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Abstract
The strict coalescence of two resonance states may never occur (due to the sensitivity to small
external perturbations). However, its existence can have noticeable effects on measurable
quantities. The coalescence of resonances is associated with exceptional points (EPs) in the
spectrum of the system under study. The determination of exceptional points is often a hard
numerical task, due to the need to calculate many eigenvalues of a non-Hermitian Hamiltonian
as a function of the potential’s parameters which are to be varied adiabatically. The method
presented here is based on the Padé algorithm. This enables one to calculate the EPs with a
small number of solutions. As an illustrative numerical example an EP of H+

2 in strong laser
fields is calculated.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The fact that non-Hermitian Hamiltonians may have an
incomplete spectrum was proved a long time ago [1]. The
incomplete spectrum is obtained upon coalescence of two or
more eigenvalues and of their corresponding eigenfunctions
at a branch point. Such a point is commonly referred to
as an exceptional point (EP) [2, 3]. However, for many
years it was considered as a mathematical object rather than
a physical one. Only recently was it associated with physical
phenomena in optics [4], atomic physics [5, 6], electron–
molecule collisions [7], superconductors [8], quantum phase
transitions in a system of interacting bosons [9], electric field
oscillations in microwave cavities [10], PT optical coupled
systems [11, 12] and photodissociation of diatomic species
[13].

Since these points are in fact branch points in the
energy plane, this circumstance imposes limits to the analytic
representation of a resonance energy. The Padé formalism
[14] is a powerful tool to produce analytic representations.
We examine how this formalism behaves in the presence of

3 Also at UFR de Physique Fondamentale et Appliquée, Université Pierre et
Marie Curie, 75321 Paris, France.

EPs. We wish to demonstrate that the breakdown of the
Padé analytic continuation can be a tool for localizing an EP.
Although we discuss here the calculations of an EP of H+

2,
the method proposed in this paper for the determination of
EPs can be applied to other physical systems. The interest
for such a method results from the fact that only for very
specific potential parameters (laser parameters in our case)
two eigenstates coalesce. Therefore, the search for an EP
may require many solutions of the wave equation. We leave
aside the cases where the eigenvalues are obtained from the
diagonalization of matrices of very small sizes [15, 16]. In
such cases the EPs can be obtained from the parameter-
dependent analytic expressions of the eigenvalues. In more
general cases one may quote several systematic procedures to
calculate the values of the potential parameters for which two
or more eigenstates coalesce.

(1) The first one is based on some unpublished work of
Byers–Brown which has been first described in [17]. This
method uses the fact that a perturbational expansion of
the spectrum in the potential parameters is converging
provided the parameters get sufficiently small values.
Small means here that these potential parameter values
are embedded inside a circle/sphere with its radius
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determined by the location of the branch point in the
potential’s parameter space which is closest to the
origin of the circle/sphere. The branch point is an
EP in the spectrum, where two eigenvalues and their
corresponding eigenfunctions coalesce. The calculation
of the branch point requires the calculation of very high-
order perturbational corrections to the energy.

(2) Another method is based on the resonance exchange
taking place if the parameters are varied adiabatically
along a loop encircling the branch point (see for example
[13, 18, 19]). Since the parameters should be adiabatically
varied, the calculation requires a large number of
eigenfunctions of the non-Hermitian Hamiltonian.

(3) The third method for calculating the EPs is based on the
self-orthogonality property of the eigenfunction which
is associated with the EP [20, 21]. This approach
requires again many eigenfunctions of the non-Hermitian
Hamiltonian for calculating the norm of the almost self-
orthogonal state since one has to be close to the EP in
order to get extremely large values of the norm.

The method based on the Padé algorithm presented here
has some advantages over such procedures since it does not
require the calculations of the energy spectra for so many
values of the potential parameters. Another point should be
mentioned: when the Hamiltonian is time periodic, as in our
case, time serves as an additional coordinate rather than as a
parameter, as usual [22, 23].

As an illustrative numerical example, we consider a
molecule which is exposed to a continuous wave (cw) laser
field. Our system is the molecular ion H+

2. We have recently
shown [13] that, with appropriate laser parameters, pairs
of quasi-energies may be driven to coincidence. We will
show here how the use of the Padé analytic continuation
reduces substantially the task of the determination of the
laser parameters for which the EPs are obtained. Using this
information one may design an experiment to show the effect
of the EP on the vibrational transitions of H+

2 as the laser is
turned off. As explained in [13], if the molecule is driven
adiabatically along a loop encircling in the parameter space
an EP corresponding to the coalescence of two resonance
energies issued from two vibrational states, the undissociated
molecules are transferred from one state to another. This
behaviour of the Padé continuation procedure is not specific for
the photodissociation of H+

2 studied in this paper. Therefore,
we propose the use of the Padé continuation procedure for
a systematic search of exceptional points in other physical
systems.

In section 2, we recall briefly how the Floquet method
provides the photodissociation rate of a diatomic species in a
continuous wave (cw) laser field. Section 3 gives the Padé
procedure to be used in the search of EPs. In section 4, we are
considering the problem in two steps. Since the Padé method is
a one-parameter algorithm, while the determination of an EP
is the search for two parameters, we make some preliminary
checks about the capacity of this method to determine one of
the parameters when the other is already known. The method
works as expected: there is a breakdown of the continuation
scheme when the unknown parameter reaches the branch point,

thus providing a method to estimate this parameter. We then
turn to the determination of the two parameters when they are
unknown. In order to turn this two-parameter search into a
one-parameter one, we take advantage of a correlation which
can be established between the two parameters along an axis
passing through the EP in parameter plane. The procedure is
shown to yield rather accurate estimates about the location of
the EP, with the determination of a small number of solutions
of the wave equation. Section 5 illustrates the power of Padé
approximants to represent a resonance width when there is
no anomaly along the trajectory in the parameter plan. The
application is made here to the prediction of the intensity
at which there is vanishing of a resonance width. Some
conclusions are given in section 6.

2. Floquet formalism for calculating photo-induced
resonances

The photodissociation rate of a molecule submitted to a cw
field can be calculated with the Floquet formalism. Our model
implies the two electronic states |g〉 and |u〉 of a diatomic
molecule, these being the ground and excited electronic states
respectively. The model Hamiltonian is one dimensional. The
wavefunction is written as

|�(R, t)〉 = χg(R, t)|g〉 + χu(R, t)|u〉. (1)

If the intensity of the field is such as to allow only for
absorption of one photon of energy h̄ω, the Floquet ansatz
consists in writing the vector nuclear wavefunction as[

χg(R, t)

χu(R, t)

]
= e−iEF t/h̄

[
�g(R) eiωt

�u(R)

]
, (2)

where EF is called a quasienergy. Choosing the length gauge
for the matter–field interaction one gets the two coupled
equations:

[TN + Vg(R) + h̄ω − E]�g(R)− 1/2E0μ(R)�u(R) = 0, (3)

[TN + Vu(R) − E]�u(R) − 1/2E0μ(R)�g(R) = 0, (4)

where TN is the nuclear kinetic energy operator, Vg(R) and
Vu(R) are the Born–Oppenheimer potentials of the ground and
excited states, which for H+

2 are asymptotically degenerate,
and μ(R) is the electronic transition moment between states
|g〉 and |u〉. The laser electric field amplitude is of the form
E0 cos(ωt), with a wavelength λ = 2πc/ω. The solution
with Siegert outgoing wave boundary conditions in the open
channel produces a complex quasi-energy EF = ER − i�R/2.
�R/h̄ is the photodissociation rate, while �R/2 is the resonance
width. The equations are solved with a matching technique
based on the Fox–Goodwin propagator [24], with exterior
complex scaling ([25] and references therein), applied in [26]
to the calculation of the H+

2 resonances. The potentials of
H+

2 are those of Bunkin and Tugov [27]. It can be shown
[28] that in the present context gauge changes have no effect
on resonance energies. Finally, it should be stressed that if
the laser intensity is such as to impose the consideration of
multiphoton processes, EPs are still present, as shown in [29],
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Figure 1. Left panel. The solid curves give the real parts of the Floquet quasi-energies issued from the field-free states v = 10 and v = 11
as a function of laser intensity, at a fixed wavelength. The wavelength is close to that of the EP (493 instead of 494 nm). There is a crossing
of the Floquet energies. The circles mark the input data for the Padé procedure. The dashed curves correspond to the use of the Padé
approximants. They agree well with the Floquet results, except beyond the intensity of the EP (0.334 × 1013 W cm−2). Right panel. The
same informations for the widths of these two resonances.

where emission of two virtual photons and absorption of up to
three photons have been introduced in the formalism. The loop
chosen to produce a state-to-state transfer in the two-channel
approximation produces this same transfer in a six-channel
calculation. This proves that the EP still exists and is still
within this loop.

3. The Padé algorithm

The Padé formalism aims at giving an analytic representation
of a function of either a real or a complex coordinate. This
representation is in the form of the ratio of two polynomials.
It can be used to perform an analytic continuation of a
function. Schlessinger [14] has given several procedures to
reach such a representation. The first step is to ensure that,
given a set of input variables zi and values of a function F(z)

for these values of the variables, the ratio of polynomials
reproduces accurately these values at these points. This is
not a trivial problem. A straightforward fulfilment of the
relation

F(zi) = PN(zi)

QM(zi)
(5)

with

PN(z) =
N∑

k=0

pkz
k; QM(z) = 1 +

M∑
k=1

qkz
k (6)

and

QM(zi)F (zi) = PN(zi) (7)

requires the inversion of a matrix which is often ill conditioned.
We use instead the procedure given by Schlessinger [14] based
on truncated continued fractions. We have tested earlier the
reliability of this method [30].

4. Padé continuation of Floquet quasi-energies

Exceptional points in molecular photodissociation have been
recently studied [13] in the 1D H+

2 model described in the
section devoted to the Floquet formalism. In particular
it has been shown that the two resonance energies issued
from the field-free vibrational levels v = 8 and v = 9 are
merging for a wavelength λ

8,9
EP ∼ 442 nm and an intensity

I
8,9
EP ∼ 0.395 × 1013 W cm−2, while for the pair v = 9 and

v = 10 there is merging for λ
9,10
EP ∼ 442 nm and I

9,10
EP ∼

0.513×1013 W cm−2. We extend this study by a consideration
of the pair v = 10 and v = 11. We examine here the capacity
of the Padé procedure to represent the Floquet quasi-energies
and to give some useful information about the position of an
EP in the parameter plane. Since the Padé procedure is a one-
parameter method, while estimating the position of an EP in
the parameter plane is a two-parameter search, some special
strategy has to be formulated. The study proceeds in two
steps. The first step is to establish that if only one parameter
had to be determined, Padé approximants would provide a
way to determine the other parameter. For the pair v = 10
and v = 11 we have established in various ways that λ

10,11
EP is

∼494 nm and that I
10,11
EP is ∼0.334 × 1013 W cm−2.

In figure 1 the wavelength is 493 nm, while the intensity
runs from zero (in which case the quasi-energies are simply
the field-free energies, respectively −4550 cm−1 for v = 10
and −3551 cm−1 for v = 11), to 0.5 × 1013 W cm−2. λ

being somewhat smaller than λEP, the left panel shows (for
reasons to be given below) that the real parts of the Floquet
quasi-energies are crossing each other, while (right panel) the
widths show a wide avoided crossing. This shows how the
effects can be large even when departing slightly from
the EP parameters. The circles on each curve give the position

3
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Figure 2. Left panel. The solid curves give the real parts of the Floquet quasi-energies issued from the field-free states v = 10 and v = 11
as a function of wavelength at a fixed intensity (I = 0.334 × 1013 W cm−2). There is an avoided crossing of the energies. The circles mark
the input data for the Padé procedure. The dashed curves correspond to the use of the Padé approximants. They agree well with the Floquet
results, except beyond the wavelength of the EP (394 nm). Right panel. The same informations for the widths of these two resonances.

of the input values given to the Padé procedure. The input
variables consist of ten values of the intensity from 0.2 ×
1013 W cm−2 to 0.3 × 1013 W cm−2. The input functions are
the ten corresponding complex quasi-energies. Both panels
show a clear breakdown of the Padé method as soon as I is
approaching IEP. The breaking point allows IEP to be estimated
as ∼0.347 × 1013 W cm−2 from the left panel, while from the
right panel as ∼0.338 × 1013 W cm−2. In figure 2 the role of
the two parameters is exchanged. The intensity is given the
value 0.334 × 1013 W cm−2, while the wavelength is now the
parameter given as an input to the Padé procedure. The same
conclusion emerges. There is again a breakdown of the Padé
method when the wavelength goes beyond λEP. From both
panels λEP is estimated to be ∼494 nm. These preliminary
calculations show the failure of the extrapolation procedure
when reaching a branch point. If no information about the EP
is available, another approach is needed.

To formulate a general one-parameter approach in the
parameter plane, we will make use of some properties of the
resonance energies close to an EP established by Hernández
et al [31]. According to their analysis, it is possible to
define an axis in the parameter plane passing through the
EP, which is such that the EP is the dividing point between
two half-axes. On one of them there is equality of the real
parts of the resonance energies, while on the other half-axis
it is the imaginary parts (or the widths) which are equal.
Two points are enough to determine this axis. It has been
shown elsewhere [32] that in the present problem λ < λEP

is a condition for having an equality of the real parts of the
quasi-energies, while λ > λEP produces an equality of the
imaginary parts. A preliminary calculation of the resonance
energies at a fixed wavelength (respectively 480 and 490 nm)
as a function of intensity has produced crossings of the real

480 485 490 495 500
0.2

0.3

0.4

0.5

0.6

λ (nm)

I 
(1

0 
  W

/c
m

  )
13

2

EP

1
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Figure 3. Two trajectories calculated for the wavelengths 480 and
490 nm have produced a crossing of the real parts of the
quasi-energies issued from v = 10 and v = 11 at the intensities
0.575 × 1013 and 0.397 × 1013 W cm−2. These two points marked 1
and 2 allow for the determination of the axis passing (in principle)
through the exceptional point. Shown also is the EP in the
parameter plane, which is slightly outside the axis.

parts of the energies at respectively 0.575 × 1013 and 0.397 ×
1013 W cm−2. These two points are shown in figure 3. The
position of the EP is also indicated. The EP is very close to
being on the straight line defined by the two points. The next
step is to use these two points corresponding to a crossing of
the real parts to relate the intensity to the wavelength along this
line, in the form I = aλ + b, and to take λ as the independent
parameter. In figures 4 and 5, there is given, successively for
the resonances 10 and 11, the Floquet results along this line,

4
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Figure 4. Comparison between Padé approximants (solid curves) and Floquet results (dashed curves) for the energy (left panel) and the
width of the resonance v = 10 (right panel). The intensity is correlated with the wavelength according to equation (8). The circles give the
positions chosen for the input data of the Padé method. Padé approximants fail when λ reaches the wavelength of the EP.
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Figure 5. Same comparison between Padé approximants and Floquet results as, in figure 4, now for the resonance v = 11.

as well as the Padé approximants based on the points indicated
by circles. The situation met in the previous one-parameter
case is again present. The Padé approximants agree very well
with the Floquet results, except beyond the EP. An estimate
from the four graphs gives λEP ∼ 493 nm, yielding, from the
relation correlating wavelength and intensity, I = 0.345 ×
1013 W cm−2.

A variant of this procedure would be to start with two
values of λ larger than λEP. This would allow us to obtain two
points in the parameter plane with equality of the imaginary
parts of the quasi-energies, leading again to the axis passing
through the EP. Extrapolation would be backwards towards

λEP. The failure of the Padé approximants should lead to
another determination of λEP.

5. Padé approximants and zero-width resonances

As an illustration of the power of the Padé method to represent
the resonance energies when no branch point is to be met along
a trajectory in the parameter plane, we present in figure 6 the
width (solid curve) as a function of intensity for the resonance
issued from v = 10 at a wavelength λ = 450 nm. The width
vanishes for an intensity I = 0.302 × 1013 W cm−2. It has
been shown before [33] that this behaviour of the width is
typical of those resonances of H+

2 which are of Feshbach type,
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Figure 6. The solid curve represents the width issued from the
field-free level v = 10 as a function of intensity. The width is
vanishing at a critical intensity I = 0.302 × 1013 W cm−2. The
circles give the input points for the building of the Padé
approximant. The dashed curve is the Padé approximant. On the left
of the critical intensity it agrees fully with the Floquet result. The
critical intensity is well accounted for.

that is, which go asymptotically to the levels of the upper of the
two potentials obtained by the diagonalization of the radiative
coupling. The circles on figure 6 represent the input given
to the Padé procedure, while the dashed curve corresponds to
the Padé approximant. The critical intensity at which there
is vanishing of the width is very-well accounted for by the
Padé extrapolation. There is of course a failure of the latter
procedure for higher intensities, but far from the input region.

6. Concluding remarks

It is shown that the Padé continuation procedure breaks down,
as expected, when approaching a branch point (the so-called
exceptional point in the present context), where two resonance
states coalesce. By calculating the photo-induced resonance
eigenvalues of H+

2 in strong laser fields for a set of values of
correlated laser parameters (intensity and frequency) an EP
could be estimated by using the Padé continuation procedure.
This behaviour is not specific for the photodissociation of H+

2
we study in this paper. Therefore, we propose the use of the
Padé continuation procedure for a search of exceptional points
in other physical systems.
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