this space may be extended to include also
the variables contained in 8.

The method described in this section is of a quite
general character, and it may be used for treating
degeneracies associated with the isotopic spin, the
angular momentum, etc. Further applications will be
given in a following paper.

0'p ——(N!)-&detgi, f2, . fg), (34)

is the simplest wave function having the correct anti-
symmetry property which corresponds to the idea that
E particles are moving independently of each other in
the N spin-orbitals!t i, !t2, ~ gy. As shown in Part II,
this scheme has therefore a physical visuality which is
useful in the interpretations and in constructing ionized
and excited states. However, if the system has spin or
orbital degeneracies, there is a difFiculty connected with

~ F. Bloch, Z. Physi 52, 555 (1928).

2. AN EXTENSION OF THE HARTREE-FOCK
METHOD TO DEGENERATE SYSTEMS

The importance of the ordinary Hartree-Fock scheme
depends partly on the fact that a single Slater deter-
minant,



QUANTUM THEORY OF MANY —PARTICLE SYSTEMS. II I i513

the fact that the total wave function must be expressed
as a st of Slater determinants, and part of the visuality
seems then to be lost. We will here show that this
problem may be solved by treating the degeneracy by
the projection operators introduced in the preceding
section.

Let A. be the operator which is used for classifying the
degenerate states (at least in a first approximation), and
let 8( be the projection operator (3) for selecting an
eigenfunction belonging to the eigenvalue ) g. For the
sake of simplicity, we will further assume that h. is
operating only in the ordinary configuration space,
described by the coordinates x&, x2, .xN. The wave
function

4= 8t+o, (35)

is then usually a sum of Slater determinants, but we
note that it is still invariant with respect to unitary
transformations of the two groups of orbitals associated
with the two types of spin. It must therefore be possible
to describe the properties of the system by means of the
fundamental invariant

P(X1)X2)=Q leak (Xl)fk(X2)q (36)

defined by (II, 12 and 35) and fulfilling the relations
y'= I) and Tr(p) =X. Forming the average energy and
using (33), we obtain

function %o being a single determinant. The formalism
is parallel to the basic description of time dependence
in quantum mechanics: in the Schrodinger representa-
tion, we are considering a fixed Hamiltonian and a time-
dependent wave function, but, in the Heisenberg repre-
sentation, we are instead using a time-dependent
Hamiltonian and a 6xed wave function. Both descrip-
tions are entirely equivalent.

However, the formalism using the composite Hamil-
tonian has a certain advantage, since we may directly
take over the mathematical apparatus of the ordinary
Hartree-Pock scheme. The projection operators are
symmetric with respect to the coordinates of the par-
ticles involved, and, if their explicit form (3) is known,
the composite Hamiltonian (38) may be expanded in
the form

1 i
"o=Q(o)+2 Q+—Z'Q'~+ —2'Q'~k+, (39)

ij 3 't ij7c

containing also many-particle operators. However, in
Parts I and II, we have already extended the theory to
include such many-particle interactions.

Under speci6c assumptions about the spin-orbitals
in (34) the expansion (39) may sometimes be reduced
to comparatively simple forms. As an example, we
will mention that, if all basic orbitals in (34) are
strictly orthogonal, the combination of the equation
Ti= (S'—e) To and the 6rst relation in (25) leads to a
composite Hamiltonian of the form

4 K.,+(dx) = @o*(8'BC.,8)@o(dh),

f
+'%(dx) = 0o'(8'8)%o(dx),

(37)
1 /(I+1) —n,

Qoo= ~(o)+Z 3!~+ 1+ (&—+)
i 2 n2 i7

(40)

i.e., the same expression as for a single determinant and
a "composite" Hamiltonian of the form

Qop = 81Xop8) (38)

where one has also to take the normalization condition
into proper account. H the operators X,~ and A. strictly
commute, the composite Hamiltonian is reduced to the
form Q,~= K„8,because of the relation (6).

The physical situation of the degenerate system may
therefore be described by either the ordinary Hamil-
tonian GC,~ and a wave function%' being a sum of deter-
minants, or a composite Hamiltonian Q,~ and a wave

Since 5' is given by (9), it contains many-particle
operators up to the order 4; the normalization of 0 is
here taken into proper account.

The investigation in Part II tells us novi that it is
possible to extend the ordinary Hartree-Fock method
to operators containing also many-particle terms and
consequently also to include treatment of degenerate
system by using the composite Hamiltonian (38). We
will give here a summary only of the most important
results. For a single determinant 00, all higher-order
density matrices may be expressed as determinants of
the first-order density matrix (36), and, according to
(II, 21), we then obtain for the average energy

(Se.,).,= eo*Q.,eo(dh)
4

p(1', 1) p(1',2)
=Q(o)+ Qip(1', 1)dhi+-', Qio dhidxo

p(2'») p(2' 2)
p(1'») p(1',3)

+$ Qioo dhidhodho+. , (41)
p(3', 1) ~ ~ p(3', 3)
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where, after the operations in the integrands have been carried out, we have to put all x; =x;. The variation prin-
ciple 8(BC,~)A„——0 leads then to extended Hartree-Fock equations (II, 40-42) of the form

Qeff (1)pk(xt) —p yl(xl)X(~
~
k) $ (42)

where the one-particle operator 0,« is given by

P(2 2) P(2 3)
Qeff(1) Ql+

I Q12(1 +12)P(2 )2)d+2+2 ~ Q123(1 +12 +13) &2d»+ ' ' ',
P(3'») P(3',3)

(43)

and I';, is the ordinary permutation operator for inter-
changing the coordinates x; and x;. Due to the invari-
ance of (36), we may carry out a unitary transformation
of the two groups of orbitals associated with different
spins in the basic set of spin-orbitals fq, which brings
the Bermitean matrix of the Lagrangian multipliers
X(l~k) to diagonal form, and, in this special case, we
obtain the eigenvalue problem

Qf ff (1)pt (xt) = et'. (xt). (44)

In forming (41) and (43), we have assumed that the
normalization integral in the second relation (37) is
equal to 1, but we note that there are no principal dif-
ficulties in treating also the general case when this
integral has another constant value or is represented
by an expansion of the form (41) for the operator 8.
The expectation value of the energy, E=(K,~)A„ is
then given as the quotient between the two quantities
(37), and, in applying the variation principle, one has
to vary also the denominator; the auxiliary condition
may be expressed in the form (II, 58). It is easily shown
that the best spin-orbitals P& are again determined by
an eigenvalue problem of the form (44) but with Q.t t(1)
replaced by the slightly more complicated one-particle
operator

doubly 6lled. However, Hartree and Hartree suggested
also that it would be both physically and analytically
significant to introduce diferent is-orbitals for the two
spins involved, and this extension of the theory has
here been performed in a quite general way. We will
later see that this distinction is of great importance for
discussing also the correlation sects.

Our results show that, even for a degenerate system,
we may keep the idea of the existence of an "effective"
Hamiltonian, but, due to the degeneracy, all terms in
this Hamiltonian may now contain couplings between
several spin-orbitals corresponding to the occurrence of
many-particle forces. In the "independent-particle"
model, a degeneracy may therefore be described by
replacing the ordinary eGective Hamiltonian K,«by a
composite effective Hamiltonian Q,gi containing "de-
generacy couplings" of many-particle character.

The composite eGective Hamiltonian 0,«given by
(38), (39), and (43) has not only a formal character
but also an essential physical meaning, which becomes
clear when investigating excited and ionized states. Let
us consider two states associated with the same eigen-
value of the classifying operator h. and therefore having
wave functions%" and 0 which are obtained from single
determinants by the same projection operator:

(Q,rr(1) —En.rr(1) )
l

+o*oeo(«),
0' =8+0, 4=8+0, (45)

where O, tr(1) is formed from the expansion of the pro-
jection operator 8 in the same way as (43) is formed
from (39). The mathematical details of this more gen-
eral case will be further discussed in a forthcoming
paper.

Since the operator Q, ~q is Hermitean, the eigenfunc-
tions belonging to different "orbital energies" in (44)
are automatically orthogonal. This simple result
depends on the fact that we are here considering spin-
orbitals without restraining conditions on the two
groups of orbitals involved and that, in this connection,
we have made us free from the idea of "doubly occupied"
orbitals. Our result should also be compared with a
previous discussion by Hartree and Hartree, "where, in
investigating the first excited states 'I' and 'I' of beryl-
lium, they were forced to keep a nondiagonal element
X(1s~2s)%0, since they assumed the 1s-orbital to be

AP (1,2) =0 *(1)tl' (2)—4**(1)il'(2). (46)

Using (II, 133) and assuming that all basic orbitals
are strictly orthogonal, we then obtain

(sc.,'),= (se„)„+ p,*(1)Q,ff (1)p,(1)d»

—
J

4'*(1)Q.«(1)4'(1)d», (4&)

showing that the system has eigenstates 0" of the total
Hamiltonian X,~ when P; and f, fulfill the relations

where the determinants are characterized by the
invariants p' and p, respectively. In a erst approxima-
tion, we will then assume that, according to (II, 128),
the difference hp= p' —p may be expressed as the sum
of two factorized terms:

' D. R. Hartree and 97. Hartree, Proc. Roy. Soc. (London)
A154, 588 (1936l, particularly p. 594. Qeff'4 j'= aj'Pj', Qefhi'i= 4P' (48)
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For the excitation energy, we get therefore

(X.,')A, —(X.,)A, = e,
'—e;,

giving a rather visual meaning to the spin-orbital
energies e and e;. This theorem was in (II, 135) proved
for single determinants, i.e., for the average energies
of a series of multiplets, but it is here extended to be
valid even for the energies of pure spin states built up
from orthogonal orbitals. This result gives a preliminary
solution of a problem in the molecular theory which
has been discussed rather frequently in the literature. "
Ke note that, if the basic orbitals are partly over-
lapping, the simple result (49) must be somewhat
modl6ed.

Let us now consider the total wave functions +' and
4 given by (45). If the determinant%'s for the "ground
state" is built up from the ordinary eigenfunctions to
the operator Q,ff then the determinant %0' for the
"excited state" is obtained from 40 by replacing the
column containing the spin-orbital P; by a column con-
taining the spin-orbital P,'. According to (II, 136), the
spin-orbitals f, and P are strictly orthogonal, and it
may then be shown that, for rather general forms of the
projection operator 8 (as for ordinary and isotopic
spins), also the total wave functions 4 and 4' fulfill the
necessary orthogonality condition.

The essential problem in treating the excited states
is to construct the corresponding effective operator
0 ff and to solve the nonlinear problem of Gnding its
eigenfunctions P and eigenvalues e,'. For a discussion
of this problem, the reader is referred to Part II.

The projection operator formalism renders also a
simple way of calculating transition moments, for, if
D e P; r; is the operator of electric moment, we have

+'*DC(dh)= t%s'*(f)tDe)%, (dx), (50)

showing that (—e,) measures the ionization energy.
This is an extension of Koopmans' theorem" to de-
generate systems built up from orthogonal orbitals.

"R. S. Mulliken, J. Chem. Phys. 46, 497, 675 (1949); C. C. J.
Roothaan, Revs. Modern Phys. 23, 69 (1951),p. 80.

"See Part II, references 30 and 31.

which expression may be expanded analogously to (41).
%e have here treated the excited states before the

ionized states, since, in the excitations, the total
number of particles is kept constant, which is of im-
portance for having a fixed form of the projection
operator 8 in (45). However, since an ionization may be
considered as the limiting case of an excitation to a
spin-orbital P/ at infinity with e,'=0, we obtain from
(49)

(X.,')A, —(X„)A,= —e, ,

P (x )P (x ) . II' (x ), (52)

where Ps (k=1, 2, 1V) is a set of E spin-orbitals
determined essentially by the outer framework. How-
ever, between the particlesi and j, there is in reality a
potential K;, which, particularly for small distances
r;;=0, may be tremendously large. If this potential is
repulsive, like the Coulomb potential X;,= e /r;;, it tries
naturally to keep the particles apart, " and, since this
"correlation" between the movements of the particles
is entirely neglected in forming (34), the corresponding
energy is affected by an error which is usually called the
"correlation energy. "

The situation is somewhat changed by the antisym-
metrization procedure, which transforms the product
function (52) into a single Slater determinant. In Part I,
we have shown that, for every antisymmetric wave
function, the second order density matrix (I, 3)
I'(xi'xs'~xixs) is also antisymmetric in each set of its
indices, and this implies that, if two indices in a set are
the same (xi'= xs' or xi ——xs), the corresponding element
will vanish identically. For the diagonal element, we
obtain in particular

F (xixs i xixs) =0, fol xi =xs (53)

showing that the probability density for two particles
with the same spin to be in the same place is zero of at
least the second order (the "Fermi hole" ). This means
that the antisymmetry itself acts as if there would be a
rather strong repulsion'4 between particles with the
same spin at small distances, and this consequence of
the Pauli principle automatically diminishes the error
due to the neglect of the X;;-correlation. The exchange
energy will therefore take care of a rather large part of
the original correlation energy, referring to particles
with parallel spins. The corresponding effect of the
antisymmetrization on the particle distribution has
been investigated by Lennard-Jones. 's

' Compare also some recent results for nucleons by M. Levy
and others.

'4 In analogy to (37) and (38), we may interpret the effect of
the antisymmetrization as if we still considered simple product
functions (52) but a "composite" Hamiltonian of the form

O,s= X~, A=(X!) 'Zi (—1)&P,

where A is the antisymmetrization operator obtained by summing
over all permutations I' having the parity p.

'~ J. E. Lennard-Jones, J. Chem. Phys. 20, 1024 (1952).

3. INCLUSION OF CORRELATION EFFECTS

One of the strongest arguments against the validity
of the ordinary Hartree-Pock scheme is that it does not
treat the "correlation" between particles of different
spin types in a proper way, and we will now take up
this problem to discussion.

The basic idea of the "independent-particle model"
is that, in a first approximation, one can neglect the
mutual interaction between the E particles in the
system in constructing the total wave function, which
then takes the simple product form
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The main problem is apparently to take the corre-
lation between particles having diGerent spins into
proper account, and a first estimate of this eGect was
given by Wigner. ' His preliminary results seems to be
con6rmed by the recent work by Sohm and Pines'
using the "plasma" model. Here we will instead use
another approach, which is based on our extension of
the ordinary Hartree-Pock method.

The importance of the Hartree-Pock scheme depends
on its connection with the "independent-particle model"
giving it a physical visuality, which is useful in the
interpretations and in constructing the ionized 'and

excited states. In the previous section, we have shown
that this visuality is preserved also in our extended
scheme, where the wave function 0 is a projection of a
single determinant 0'p ..

0'= 8+p. (55)

The lbasic determinant is here built up from spin-
orbitals obtained from two more or less independent
groups of orbitals by multiplying them by the spin
functions n and p, respectively. We note that we have
already made us free from the idea of "doubly filled
orbitals, " and that this distinction was of importance
for transforming the Hartree-Fock equations (42) to
the eigenvalue problem form (44). This new degree of
freedom may now also be used for including correlation
eGects, since we may choose the two sets of orbitals
associated with different spin functions in such a way
that they let particles with diGerent spins try to avoid
each other. ' In fact, there is no new basic assumption
needed for including correlation in our extended Har-
tree-Pock scheme, since the best spin-orbitals are always
represented by the eigenfunctions to Q,ff.

As a 6rst example, we may consider the two-electron
problem and its applications to the helium atom, the
hydrogen molecule, and the m. electrons of ethylene. Sy
starting from otto basic orbitals N(r) and n(r), we may
construct a total wave function 4= 6(un, sp), which, for
the singlet state, is reduced to the form

4'= const. {N(r,)e(rs)+u(r, )s(r,))
X ( (1)P(2)—(2)P(1)). (56)

This is one of the exceptional cases, where it is possible
to separate the orbital part and the spin part of the

"E.P. Wigner, Phys. Rev. 461 1002 (1934); Trans. Faraday
Soc. 34, 678 (1938).

D. Bohm and D. Pines, Phys. Rev. 82, 625 (1951);SS, 338
(1952); 92, 609 (1953); D. Pines, Phys. Rev. 92, 626 (1953);
Proc. 10th Solvay Conference (1953) (to be published).' The possibility of having different orbitals for diferent spins
was 6rst mentioned by Hartree and Hartree in reference 10 in
connection with the diagonalization of the matrix of Lagrangian
multipliers, but it was never used by them. The importance of
this possibility for the proper description of ferromagnetic and
antiferromagnetic materials has several times been pointed out by
J. C. Sister, Phys. Rev. 82, 538 (1951). However, as far as we
know, it has not been explicitly pointed out in the literature that
this new degree of freedom may be used for including correlation
effects in a simple way; compare reference 24.

total wave function into two factors. The orbitals I
and v are neither identical nor orthogonal, and their
best form is automatically found by solving the ex-
tended Hartree-Fock equations (44) for the special
case E=2.

Correlation Effects in the Helium Atom

We note that, without further calculations, we may
say a few words about the results we may expect, due
to the connection between our method and previous
investigations treating the two-electron problem from
other points of view. Let us start by considering 'the

ground state of the helium atom, having an energy, ex-
perimentally determined to 2.9032 atomic units
(e'/as=2 Ry). The symbol (1s)' indicates an approxi-
mation with I= v, and Kellner" has shown that, if this
orbital is approximated by a single exponential, the best
result is obtained for an eGective nuclear charge
Z=1.6875 giving a total energy of 2.8476. If N=v is
represented by the best Hartree-function, " the energy
value is improved to 2.8615. The symbol (1s', 1s")
would indicate an approximation, with m/ v, and
Eckart" has shown that, if I and v are approximated by
two exponentials, the best result will be obtained for
Z&——1.19 and Z2=2. 184, giving a total energy of 2.8756,
i.e., a result considerably better than the Hartree-
approximation. Eckart s simple result is of great inter-
est to us, since it indicates that we may expect con-
siderable improvements of the present Hartree-Fock
scheme for the atoms of the periodic system by making
us free from the idea of doubly 6lled orbitals.

Eckart's result on helium has recently been improved

by Taylor and Parr" by using a method of con6gura-
tional interaction based on a series of determinants of
exponential functions of s-, p-, d-, and f-type. Their
results have been analyzed by Lennard-Jones" who has
shown that the spatial correlation in helium may occur
in two ways: as an "in-out" eGect, with one electron
tending to be outside the other, and as an "angular"
eGect with the two electrons tending to be on opposite
sides of the nucleus. However, Taylor and Parr pointed
out that, even if they obtain about 97 percent of the
angular correction, their method of ordinary configura-
tional interaction between s-functions showed a slow

convergency with 'respect to the radial correlation. This
phenomenon is also reQected by the fact that their

"G. Kellner, Z. Physik 44, 91 (1927).
so D. R. Hartree, Proc. Cambridge Phil. Soc. 24, 111 (1928);

for the energy value, see H. Bethe, Handbuch der Physik (Julius
Springer, Berlin, 1933), Vol. 24, No. 1, p. 370. See also W. S.
Wilson, Phys. Rev. 48, 536 (1935)."C.Eckart, Phys. Rev. 36, 8/8 (1930).It seems to be less well
known that this result was already obtained by E. H. Hylleraas
in his pioneer work, Z. Physik 54, 347 (1929). The author is
indebted to Dr. Harrison Shull for some discussions of Hylleraas'
paper."G.R. Taylor and R. G. Parr, Proc. Nat. Acad. Sci. U. S. 38,
i54 (1952).

sa J. E. Lennard-Jones, PhiL Mag. 43, 581 (1952).
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best wave function contained only 64 percent of the
radial correlation energy.

The helium problem was discussed at the Shelter
Island Conference in 1951, and the situation was
analyzed by Mulliken, s' denoting (1s)' and (1s', 1s")
as closed-shell and open-shell electron configurations.
It is possible that the extended Hartree-Pock scheme
proposed here is the "generalization of the SCF pro-
cedure" required by Mulliken. In all events, it will be
interesting to see how good approximation of the
energy one can obtain by solving the extended Hartree-
equations (44) for JR=2 and eWe with the normaliza-
tion integral taken into account, and how closely one
can approach Hylleraas' classical result in the unrela-
tivistic approximation. In a first approximation, we
will assume that I and v are s-functions depending
only on the distance to the nucleus, which will de-
scribe the main part of the "in-out" eGect. In the
next step, I and v may depend on the angles, but,
in such case, we must introduce a projection operator
containing also the total angular momentum operator
in order to select an S state for the total wave function.
Numerical calculations on the helium problem along
these lines are now in progress.

Correlation Effects for Diatomic Molecules

The wave function (56) may also be applied to the
hydrogen molecule problem. It would probably be very
hard to solve the exact extended Hartree-Fock equa-
tions (44) for such a problem, but significative results
could be obtained by using the variation principle. In
such a case, it is therefore important to know something
a priori about the general form of the orbitals involved,
and, according to the previously mentioned "correlation
principle, "we will assume that m and v may be of such
a type that the electrons in them (having difFerent
spins) tend to avoid each other. This is mainly estab-
lished by two eGects: the "alternant" eGect, trying to
keep the two electrons on separate atoms, and the
"in-out" eGect, trying to keep one electron outside the
other, when they happen to be on the same atom. The
form of these orbitals is indicated in Fig. 1.Semilocalized
molecular orbitals were Grst constructed for the hy-
drogen molecule by Coulson and Fischer, "who pointed
out that they lead to the same result as the ordinary
method of configurational interaction using two deter-
minants.

As far as we know, the "in-out" eQ'ect has not pre-
viously been used in the theory of molecules or crystals.
It seems to be rather)'important, since the Coulomb
integrals associated with two electrons concentrated in

'4 R. S. Mulliken, Proc. Nat. Acad. Sci. U. S. 38, 160 (1952).
's C. A. Coulson and I. Fischer, Phil. Mag. 40, 386 (1949).The

"best orbital" problem for the hydrogen molecule was formulated
in a complete form by M. Kotani, Proceedings of the Shelter
Island Conference on Quantum Mechanical Methods in Valence
Theory, 139 (1951), where he also discusses the solution in
elliptical coordinates. See also J. Lennard-Jones and J. A. Pople,
Proc. Roy. Soc. (London) A210, 190 (1951).

FIG. 1.The two orbitals e and e showing "alternant" and "in-out"
effect for a two-electron problem in a diatomic molecule.

the same orbital on one atom are certainly too large,
because of the neglect of the electronic correlation. The
problem of these "ionic" Coulomb integrals have been
particularly emphasized by Mo%tt" in treating the
oxygen molecule and by Pariser and Parr'~ in inves-
tigating some conjugated organic, compounds, and these
authors proposed that the values of the ionic integrals
should be corrected by comparison with experimental
data. Sponer" and the present author found similarly
that, in a x-electron theory of ethylene based on the
atomic Hartree-Fock functions for carbon, the singlet-
triplet separation came out much too large, and that the
error could be localized mainly to the ionic (xw~s.w)-
integral. " By introducing the "in-out" efFect for the
electrons condensed on the same atom, the value of the
ionic Coulomb integrals will now be essentially dimin-
ished, and we note that this correction may be carried
out in a purely theoretical way by using the variational
principle for the total energy. Numerical applications
to the hydrogen molecule and to ethylene are now being
prepared.

4. THE METHOD OF ALTERNANT MOLECULAR
ORBITAL S

In a theory of molecules and crystals, where the
total wave function is approximated by a single deter-
minant constructed from molecular spin-orbitals, there
is a certain difhculty connected with the fact that the
cohesive energy shows a wrong asymptotic behavior
for separated atoms. " This depends on the fact that
such a wave function permits electrons of difFerent
spins to accumulate on the same atom and give rise to
negative and positive ions, having higher energy
together than the ordinary dissociation products; see
Fig. 2. One way of removing this defect is by con-
figurational interaction, but, except for the simplest

~' W. MoKtt, Proc. Roy. Soc. (London) A210, 224, 245 (1951).
~~ R. Pariser, J. Chem. Phys. 21, 568 L (1953); R. Pariser and

R. G. Parr, J. Chem. Phys. 21, 767 (1953).
s'H. Sponer and P. O. Lowdin, J. phys. radium IS, 607

(1954).
~ See also the remarks by R. S. Mulliken and P. 0. Lowdin at

the Nikko symposium 1953, Proceedings of the Japanese Con-
ference on Theoretical Physics, 1953 (to be published).

'0 See, e.g., J. H. Van Vleck and A. Sherman, Revs. Modern
Phys. 7, 167 (1930), p. 170; and J. C. Slater, Quarterly Progress
Report of Solid-State and Molecular Theory Group, M.I.T., p. 26,
January 15, 1952 (unpublished).
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FIG. 2. The energy E as a function of interatomic distance R.
The upper curve refers to a single determinant, and the lower curve
represents the correct behavior.

molecules, this approach leads usually to secular equa-
tions of such a high order that they are extremely hard
to solve.

Fortunately, there seems to be also another possi-
bility for solving this problem. Slater" has several times
pointed out that, in an antiferromagnetic material,
there must be a tendency for a certain spin alignment
with the crystal divided into two sublattices with the
valence electrons having either plus or minus spin.
Slater is accordingly looking for a crystal theory which
would be similar to a valence bond method for separated
atoms and similar to a molecular orbital method for
small and intermediate distances between the atoms.
The essential point is apparently to 6nd a modi6cation
of the ordinary molecular orbital method which, for
separated atoms, automatically would lead to a spin
alignment of the type proposed by Slater, for then there
would be no possibility for excessive occurrence of ions.
However, in order to avoid a real antiferromagnetic
behavior of the system, the total wave function must
be invariant with respect to an interchange of the two
spins.

An attempt to translate these ideas into mathematical
form has been made by the author" by using the
method of "alternant molecular orbitals, " and we will

here give a short survey of its main result in order to
discuss its connection with the general theory developed
in this paper.

Let us say that, by solving the Hartree-Fock equa-
tions by, e.g., the MO-LCAO method, we have found a
set of MO's for the valence electrons belonging to the
system. In the naive MO theory, the orbitals for the
valence electrons are only partly ulled. By using all the
MO's available, we may now try to construct combina-
tions which tend to be localized on two interpenetrating
subsystems, I and II, for separated atoms. For the sake

"J,C. Slater, Phys. Rev. 35, 509 (1930),see p. 52/; Proceedings
of the Shelter Island Conference on Quantum Mechanical Methods
in Valence Theory, 121 (1951);Phys. Rev. 82, 538 (1951).

~P. O. Lowdin. Proceedings of the Japanese Conference on
Theoretical Physics, 1953, Nikko Symposium (to be published).
Et should be noted that our method is applicable to both mobile
and localized electrons. Systems containing only localized single
bonds have also been treated by L. A. Schmid, Phys. Rev. 92,
1373 (1953) and Hurley, Lennard-Jones, and Pople, Proc. Roy.
Soc. (London) A220, 446 (1953).

of simplicity, let us consider an alternaet system, for
instance a crystal constituted of two equivalent sub-
lattices I and II, as the body-centered cubic structure,
or an alternant hydrocarbon, "where the atom, if one
moves along a chain of unsaturated carbon atoms,
belong alternately to set I and to set II.

As in Part II, Sec. 3 (b), we let p„be the ordinary or
hybridized atomic orbitals associated with the system,
and q„ the corresponding set of ON-AO's. It is a
characteristic feature of the alternant systems that the
MO's occur in pairs, j' and j",with orbital energies e,
and e; belonging to symmetric places in the lower and
the upper half of the "energy band, " respectively. The
excited orbital f; is obtained from the lower orbital f;
by changing the sign of the eoeKcients of the AO's of
one of the subsystems, let us say II:

I II
2 'ps~p2+2 pscsf&'

I II
Q Ppcsj Q Pscpg.

(57)

Let us then form the combinations

As a simple example, we may consider the lowest or-
bitals for a linear chain; see Fig. 3.

In order to construct a wave function for the system,
which leads to the correct asymptotic behavior of the

~ C. A. Coulson and H. C. Longuet-Higgins, Proc. Roy. Soc.
(London) A192, 16 (1948).

Since the normalization condition takes the form
a'+b'=1, we may put a=cose and b=sin8 and describe
the mixing-between the MO's by an angle 0. We note
the special cases:

0=0', ordinary lower half MO's;

8=45', purely alternant MO's;

8=90', ordinary upper half MO's.

The MO's belonging to the lower half of the "energy
band" are bondieg orbitals, whereas the MO's belonging
to the upper half are aetiboeding. 33 For 0&0&90', the
orbitals P,r are semilocalized on system I and the
orbitals P;rr on system II, and we will therefore call
them al/cream) molecular orbitals. For 0=45', this
localization is complete. We note further that orbitals
belonging to diferent indices j are still orthogonal,
whereas

t f~gkardx=cos20.
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energy for separated atoms, we will now consider a
Slater determinant

Ts={nrrrr . ~pppI II

where we have used the notation (11);each orbital of
type I is therefore occupied by an electron with plus
spin and each orbital of type II by an electron with
minus spin. The various spin multiplets may then be
obtained by using the projection operator (7):

L T
Pro. 3. Ordinary and alternant MO's.

(61) shows that there is also a fairly good resemblance
between the two total wave functions found in so dif-
ferent ways.

(2l+1)g T (61)

If, for separated atoms, we let 8 tend to the value 8=45',
there will be a spin alinement of the type proposed by
Slater, and the wave function (60) will then have the
correct asymptotic behavior. We will now check that
the various spin multiplets of the wave function (60)
also have preserved this property. For 8=45', the dis-
cussion is simplified by the fact that all the alternant
MO's become strictly orthogonal, see (59), and the
energy is then given by formula (25):

l(k+1)—rr

(jI,kII
~

Krs
~
kII, jI). (62)

n2

Since the exchange integrals in the last term in the
right-hand member tend to zero for 8=45' and separated
atoms, our theorem is proved.

For 0=0 and 1=0, the function (61) reduces to the
well-known single-determinant wave function of the
ordinary MO theory with the bonding orbitals doubly
occupied. This means that, by varying 8, we may
obtain a depression of the energy curve in Fig. 2 also
for intermediate distances, and, in particular cases, the
improvement of the energy minimum may be appre-
ciable. The physical interpretation of this procedure
will be discussed in the next section. The energy ex-
pression in the general case (0/45') is somewhat more
involved than (62), due to the occurrence of the non-
orthogonality integral X= cos20 in (59), but it may be
derived by using (23), (24), and (I, 49). The mathe-
matical details will be confined for a following paper.

Here we would only like to mention that, in an appli-
cation of the alternant MO method to the ground state
of the benzene molecule, Itoh and Yoshizumi'4 have
obtained a depression of the energy minimum for 8=23'
of about 2.35 ev, which amounts to 85 percent of the
depression obtained by Parr, Craig, and Ross" by
using a method of configurational interaction containing
nine determinants; an expansion of the wave function

s' T. Itoh and H. Yoshizumi, J. Phys. Soc. Japan (to be pub-
lished). The author is greatly indebted to them for kindly in-
forming me about their results before pub1ication.

"Parr, Craig, and Ross, J. Chem. Phys. 18, 1561 (1950).

S. GENERAL THEORY OF SPIN ALIGNMENT
IN NOLECULES AND CRYSTALS

The principal investigation of "correlation effects, "
carried out in this paper, makes it now possible for us
to build up the method of alternant MO's on a more
general basis. It is clear that the erroneous asymptotic
behavior of the upper energy curve in Fig. 2 depends
mainly on the neglect of the Coulomb correlation
between electrons with diferent spins, since it is just
the Coulomb repulsion which prevents the excessive
formation of negative ions with the electrons too closely
condensed on the same atom. The solution provided by
the method of alternant MO's must therefore in some
way take this correlation into account, and, if we
compare the form of the orbitals in Figs. I and 3, we
find a striking similarity, and we see that the alternant
MO's may be considered as being constructed according
to the "correlation principle" so that electrons having
different spins tend to avoid each other due to their
mutual repulsion.

However, once we have put the method of alternant
MO's in connection with our general theory, we see
immediately that it may be improved in several ways,
for instance by including the "in-out" eGect for elec-
trons which happen to be on the same atom. This can
be performed by constructing the alternant MO's from
two sets of atomic orbitals corresponding to diferent
effective nuclear charges, " and the inclusion of this
e6'ect is certainly necessary in order to obtain good
results in investigations of the ground state and lower
excited states of, e.g., the conjugated systems. "

The theory of alternant MO's was originally built up
on Slater s idea of the existence of a certain spin aline-
ment in alternant systems, but we can now also make
us. free from this assumption as being unnecessary. The
ordinary MO theory is firmly built on the idea of
"doubly occupied orbitals, " but, as soon as we have
made us free from this restriction, there are two groups
of orbitals associated with diferent spins at our dis-

posal, and the "correlation" between them is auto-
matically determined by the extended Hartree-Fock
equations (44) and the composite effective Hamiltonian
0 f f given by (38), (39), and (43), where, of course,
we now have to take the total normalization integral
given by (37) into full account. However, even if the
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form of the two groups of orbitals is fully determined by
the eigenvalue problem (44), it is certainly extremely
hard to solve this problem exactly for a molecule or
crystal, and some ideas of the qualitative form of these
orbitals will then be very useful in connection with the
approximate solution of (44) by means of the variation
principle.

This result is of importance, since it tells us that the
extended Hartree-Fock equations (44) will give the
answer to the question of the existence of a general spin
arrangement in molecules and crystals. It gives a pos-
sibility for investigating the diGerence between the spin
alignments in body-centered and face-centered cubic
structures, and many other problems.

a CONCLUSroNS

By using the idea of projection operators and wave
functions being projections of single determinants, we
have here given an extension of the ordinary Hartree-
Fock scheme to include the treatment of degeneracies
and correlation effects. From the very beginning, we
have made us free from the idea of "doubly occupied"
orbitals, and the two more or less independent groups
of orbitals associated with diferent spins are then de-
termined by extended Hartree-Fock equations, where
the effective Hamiltonian is derived from. a composite
total Hamiltonian containing also the projection op-
erator for the state under consideration. This eQ'ective

Hamiltonian contains also many-particle interactions,
but, otherwise, the extended scheme has preserved the
simplicity and physical visuality characteristic for the
theory based on a single Slater determinant. The two
groups of orbitals are of such a type that particles having
di&erent spins tend to avoid each other, and the ex-
tended Hartree-Fock equations give therefore also a de-
scription of spin alignments in molecules and crystals.

In order to apply the theory developed in principle
in this paper to practical problems, it is desirable to
know also the reduced form of the basic energy (41)
expressed only in terms of the two groups of basic

orbitals, and the mathematical details of this problem
will be treated in a forthcoming paper. Here we will
only point out that, even if we have illustrated our
extension of the "independent-particle model" by
examples from the theory of electronic structure of
atoms, molecules, and crystals, the general scheme may
just as well be applied to nuclear theory after inclusion
of the isotopic spin.
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