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1Laboratoire de Photophysique Moléculaire du CNRS, Université Paris-Sud, Bâtiment 210, Campus d’Orsay 91405, Orsay, France
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We study theoretically the photodissociation dynamics of the Hþ
2 molecular ion exposed to a linearly

polarized laser light. It is shown that it is possible to choose a laser wavelength and intensity so as to

produce a coalescence of two photodissociation vibronic resonance states. At such a coalescence point,

also called an exceptional point, the photodissociative resonance wave function is self-orthogonal. This

unique phenomenon which is presented here for light induced molecular dynamics enables us to transfer

completely the nondissociated molecules from one vibronic state to another by varying adiabatically the

laser frequency and intensity along a closed contour which encircles the exceptional point.
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When molecules are exposed to laser fields, their bound
states become metastable (the so-called resonances) which
have a finite lifetime due to ionization and/or dissociation.
In the present Letter, we consider the photodissociation of
Hþ

2 . The corresponding rates of decay � or lifetimes @=�
depend on the initial vibrational state and are associated
with the imaginary part of the complex energy eigenvalues
E� i�=2 of the molecular Hamiltonian dressed by light.
These eigenvalues represent the poles of the scattering
matrix [1–3]. The value of � depends on the laser parame-
ters (wavelength � and intensity I). It might happen that for
very specific laser parameters two different resonances
(each of them being issued from a different field-free
vibrational state of Hþ

2 ) coalesce. This special situation
cannot be adequately treated within the framework of the
conventional Hermitian quantum mechanics (QM) where
all of the state vectors possess a real positive definite norm
and even the concept of a resonance is not well defined.
The coalescence of two different mutually orthogonal
resonance states into a single self-orthogonal state can be
mathematically defined only within the framework of the
non-Hermitian formalism of QM, where complex energy
eigenvalues appear and where one deals with complex
valued norms defined on the basis of the so-called c
product [4]. The points (�, I) in parameter space where
self-orthogonality occurs are usually called exceptional
points (EPs) [5,6]. In the present Letter, we will show
that self-orthogonal resonance states do exist in the context
of molecular photodissociation and have important experi-
mentally observable consequences. Namely, we shall ex-
ploit the self-orthogonality phenomenon to build a chirped
laser pulse which operates a selective transfer from one
vibronic state of Hþ

2 into another for those molecules
which have not dissociated during the process of interac-
tion with the pulse.

Self-orthogonality phenomena in atomic physics have
been analyzed theoretically a long time ago [7] for the case
of the complex rotated Hamiltonian of the helium atom.

More recently, different manifestations of the EP phe-
nomenon have been described in optics [8], in atomic
physics [9,10], in electron-molecule collisions [11], super-
conductors [12], quantum phase transitions in a system of
interacting bosons [13], and electric field oscillations in
microwave cavities [14], and in PT -symmetric wave-
guides [15]. Varying the Hamiltonian parameters in an
adiabatic way along a closed path which encircles the EP
has been examined in a study of Hernández, Jáuregui, and
Mondragón [16], who have shown that there is an inter-
change between the two distinct resonance solutions which
merge at the EP. This is a characteristic feature of an EP,
interpreted mathematically as an effect of the multivalued-
ness of a function of a complex variable detected whenever
going around a branch point. To the best of our knowledge,
no theoretical or experimental work regarding EPs has so
far been pursued in the context of laser driven photodisso-
ciation dynamics of molecules. It is the purpose of the
present work to demonstrate numerically the existence and
physical implications of EPs for the case of laser induced
photodissociation dynamics of Hþ

2 . The Hamiltonian pa-
rameters to be varied here are the intensity and frequency
of a linearly polarized laser light.
Let us briefly outline the theoretical formulation of the

molecular photodissociation problem. We assume that the
laser field couples only the two electronic states X2�þ

g and

A2�þ
u ofHþ

2 , denoted hereafter as jgi and jui, respectively.
The associated Hamiltonian is expressed as a 2-by-2 matrix

H ðtÞ ¼ TR þ VgðRÞ dðRÞE0 cosð!LtÞ
dðRÞE0 cosð!LtÞ TR þ VuðRÞ

� �
: (1)

Here R stands for the vibrational coordinate, and TR ¼
½�@

2=ð2�Hþ
2
Þ�ðd2=dR2Þ is the usual vibrational kinetic

energy operator, with�Hþ
2
the reduced mass. The functions

Vg;uðRÞ represent the potential energy curves of the two

electronic states. The dipole matrix element between these
two electronic states is denoted as dðRÞ. The standard
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length gauge with dipole approximation is used, with
symbols E0 and !L defining, respectively, the amplitude
and frequency of the monochromatic laser light. The wave-
length is � ¼ 2�c=!L. Since the Hamiltonian is time
periodic with period T ¼ 2�=!L, the light induced mo-
lecular dynamics can be most conveniently studied using
the formalism of the Floquet theory [17]. This essentially

means the use of an ansatz j�ðR; tÞi ¼ e�iEFt=@j�FðR; tÞi,
where EF is the so-called quasienergy. In our case
j�FðR; tÞi ¼ �gðR; tÞjgi þ�uðR; tÞjui. The Schrödinger

equation becomes now equivalent to a Floquet eigenvalue
problem�

HðtÞ � i@
@

@t

�
�gðR; tÞ
�uðR; tÞ

� �
¼ EF

�gðR; tÞ
�uðR; tÞ

� �
; (2)

where the time variable t is treated as an additional dy-
namical coordinate running through an interval ½0; T�. Note
that the quasienergy EF plays to some extent the same role
as an eigenenergy of a time-independent Hamiltonian. By
applying the Fourier expansion

�g;uðR; tÞ ¼
Xn¼þ1

n¼�1
ein!Lt’n

g;uðRÞ; (3)

one obtains from problem (2) an equivalent set of coupled
equations

½TR þ VgðRÞ þ n@!L � EF�’n
gðRÞ

þ dðRÞðE0=2Þ½’nþ1
u ðRÞ þ ’n�1

u ðRÞ� ¼ 0 (4)

accompanied by similar equations constructed via an in-
terchange of subscripts g $ u. The above representation of
the solutions of the time-dependent Schrödinger equation
as a Floquet eigenvalue problem is physically insightful
since it enables one to interpret different coupled channels
(labeled by index n) in terms of the number of photons that
the molecule has absorbed or emitted [17]. The excited
state electronic potential VuðRÞ is purely repulsive, leading
thus to photodissociation in the presence of the laser. For
this reason, the system of coupled eigenvalue equations (4)
does not possess any bound state solutions as soon as E0 �
0. Resonances are characterized by outgoing boundary
conditions [1–3,18]. This is compatible only with quan-
tized complex eigenenergies identifiable as poles of the
scattering matrix. The real part ReðEFÞ of a given complex
Floquet eigenvalue EF is interpreted physically as the
energy of the resonance state, whereas �F ¼ �2 ImðEFÞ
determines the corresponding decay rate. Outgoing bound-
ary conditions imply that the resonance wave functions are
not square integrable. To overcome this difficulty, we shall
follow the well established approach of complex scaling
transformations [2,3] which forces the resonance wave
functions to decay exponentially as R ! 1. After the
complex scaling transformation is implemented, the so-
called self-overlap � of a given resonance solution
�FðR; tÞ is evaluated as

� ¼ Xn¼þ1

n¼�1

Z 1

0
dRf½’n

gðRÞ�2 þ ½’n
uðRÞ�2g: (5)

Expression (5) is used to study the self-orthogonality phe-
nomenon that occurs whenever two photodissociation
resonances coalesce. Importantly, no complex conjugates
of the Fourier components ’n

g;uðRÞ are taken here, in con-

sistency with the definition of the non-Hermitian c product
(see Refs. [2,4]). The self-orthogonality phenomenon can-
not be properly described using the standard Hermitian
definition of � where the usual complex conjugates of
’n

g;uðRÞ would appear. The photodissociation resonances

of Hþ
2 were calculated previously [19,20]. We use the Hþ

2

potential energy curves and the transition dipole element
taken from the work of Bunkin and Tugov [21]. The
coupled eigenvalue equations (4) are solved on a grid using
a matching technique based on the Fox-Goodwin propa-
gator, with exterior complex scaling [19].
Figure 1 shows an outcome of our numerical calcula-

tions aimed at demonstrating the existence of coalescent
photoinduced resonances for specifically chosen wave-
lengths �EP and intensities IEP (’E2

0). Energies and rates

are evaluated as a function of intensity for various �’s until
a near coincidence of both energies and rates is obtained.
We have found that the resonance associated with the
field-free vibronic bound state v ¼ 8 coincides with that
of v ¼ 9 at �8–9

EP ¼ 442:26 nm and I8–9EP ¼ 0:3949�
1013 W=cm2. Another coalescence point corresponding
to v ¼ 9 and v ¼ 10 is detected at �9–10

EP ¼ 401:14 nm
and I9–10EP ¼ 0:5130� 1013 W=cm2. In both cases the tan-
gents to the curves of Fig. 1 at the exceptional points are
vertical (i.e., showing a cusp behavior at the EP [16]). We
have also checked the characteristic signature of the EP on
the wave functions. More precisely, the resonance wave
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FIG. 1 (color online). Left column: Near coincidence of two
resonance energies issued, respectively, from the field-free vibra-
tional states v ¼ 8 and v ¼ 9 of the X2�þ

g state of Hþ
2 for the

laser parameters �8–9
EP ¼ 442:26 nm and I8–9EP ¼ 0:3949�

1013 W=cm2. Right column: The same for the case of v ¼ 9
and v ¼ 10 and �9–10

EP ¼ 401:14 nm and I9–10EP ¼ 0:5130�
1013 W=cm2.
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functions become indistinguishable from one other (and
thus self-orthogonal) when approaching the EP. Close to
the EP a dramatic reduction of the self-overlap � is ob-
served numerically (at the EP � ¼ 0).

As mentioned in the introductory part, the presence of an
EP has also important consequences, which should become
apparent when going adiabatically around the EP along a
closed contour in the ðI; �Þ parameter space using an
appropriate chirped pulse. Figure 2 demonstrates that this
is indeed the case also in the present context of molecular
photodissociation. The considered closed contour is de-
fined by formulas

I ¼ Imax sinð�=2Þ; � ¼ �0 þ �� sinð�Þ; (6)

where the parameter� runs from 0 to 2�. Our calculations
were done for three distinct closed contours. The first one
is obtained by setting Imax ¼ 0:3� 1013 W=cm2, �0 ¼
430 nm, and �� ¼ 30 nm. This contour does not encircle
any EP. Starting from the v ¼ 8 vibronic molecular state at
I ¼ 0 and completing the closed loop which returns to I ¼
0, one finds that the molecule returns to its v ¼ 8 vibronic
field-free state, provided of course that dissociation did not
take place during the passage along the loop. In the next
paragraph, we examine the corresponding dissociation
probability and give numerical estimates showing that a
considerable portion of molecules is indeed left undisso-
ciated. Before delving into these matters, let us look at the
second contour which is constructed by increasing Imax to
0:5� 1013 W=cm2. This contour is much more interesting
since it encircles the EP associated with v ¼ 8 and v ¼ 9.
Figure 2 clearly shows that, by starting from the v ¼ 8 (or
reciprocally v ¼ 9) vibronic molecular state at I ¼ 0 and
completing the closed loop which returns to I ¼ 0, one

finds the molecule in its v ¼ 9 (or reciprocally v ¼ 8)
vibronic field-free state. Of course, this applies again
only if not all molecules have dissociated during an adia-
batic passage along the loop. If a significant portion of
undissociated molecules is left after completion of the
contour, we have achieved a selective light induced transfer
between two specific molecular vibronic states. The third
contour drawn in Fig. 2 uses Imax ¼ 0:6� 1013 W=cm2

and encircles two EPs corresponding to v ¼ 8; 9 and v ¼
9; 10. Here, starting from v ¼ 8 at I ¼ 0 leads to a transfer
into the v ¼ 10 vibronic state after completion of the loop.
This behavior can again be exploited in the context of
coherent control.
In order to obtain a well defined estimate of the fraction

of undissociated molecules left after completion of a loop,
we shall employ the formalism of the adiabatic Floquet
theory [20,22]. This assumes that the chirped laser pulse
envelope and its frequency vary sufficiently slowly with
time such that the overall fraction of nondissociated mole-
cules PND is given as

PND ¼ exp

�
�
Z tf

0
�FðtÞdt

�
: (7)

Here �FðtÞ is associated with the relevant Floquet quasi-
energy eigenvalue calculated using the instantaneous field
parameters at time t, and the symbol tf stands for the

duration of the light pulse. Let us consider a chirped pulse
built by choosing � ¼ 2�t=tf in Eq. (6). We have previ-

ously shown [20] that for the choice of tf ¼ 56 fs (about

40 optical cycles) the light induced molecular dynamics of
Hþ

2 follows indeed an adiabatic path, as demonstrated by
comparison with time-dependent wave packet evolution.
Now we are ready to estimate what fraction of molecules
remains undissociated after they are exposed to different
chirped pulses generating different loops shown in Fig. 2.
Consider first the 8 to 8 process (first loop in the parameter
plane of Fig. 2). Equation (7) yields PND ¼: 0:25. This
means that at the end of the pulse there is a quarter of
the molecules back in the initial state. More important of
course is the case of the 8 to 9 or 9 to 8 transfers. We
observe in Fig. 2 that the instantaneous rates �FðtÞ differ
considerably for the two 8 ! 9 and 9 ! 8 trajectories,
with the 9 ! 8 process being better protected against
dissociation. Correspondingly, Eq. (7) implies PND to be
very close to zero (�0:001) for the 8 ! 9 transfer, while
PND � 0:1 for the 9 ! 8 transfer. The just discussed asym-
metry between the two opposite processes arises due to the
fact that the same point on the laser parameter loop corre-
sponds to two different resonances, depending on the
choice of the initial molecular vibronic state.
We can summarize by saying that for the laser parame-

ters we have used in our calculations it turns out that the
transition from the 9th vibrational level of Hþ

2 to the 8th
one is feasible by our new mechanism which is based on
the self-orthogonality phenomenon (10% of the molecules
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FIG. 2 (color online). Lower panel: Different contours in the
parameter plane with no EPs encircled (solid black curve), with
one EP v ¼ 8; 9 encircled (dashed black curve), and two suc-
cessive EPs v ¼ 8; 9 and v ¼ 9; 10 encircled (dashed-dotted red
curve). The corresponding trajectories in the energy plane are
shown in the upper panel, in each case with the associated initial
state and the final state. Note that for the pair 8–9 we have two
trajectories, starting either from v ¼ 8 (dashed black curve) or
from v ¼ 9 (long dashed blue curve).
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do not dissociate during the application of the adiabatically
chirped laser pulse), while the 8th to 9th transition is not
feasible. Owing to the multichannel character of the for-
malism, the observed coherent control scheme is expected
to persist for other molecular species and with the intro-
duction of rotational degrees of freedom. Other possible
signatures of exceptional points would be to examine, in
the context of photodissociation, the zeros in absorption
line shapes resulting from the interference between over-
lapping resonances, as done by Shapiro [23,24]. An EP is
actually an extreme case of overlap. Such signatures have
already been discussed in scattering processes for one-
dimensional model systems by Vanroose et al. [25] and
Hernández, Jáuregui, and Mondragón [26].
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Université Pierre et Marie Curie, 75321 Paris, France.

[1] R. Taylor, Scattering Theory (Wiley, New York, 1972).
[2] N. Moiseyev, Phys. Rep. 302, 212 (1998).
[3] W. P. Reinhardt, Annu. Rev. Phys. Chem. 33, 223 (1982).
[4] N. Moiseyev, P. R. Certain, and F. Weinhold, Mol. Phys.

36, 1613 (1978).
[5] T. Kato, Perturbation Theory of Linear Operators

(Springer, Berlin, 1966).
[6] W.D. Heiss and H. L. Harney, Eur. Phys. J. D 17, 149

(2001).
[7] N. Moiseyev and S. Friedland, Phys. Rev. A 22, 618

(1980).
[8] M.V. Berry, Czech. J. Phys. 54, 1039 (2004).

[9] O. Latinne, N. J. Kylstra, M. Dörr, J. Purvis, M. Terao-
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