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We introduce a novel semiclassical approach to the Lipkin model. In this way the well-known phase
transition arising at the critical value of the coupling is intuitively understood. New results—showing for
strong couplings the existence of a threshold energy which separates deformed from undeformed states as
well as the divergence of the density of states at the threshold energy—are explained straightforwardly
and in quantitative terms by the appearance of a double well structure in a classical system corresponding
to the Lipkin model. Previously unnoticed features of the eigenstates near the threshold energy are also
predicted and found to hold.
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The Lipkin-Meshkov-Glick (LMG) model [1], origi-
nally introduced in nuclear physics has found applications
in a broad range of other topics: statistical mechanics of
quantum spin systems [2], Bose-Einstein condensates [3],
as well as quantum entanglement [4], to name but a few.
The continued interest in this system arises from the fact
that it is an exactly solvable [5,6] many-body interacting
quantum system as well as one of the simplest to show a
quantum transition in the regime of strong coupling.

This transition is by now well understood: the ground
state becomes degenerate and a macroscopic change in the
ground state energy takes place. Furthermore, at the tran-
sition value of the coupling, the density of states diverges at
the ground state energy as the number N of interacting
particles becomes large. The energy gap was recently
found [7] to vanish as N�1=3. Furthermore, in this model
a novel type of phase transition has recently been discov-
ered for strong values of the coupling parameter. Indeed, in
this regime the spectrum is divided by a critical energy Ec,
where the behavior characteristic of strong coupling holds
below Ec, while above Ec the system reverts to the kind of
behavior found below the phase transition. At the critical
energy, the density of states is again found to diverge as the
particle number N goes to infinity. This divergence has
been conjectured to be of the logarithmic type.

In recent papers [7,8] different approaches have been
used to explain these results. The continuous unitary trans-
formation technique (flow equations) [7,9] was applied to
obtain the spectrum reliably for large N values. An inves-
tigation of the singularities of the spectrum [8] in the
complex �plane [10] (the exceptional points [11]) sheds
more light upon the complexity of the limit problem but a
final answer about the limit attained has not been given.
These singularities have been recognized as an essential
mechanism to invoke the phase transition in a seminal
paper by Lee and Yang [12] and their significance for the
partition function is discussed more recently again in
[13,14]. A different approach [7] starts with the bosoniza-
tion method using higher orders of powers in 1=N of the
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Holstein-Primakoff representation and then applies the
flow equation technique. New results have been obtained
in this way, in particular, the correct analytic behavior of
the level distance as a function of N at the critical point.
Earlier attempts [15] have revealed different results such as
the form of the wave functions beyond the phase transition.

In this Letter we introduce a novel semiclassical ap-
proach to the LMG model. It readily explains the above
features, determines the precise value of the critical energy
as a function of the coupling, proves the logarithmic di-
vergence of the density of states near the critical energy as
well as successfully predicts certain previously unnoticed
behaviors of the eigenstates near the critical energy.
Finally, we obtain a qualitative understanding of all essen-
tials of the model: the classical model we introduce has a
double well structure above the phase transition, and the
critical energy can then be identified with the separatrix
energy. The approach given here also shows easily both the
nature of the phase transition as a function of the coupling
parameter as well as the scaling with N of the vanishing
gap at the critical coupling, which was previously shown
[7] to scale as N�1=3.

We here recapitulate the basics of the model and discuss
the essential properties for large values of N. It is given in
terms of 2j� 1 � N � 1-dimensional representations of
the SU(2) operators Jk, k � x; y; z as follows:

H��� � Jz �
�
N
�J2x � J2y�: (1)

Here the interaction is scaled by N to ensure that H is
extensive. In this form the model has a phase transition just
beyond � � 1, the larger N the closer the transition point at
� � 1. This has been discussed under various points of
view in the literature; see, e.g., [5,16].

The Hamiltonian allows reduction into two spaces: m
integer and m half-integer, with m the eigenvalues of Jz; it
corresponds to N even and odd, respectively, and is de-
noted as parity. For � * 0 the even and odd levels are
obviously separated and remain so for all � < 1 while the
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levels become degenerate (up to terms vanishing exponen-
tially fast in N) for � > 1. The phase at � < 1 is called the
normal phase, while the symmetry (parity) breaking phase
at � > 1 is called the deformed phase. Recent calculations
[9] apply nonperturbative flow equations allowing us to
obtain the spectrum for arbitrarily high yet finite values of
N. These have established [8] the existence of the phase
transition in energy referred to above: the states having
energy below a certain threshold behave as states of the
deformed phase, whereas higher in the spectrum the states
become undeformed again.

Since the commutator �H���; � ~J�2� vanishes, we confine
ourselves to a fixed value of j � N=2. For large N we
consider the Hamiltonian (1) on the sphere of radius j �
N=2. In other words, we rewrite the Hamilton operator (1)
as a classical Hamilton function

H �
N
2

�
� sin� cos��

�
2
�cos2�� sin2�sin2��

�
(2)

having introduced the polar angles as [17]

Jz��
N
2
sin�cos�; Jx�

N
2
cos�; Jy�

N
2
sin�sin�:

Note that the transition to a classical Hamiltonian has also
been achieved in a different way using the coherent state
approach developed in [18]. At this point we notice that,
with � � cos�, the Poisson brackets

f�;�g �
2

N
(3)

suggests how to quantize the Hamilton function of the
single particle problem in the two canonical conjugate
coordinates � and �. It can be written as

K 

2H
N

� �
���������������
1��2

q
cos��

�
2
��2 � �1��2�sin2��:

(4)

To obtain information about the ground state and the low-
lying states we expand 2H=N around its minimum which is
found at

sin�0 � 0; (5)

�0 �

�
0 �� � 1�
�

�����������������
1� ��2

p
�� � 1�;

(6)

and the corresponding minimum values of H at

H �

�
� N

2 �� � 1�
� N

4 ��� ��1� �� � 1�:
(7)

Expanding around the minimum reveals, in fact, all essen-
tial features. Keeping to lowest order terms we obtain
around � � � � 0

K � �1�
1� �
2

�2 �
1� �
2

�2 �
�4

8
� � � � (8)
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In this form, quantization is straightforward. Based on (3)
we identify � and � with momentum and position, re-
spectively, and 2=N with @; i.e., we use the usual canonical
commutation relations for � and �. With this identifica-
tion the Hamiltonian (8) represents a quartic oscillator
which behaves for � < 1 basically like a traditional oscil-
lator with a harmonic spectrum (for the lower states) Ek �

k
���������������
1� �2

p
, k � 1; 2; . . . . For � > 1, the lower states must

be determined at the minimum in � around the values �0

as given in (6). With � � ���0 the expansion of the
Hamiltonian K yields, up to the constant given in (7)

K �
�2 � 1

2
��2 �

�2

�
: (9)

For low-lying levels, the harmonic spectrum is again ob-

tained from (9) with frequency
��������������������
2��2 � 1�

p
well known

from previous work [5,19].
To evaluate the average energy density, the features of

which have been the object of recent work [8], we exploit,
as we are in the semiclassical regime, the WKB relation

S�2Ek=N� � 2�
�
k�

1

2

�
@: (10)

Here S�E� denotes the action corresponding to the
Hamiltonian K. By differentiation we obtain

E � Ek�1 � Ek �
�@N

T�2 �E=N�
�

2�

T� �E�
(11)

where T�E� is the period of the orbit with respect to K as a
function of energy and �E is �Ek�1 � Ek�=2. Use is made of
T�E� � dS=dE.

The last relation (11) contains virtually all basic infor-
mation of the Lipkin model. First, for � < 1 nothing dra-
matic happens: the density of states merely changes
smoothly as the period varies. An important fact should
still be noted: the bosonization approach predicts a con-
stant E in this case. We see here that this does not hold
over the entire energy range: the period varies smoothly
over large energy scales, and so does the average energy
spacing; it increases with the energy.

Secondly, for � > 1 there is an energy, in fact the
separatrix, being situated for K at the value �1, where
the period T�E� diverges. To estimate the average energy
spacing in this region, we consider trajectories near the
classical separatrix where they spend a long time near the
unstable equilibrium, that is, in a region in which � as well
as � are small. One has for K approximately

K � �1�
1� �
2

�2 �
�� 1

2
�2: (12)

Since this dominates the divergence of T�E� near E � �1,
one finds that T�E� is approximately given by lnj2E=N �

1j=
���������������
�2 � 1

p
. But 2E=N � 1 is itself of the order 2E=N

and hence of first order in 1=N. We thus obtain
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E �
2�

���������������
�2 � 1

p

lnN
: (13)

This corresponds to the high density of states observed in
[8] for specific values of � > 1. It was found that a change
occurred between the two regimes below and above a
certain �-dependent energy Ec���: for low energies E<
Ec���, the states were deformed, the order parameter was
nonzero and an odd-even degeneracy was observed. For
E> Ec���, all these phenomena disappeared and a normal
regime, similar to � < 1 was recovered. The transition
region between those two regimes had the typical signature
of high density of states. From (11) it becomes clear that
the lower portion of the two regimes correspond to
bounded motion in one well breaking parity symmetry.
We mention that the tunneling between the left hand and
right hand wells determines the splitting to be
� exp��const=@� � exp��constN�. For higher energies,
the corresponding classical motion is above the wells and
symmetry is restored. The two different regimes are sepa-
rated by the separatrix with its high density of states.
Formula (13) has been verified numerically as shown in
Fig. 1.

The region of high density is predicted to occur at energy
�1 corresponding to energies above the ground state
around ��� ��1 � 2�=2 which again is verified
numerically.

As the third major result, (11) provides the leading
analytic behavior of the spectrum at the transition point
�� � 1�. Since the Hamiltonian is quartic for (classically)
low energies, one can evaluate E using the formula for
T�E� for a quartic oscillator valid for energies high up in
the spectrum but still small with respect to N. It is given by
T�E� � const� E�1=4, from which

E � const� �E=N�1=4 (14)

follows, and it entails

Ek � k4=3=N1=3: (15)
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FIG. 1. Asymptotic behavior of the distance of levels of one
parity at the transition point as a function of �. The points are the
numerical fits for 500<N < 1500 when fitted to f���= ln�N�;
the solid curve is 2�

���������������
�2 � 1

p
.
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The N�1=3 behavior has been obtained recently [7] and the
k4=3 behavior is confirmed numerically (see Fig. 2). We
stress the nonuniform nature of the limit played by the
critical point � � 1 when comparing (14) and (13).

It is obvious that the spectra of the two Hamiltonians (1)
and (2) differ. This is due to the issue of ordering: in order
to make sense of (2), we must specify in which way we
order � and � to obtain a self-adjoint operator. There is no
unique prescription for this so that an unknown difference
exists between the two Hamiltonians. It is, however, known
that if care is taken, these errors are of order @2, that is, of
order N�2. From this follows that we also expect the
singularities to be different. We recall that they are asso-
ciated with the critical point and the transitions for � > 1.
As the semiclassical treatment preserves these basic fea-
tures it is expected that at least the qualitative pattern of the
exceptional points remains. In fact, there is (i) the special
feature at � � 1 (an accumulation point for N ! 1 [8]),
(ii) a high density of exceptional points near the separatrix
[15], that is for energies around Ec���, (iii) the absence of
singularities near real values for � < 1, and for � > 1 for
energies sufficiently distant from Ec���.

Of interest in the semiclassical treatment is the behavior
of the wave function at the phase transition for � > 1. In
accordance with the long dwelling time classically at the
saddle point, there is the phenomenon of superscarring for
the wave function. In fact, this has been shown generally
[20] for the occurrence of such double wells. It arises for
the specific values of k where the separatrix itself satisfies
the WKB condition . The wave function then shows a
dramatic concentration at the saddle point of the
Hamiltonian (or at the maximum in configuration space):
in particular, it can be shown that there is an interval, the
length of which goes to zero with @, that is with 1=N, in
which the whole wave function is asymptotically concen-
trated. This is reflected in the eigenvectors of (1) associated
with the eigenvalues at the minimal gap: in the basis of Jz
they become relatively concentrated in the first few com-
ponents, that is around � � 0; while the number of sub-
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FIG. 2. Log-log plot of Ek versus k. For clarity only every
eighth point of the first 500 levels are taken (N � 5000). The
straight line fits the slope 4=3 with 1% accuracy.
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stantial components increases with N, the first 20 compo-
nents exhaust the norm by about 50% irrespective of N.
This has been tested for � � 1:1, 1.5, and 2.0 where the
transition occurs at k � N=120, N=16, and N=8, respec-
tively. The effect is rather significant— the more so the
nearer � to unity— in that the first 20 components of the
neighboring wave functions contribute appreciably less to
the total norm.

In principle, wave functions can be directly determined
semiclassically. As this is not the major focus of this paper
we only outline the procedure. Switching to the usual polar
coordinates defined around the z axis but keeping the
definition of � as before, the renormalized Hamiltonian
K reads

K � ��
�
2
�1��2� cos2�: (16)

In these variables, the usual spherical harmonics are eigen-
functions of the operator �̂ � �2=iN�@=@� with an eigen-
value proportional to that of Jz. The semiclassical
eigenfunctions of (16) in the eigenbasis of �̂ are then
expressed as a function of the energy by means of standard
WKB formulae for the one-dimensional Hamiltonian (16).
The expressions fail, of course, in the usual manner near
the turning points of (16).

To summarize: using the semiclassical version of the
original model (1) leads to (2). The WKB approximation
then yields the expansion (8). Most information can then be
extracted from (11) being based on (10). There is (i) the
qualitative result about the phase transition occurring for
� > 1 as discussed in [8]. This includes the deviation from
the strict equidistant level sequence for large N and for � <
1 as well as the exponential (in N) separation of the
degenerate levels for � > 1. There is (ii) the expression
(13) for the level distance at the transition point for � > 1;
there is (iii) the finding (15) at � � 1. The apparent con-
trast of results (ii) and (iii) underlines once again the
nonuniform nature of the large N limit at � � 1. Note
that all these results have been confirmed numerically.
Additional results referring to the semiclassical wave func-
tion, in particular, the superscarring at the saddle point in
phase space are presented. The qualitative behavior of the
singularities of the spectrum (the exceptional points) seems
to be preserved in the semiclassical approach.
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