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Fifth- and higher-order MBPT results are reported for a series of examples, BH, B%, HF and H20 , for which higher- 
order perturbation theory might be important. MBPT(5) differs from MBPT(4) by as much as 4.3 mh, and by constructing 
the size-extensive [ 2,1 ] Pad~ approximant, which is possible with E(s), one can get exceptional agreement with the full C1 
results. Variational perturbation results are also reported. 

1. Introduction 

With the development of  many-body perturbation 
theory (MBPT) [ 1 -6 ]  and coupled-cluster (CC) meth- 
ods [2,6,7] for accurate ab initio quantum mechanical 
applications [2], great interest focused on the role of  
higher excitations in correlated wavefunctions. The 
proper treatment of  such excitations in MBPT/CC is 
responsible for the absence of  unlinked diagrams and 
the consequent size-extensive nature of  MBPT/CC 
methods. Besides the size-extension property, MBPT/ 
CC theory has other computational advantages that 
emerge due to the separation o f  the connected and 
disconnected parts of  the problem and the evaluation 
of  diagrams directly from molecular integrals [6]. 

The emphasis on higher-excitation contributions 
stimulated by MBPT/CC methods has spurred much 
improved procedures based upon the graphical unitary 
group approach [8] for direct configuration interac- 
tion (CI) calculations. These procedures are highly ef- 
ficient at handling higher-excitation effects in CI via 
multi-reference expansions [9] compared to the pre- 
vious generation of  CI calculations, which, of  necessity, 
were usually limited to single-reference single and 
double excitations (CISD) [10]. Now, a series o f  
"model" full CI calculations(i.e, including all possible 
excitations for the problems) have been reported as 
benchmarks for various correlated methods [ 11-13] .  
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The current state-of-the-art in MBPT is complete 
fourth-order calculations, which consist of all single, 
double, triple, and quadruple excitation contribu- 
tions through that order [ 14]. This requires evaluating 
39 diagrams in the SCF reference case, as counted in 
terms of  the antisymmetrized form used by Bartlett 
[2], while fifth-order MBPT would require evaluating 
840 such diagrams. The latter would appear to be im- 
practical in a straight-forward way. However, CC theory 
is an infinite-order generalization of  MBPT that sums 
categories of  MBPT diagrams to all orders, but not nec- 
essarily all MBPT diagrams for a given order, and it 
may be used to evaluate classes of  such higher-order 
diagrams. 

In the coupled-cluster doubles (CCD) model, the 
excitation operator T is truncated to double excitation 
effects only, i.e. the wavefunction is exp(T2)]q~0) , and 
introduces effects o f  doubles, disconnected quadruples, 
hextuples, octuples, etc. in all orders [6]. In the SCF 
case, the CCD result includes second- and third-order 
MBPT and fourth-order doubles and quadruples, as 
well as some higher-order MBPT contributions. CCSD 
[15] adds singles in fourth order and classes o f  triples 
(e.g. T 1 T2 and T3/3!) and higher-order contributions 
(e.g. T 1 T22/2 ). The addition of  T 3 into CC theory has 
been partially achieved in the CCSDT-1 model [ 16,17 ]. 
This model is correct through the complete fourth- 
order energy, MBPT(4), and the full second-order 
MBPT wavefunction, while augmenting CCSD with ad- 
ditional higher-order terms that arise from T 3. Most 
of  the 840 diagrams in fifth-order MBPT are included 
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in this model, but not all. In particular, the diagrams 
that arise from T 4 (i.e. "true" rather than discon- 
nected quadruples, T2/2) are excluded. 

To develop an idea of the value of higher-order 
MBPT energy contributions, while avoiding the evalua- 
tion of the diagrams via CC theory or directly with 
MBPT formulae, it is convenient to take advantage of 
configuration language and resort to straightforward 
Rayleigh-Schr6dinger perturbation theory (RSPT) 
based on CI to obtain these terms. Although this ap- 
praoch is a much slower computational procedure than 
MBPT or CC, it is very easy to evaluate terms this way 
for relatively small examples. 

It is well known that the CI energy can be obtained 
by a recursive perturbation theory solution of the CI 
problem [18-20].  It is also well known that there are 
no unlinked diagrams in each order of RSPT, due to 
their mutual cancellation, provided that all possible 
CI excitations that can contribute to that order are 
included [6]. Consequently, in the following we use 
configuration language to obtain high-order MBPT 
contributions for several examples for which the full 
CI result is available [ 12,13]. In addition, we report 
variational perturbation theory bounds and Pad~ ap- 
proximant extrapolations based upon these higher- 
order perturbation energies [ 18,19]. 

2. Theory 

Assuming the separation H = H 0 + V, the recursive 
formulae of RSPT in intermediate normalization are 

n - 2  
qb(n) = R o ( V  _ E(1))~}(n- 1) _ ~ RoE(n-l)~b(l) ,(1) 

I=1 

E(n+l) = (~OI VI4 }(n)) , 

where the RS resolvent is 

R 0 = Q(E 0 - H 0 ) - I Q ,  

(2) 

(3) 

with Q the projector for the orthogonal complement 
to the reference function. In a finite space spanned by 
a set of orthonormal functions If), characterized by the 
projector Of = I])(fl, a = Of - 14~0)(~0[ = Ih)(h I, we 
have the inner-projected form o fR  0 [20], 

R 0 = Ih)(hlE 0 - H0lh)-  1(hi = Ih) R0(hl, (4) 

which defines the RSPT quantities within the finite 

space, 

ot (n) = R 0 ((hi V -  E(1)lh)ct (n-  1) 

n - 2  
- ~ E(n-l)~t(l)) ,  

I=1 
n~>2 ,  

~(1) = Ro(h I VI~o) = Roar(O), 

E(2n+l) =0t(0)]-V~(2n) =~t(n)tv~(n) 

(5) 

(6) 

n n 

~ E(2n+l-k-l)~t(k)tct(l) , (7a) 
k=l l=1 

E(2n) = 0t(0)t V~(2n- 1) = ~t (n)] 'v~(n- 1) 

n n - 1  

~ E(2n-k- l )c l (k) t~(1) .  
k=l l=1 

(Tb) 

In the CI case, the set of functions Ih) are chosen 
to be the usual N-particle determinants or symmetry 
adapted configurations. If the functions Ih) are eigen- 
functions o f H  0, then the R 0 matrix is diagonal. The 
number of configuration functions [h) is approximately 
proportional to n l, where n is the number of basis func- 
tions and l is the level of excitation. Consequently, the 
matrix (hi Vlh) = (hlH - Holh) has a number of ele- 
ments approximately proportional to n 21, and the limit- 
ing factor in a recursive calculation of RSPT to high 
order is the number of multiplications, which is pro- 
portional to n 3l per iteration. Obviously symmetry 
and intelligent evaluation schemes exploiting sparse 
matrix operations reduces this asymptotic dependence 
greatly, but this is still a much slower process than the 
direct evaluation of MBPT diagrams. For example, 
fourth-order perturbation theory requires considera- 
tion of quadruple excitations, 1 = 4, which could be 
close to an n 12 process in a configuration based scheme, 
while the direct evaluation of MBPT(4) is only n 6 for 
quadruple excitations and n 7 for triple excitations. 
However, in higher order the proliferation of diagrams 
adds other formidable complications in MBPT, while 
higher orders may be easily, if more slowly, computed 
from eqs. (5)-(7)  provided the large dimension of V 
is manageable. 
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In addition to the linear sum of perturbed energies, 
we want to consider two other possibilities: variational 
upper bounds and Pad~ approximant non-linear sum- 
mations [ 18,19]. The former are obtained by consider- 
ing the trial wavefunction 

= (90 + ~k •k(9(k) " (8) 

Inserting this into a Rayleigh-Ritz upper bound for- 
mula, we have the secular equation [20], 

(H - ES) = 0 ,  (9) 

m n 
Hmn= ~ ~ (E (m+n+l-k-l) - E(m+n-k-l)) 

k=0 /=0 

X %(k)l (9(t)> 
m 

+ ~ E(m-k)((9(k)[(9 (n)) 
k=O 

n 

+ ~ E(n-k)((9(k)l(9(m)), (10) 
k=O 

The calculation of the [N,N-  1] and IN, N] Pad~ ap- 
proximants requires perturbed energies of order 2N + 1 
and 2N + 2, respectively. The N index in the Pad~ ap- 
proximant notation is determined from the series for 
the correlation energy, where E (2) is considered the 
first term. The first approximant of each type [ 1,0] 
and [ 1,1 ] corresponds to the well-known "geometric" 
approximation based upon the E(3)/E(2) and E(4)/ 
E(3) ratios, respectively. As shown by Bartlett and 
Br~indas [ 15], the [N,N - 1] approximants are invariant 
to the reference energy, but more importantly, unlike 
the VPCI or any truncated CI results, the Pad~ extrap- 
olation preserves the size-extensivity property. This 
property follows immediately from eqs. (12)-(17).  
Since the MBPT energies E(n)(M) for M separable 
identical units must be ME (n), we have at(M) = Mat( l ) ,  
A(M) = MA(1), and at (M)A(M) - la(M) = 
Mdf(1)A(1)-la(1). Obviously, the IN, N] approximant 
is also size-extensive by the same argument. 

3. Boron hydride 

Smn = ((9(m)l(9(n)) = ~(m)tat(n) (11) 

Diagonalization provides upper bounds, termed VPCI, 
which converge to the CI eigenvalue. Such perturba- 
tion-variation methods, some built upon Brillouin- 
Wigner instead of RS perturbation theory, form the 
basis for the large CI diagonalization scheme proposed 
by Bartlett and Br/indas [ 15 ] and related methods sug- 
gested by others [21]. 

Another approach for extrapolating to the CI eigen- 
value is to use some non-linear summation technique 
like Pad~ approxirnants [5,18,19]. Unlike VPCI, this 
does not require the various perturbation wavefunc- 
tions,~t (k), but only the energies. The [N4V - 1] and 
[NcV] Pad~ approximants are given by 

[N,N- 1] = a t A - l a ,  (12) 

[N,N] = E (2) + b't" B - l b ,  (13) 

a1" = (E(2)E(3). . .E(N+ 1)), (14)  

bt = (E(3)E(4)...E(N+ I )) , (15) 

Apq=E(P+q)-E(P+q +1) ( p , q = l , 2 , . . d V ) ,  (16) 

Bpq =E (p+q+l) - E  (p+q+2) (p, q = 1,2 .... N) .(17) 

As a first example of higher-order MBPT results we 
consider the BH molecule in a DZP basis, for which 
the full CI result has been reported [12]. This mole- 
cule is known since the first MBPT calculations [4] 
to be a poorly convergent case, and the fourth-order 
energy is still 3 kcal/mol away from the full CI value 
(table 1). Hence, fifth order is expected to be signifi- 
cant, and E(5) amounts to 2.5 mh, which is almost 
half of E (4), while E (6) is again about half of E (5). 
In fact, assuming a geometric series after E (4), with 
r = 0.5, would give Eeorr = -0.0886 hartree, which 
is quite close to the full CI result. The perturbation 
sum through sixth order is within 1 kcal/mol of the 
full CI energy, while a variational upper bound (VPCI- 
2), which can be evaluated with energies through E (5) 
and the first- and second-order MBPT wavefunction, 
is also whitin 1 kcal/mol of the full CI. Since VPCI-2 
is an upper bound to CISDTQ £or any problem, it 
would be a very interesting result to have available for 
chemically interesting examples. However, the best 
convergence is provided by Pad~ approximants, for 
which the [2,1] approximant is also available once 
E (5) is known. Pad~ approximants also have the con- 
siderable advantage over the VPCI results in that the 
former are size-extensive [2]. The infinite-order 
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Table 1 
MBPT, Pad~ approximants and VPCI results for boron hydride, R = 2.329 au, with DZP basis [ 12] 

11 January 1985 

Order MBPT Pad~ approximants 

E(N) a) Ecorr delta b) Ecorr delta 

VPCI 

Ecorr delta 

1 -25.125260 0.0 55.07 
2 -0.060297 -0.060297 17.24 
3 -0.016482 -0.076779 6.89 [1,0] -0.082980 22.10 
4 -0.005924 -0.082703 3.18 [1,1] -0.086027 1.10 
5 -0.002540 -0.085242 1.58 [2,1] -0.087518 0.15 
6 -0.001226 -0.086469 0.81 [2,2] -0.087817 -0.03 
7 -0.000629 -0.087098 0.42 [3,2] -0.087817 -0.03 
8 -0.000330 -0.087429 0.21 [3,3] -0.087817 -0.03 
9 -0.000173 -0.087601 0.10 [4,3] -0.087734 0.02 

10 -0.000088 -0.087690 0.05 [4,4] -0.087768 0.00 
11 -0.000043 -0.087733 0.02 [5,4] -0.087763 0.00 
12 -0.000020 -0.087753 0.01 [5,5] -0.087764 0.00 
13 -0.000009 -0.087762 0.00 [6,5] -0.087764 0.00 
14 -0.000003 -0.087765 0.00 [6,6] -0.087764 0.00 
15 -0.000001 -0.087766 0.00 [7,6] -0.087764 0.00 
16 0.000000 -0.087766 0.00 [7,7] -0.087764 0.00 
17 0.000000 -0.087765 0.00 [8,7] -0.087764 0.00 
18 0.000000 -0.087765 0.00 [8,8] -0.087764 0.00 
19 0.000000 -0.087764 0.00 [9,8] -0.087764 0.00 
20 0.000000 -0.087764 0.00 [9,9] -0.087764 0.00 

CCSDT-1 c) -0.087322 0.28 

fuH CI -0.087764 0.00 

-0.078677 5.70 

-0.086608 0.73 

-0.087651 0.07 

-0.087748 0.01 

-0.087762 0.00 

-0.087764 0.00 

-0.087764 0.00 

-0.087764 0.00 

-0.087764 0.00 

a) All results in au except for those under "delta" which are in kcal/mole. 
b) Delta is the correlation energy at this level minus the full CI value in kcal/mol. 
e) From ref. [17]. 

CCSDT-I result is considerably better than MBPT(5), 
and much closer to the [2,1] approximant result. 

4. Hydrogen fluoride 

Unlike BH and Be2, for which the perturbation 
series are slowly convergent, HF is usually thought 
to represent a rapidly convergent case. This is seen to 
be somewhat accidental once E (5) is obtained, since 
E (4) overshoots the full CI andE  (5), which is positive, 
corrects in the opposite direction, and MBPT(5) is ac- 
tually farther from the full CI than MBPT(4) (table 2). 
However, the [2,1 ] Pad~ approximant is once again 
quite close, while the VPCI-2 result is worse than the 
linear MBPT. Like BH, the MBPT(5) result is poorer 
than the [2,1 ] approximant value, which is not  quite 
as accurate as the infinite-order CCSDT-1 energy. As 

illustrated by the HF example, odd orders in MBPT 
should each be smaller than the preceding even-ordered 
term (except in divergent cases), because two new ex- 
citation levels are introduced in each even order. Also, 
if such higher excitations are comparatively important 
(which we would expect to be true for HF), E (4) will 
be greater in magnitude than E (3), and E (6) greater 
than E (5). E (2n) is usually negative, while E (2n+l) 
can be negative or positive. 

5. Beryllium dimer 

The potential energy curve for Be 2 is a very inter- 
esting case for assessing the importance of higher-order 
perturbation theory, since the molecule's ~2 kcal/mol 
inner well at ~2.5 A is very sensitive to the delicate 
balance between the separated atom and dimer energies 
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Table 2 
MBPT, Pad~ approximants and VPCI results for hydrogen fluoride at R = 1.732 au, with DZP basis [ 12] 

11 January 1985 

Order MBPT Pad~ approximants 

E(N) a) Ecorr delta b) Ecorr delta 

VPCI 

Ecorr delta 

1 -100.048009 0.0 125.3 
2 -0.192124 0.0192124 4.7 
3 -0.002032 -0.194157 3.5 [1,0] -0.194178 3.4 
4 -0.005964 -0.200120 -0.3 [1,i] -0.191074 5.4 
5 0.001385 -0.198736 0.6 [2,1] -0.199142 0.3 

CCSDT-1 c) -0.199519 0.1 

fuU CI -0.199675 0.0 

-0.186352 8.4 

-0.198314 0.9 

a) All results in au except for those under "delta" which are in kcal/mole. 
b) Delta is the correlation energy at this level minus the full CI value in kcal/mole. 
c) From ref. [17]. 

Table 3 
MBPT, Pad6 approximants and VPCI results in au for berylliu~l dimcr at R = 5.25 au, with 7s3pld basis [13] 

Order MBPT 

E(N) Ecorr Dea) 

Pad~ VPCI 
approximants Ecorr 
Ecorr 

1 -29.138980 0.0 
2 -0.061081 --0.061081 0.29 
3 -0.020769 -0.081850 0.75 [1,0] -0.092551 -0.081780 
4 0.009118 -0.090968 0.86 [1,1] -0.098104 
5 0.004283 -0.095252 0.79 [2,1] -0.099165 -0.096024 
6 -0.002107 -0.097359 0.72 [2,2] -0.099574 
7 -0.000984 -0.098343 0.68 [3,2] -0.099314 -0.098297 
8 0.000429 -0.098772 0.66 [3,3] -0.099139 
9 -0.000156 -0.098927 0.66 [4,3] -0.098814 -0.098773 

10 -0.000034 -0.098962 0.66 [4,4] -0.098844 
11 0.000013 -0.098949 0.66 [5,4] -0.098842 -0.098844 
12 0.000026 -0.098923 0.66 [5,5] 0.098844 
13 0.000025 -0.098898 0.66 [6,5] -0.098888 -0.098853 
14 0.000019 -0.098879 0.66 [6,6] -0.098858 
15 0.000012 -0.098867 0.66 [7,6] -0.098853 -0.098854 
16 0.000007 -0.098859 0.65 [7,7] -0.098854 
17 0.000004 -0;098855 0.65 [8,7] -0.098854 -0.098854 
18 0.000002 -0.098854 0.65 [8,8] -0.098854 
19 0.000001 -0.098853 0.65 [9,8] -0.098854 -0.098854 
20 0.000000 -0.098853 0.65 [9,9] -0.098854 

CCSDT-lb) -0.09778 -0.02 

full CI c) -0.098854 0.65 

a) Dissociation energies are in kcal/mole and are computed asE(R = 5.25 au) - 2E(Be atom). Full CI energy of the Be atom is 
-14.618397 au. 

b) From ref. [16]. 

c) All results including full CI include 6 Cartesian d functions. The 5 d-function full CI correlation energy from ref. [ 13] is 
-0.098817 h. 

155 



Volume 113, number 2 CHEMICAL PHYSICS LETTERS 11 January 1985 

[ 13,16,2 2,23 ]. Treating Be 2 as a four-electron problem, 
MBPT(4) has recently been shown to be qualitatively 
correct in a large 7s3p ld  basis set, but  to exceed the 
full CI dissociation energy in the same basis [13], by 
~0.2  kcal /mol  [16]. This preserves a trend, since even 
in MBPT(3) the well is ~0.1 kcal /mol too deep. 
Hence the question arose whether MBPT(5) would 
correct this overestimate or increase the discrepancy. 
Fortunately ,  MBPT(5) does reverse the trend and re- 
duces the MBPT(4) dissociation energy (table 3). 
However, even MBPT(6) still overshoots slightly, al- 
though the trend is toward the correct value for the 
dissociation energy. (Note that  the current calcula- 
tions use all six d-function compounts,  while those of  
ref. [ 13] were limited to five.) Again the VPCI-2 result 
is a bit bet ter  than the fifth-order linear sum and the 
[2,1] Pad6 approximant  would appear to be in excel- 
lent agreement with the full CI for the slightly larger 
basis. Like BH, also a four-electron problem, the per- 
turbat ion series is almost exactly geometric between 
fourth order and ninth order. Assuming the sum beyond 
fourth order is geometric, with a term ratio of  0.5, the 

correlation energy obtained would be - 0 . 1 0 0  hartree, 
which is ~1 mh from the exact result. As discussed 
elsewhere [16], this is an example for which CC meth- 
ods fail to obtain the inner minimum, even though 
they are only 1.1 mh in error at that geometry,  because 
CCSD (or CCSDT-1) is exact for the separated atoms, and 
and the well depth amounts to just 1.1 mh. 

6. Wa~r 

A third example for which higher-order perturba- 
t ion corrections would be expected to be important  
is provided by symmetrically stretched H20.  Full CI 
results are available in a DZ basis [11,12] for bond 
stretches of  1.5 and 2.0 times the computed equilibrium 
value R of  the OHbond  length. In each case the refer- 
ence function is the RHF solution. From table 4, the 
E(5) contr ibution at equilibrium is only 0.18 mh, while 
at 1.5R it is an order of  magnitude la er. Surprisingly, 
at 2.0R E (5) is only 0.33 mh, despite being 10.1 kcal/ 
mol from the full CI energy for this extreme case. The 

Table 4 
MBPT, Pad6 approximants, VPCI and selected CI and CC results a) for DZ water at three symmetrically stretched geometries 

Calculation 1.0R 1.5R 2.0R 
type 

total delta total delta total delta 
energy energy energy 

SCF -76.009838 92.9 -75.803529 132.4 -75.595180 194.6 
MBPT(2) -76.149315 5.4 -75.994577 1 2 . 5  -75.852460 33.1 
MBPT(3) -76.150707 4.5 -75.989391 15.8 -75.834803 44.2 
[1,0] -76.150721 4.5 -75.989528 15.7 -75.835937 43.5 
VPCI-1 -76.145220 7.9 -75.984190 19.0 -75.805139 62.8 
MBPT(4) -76.156876 0.6 -76.008395 3.8 -75.888867 10.3 
[1,1] -76.148910 5.6 -75.993465 13.2 -75.848113 35.9 
MBPT(5) -76.157056 0.5 -76.009771 3.0 -75.889199 10.1 
[2,1 ] -76.157358 0.3 -76.012555 1.2 -75.905780 -0.3 
VPCI-2 -76.156617 0.8 -76.006723 4.9 -75.871078 21.4 

CCSD -76.156076 1.1 -76.008931 3.5 - 75.895913 5.9 
C C S D T - 1  -76.157414 0.3 -76.013067 0.9 -75.910821 -3.5 

CISD -76.150015 4.9 -75.992140 14.0 -75.844817 37.9 
CISDTQ -76.157626 0.2 -76.013418 0.7 -75.900896 2.7 

MR CISD -76.155808 1.3 -76.012274 1.4 -75.903250 1.3 
MR L C C M  -76.157898 0.0 -76.013729 0.5 -75.904152 0.7 

full CI -76.157866 0.0 -76.014521 0.0 -75.905247 0.0 

a) Total energies are in au and delta, the remaining correlation energy, is in kcal/mole. 
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implication is that higher-order MBPT terms will only 
slowly accumulate corrections to approach the full CI 
energy in the difficult 2.0R example, while at equilib- 
rium there is little to gain, and at 1.SR there is a more 
intermediate rate of  convergence showing substantive 
improvement at E (5). Again, the [2,1] Pad~ approxi- 
mants show exceptional convergence, while the VPCI-2 
is even worse than the linear MBPT(5) and much worse 
at 2.0R. CCSDT-1 is about the same as the [2,1] Pad~ 
approximant although it tends to overshoot at 2.0R. 

No higher than quadruple excitations contribute 
throughE (5), so the difference between MBPT(5) and 
CISDTQ accounts for infinite-order summations of  
these categories of  CI excitations. In E (6) pentuple 
and hextuple excitations are first introduced, and these 
plus higher excitations amount to 2.7 kcal/mol at 2.0R. 
The multi-reference linearized CC method (MR LCCM) 
is exceptionally accurate for this example, as discussed 
elsewhere [24]. 

In table 5 we also report MBPT(5) results for H20  
in the same DZ basis but using a crude set of  localized, 
minimum basis bond orbitals to construct the reference 
function [25 ]. The reference function's energy is higher 
than the corresponding SCF result by 152 kcal/mol, 
posing a difficult case for MBPT to recover the energy 

corrections to the full CI. Fourth order reduces the 
error to only 4.1 kcal/mol, while MBPT(5) improves 
this by another 2 kcal/mol. Once again, the size-exten- 
sive [2,1] Pad6 approximant shows nearly perfect 
agreement between results obtained with SCF orbitals 
and those from the crude localized orbitals. The VPCI-2 
is much poorer. 

7. Conclus ion  

In the examples studied, E(5) was as large as 4.3 
mh and as small as 0.2 mh, the former in Be 2 with a 
comparatively large basis and the latter in H20  at 
equilibrium in a small DZ basis. Clearly, the larger the 
basis the greater effect E(5) should have. However, the 
linear sum MBPT(5) was not found to be much better 
than MBPT(4) unless the [2,1] Padd approximant was 
constructed. The latter value was typically as accurate 
as CCSDT-1 for these examples. Because even-order 
contributions must be negative (and introduce two 
more excitation levels if these are available for the 
problem), E(6) will typically have a larger magnitude 
than E (5), and thereby would probably offer better 
results when stopping at that level. However, in the BH 

Table 5 
MBPT, Pad~ approximants and VPCI results a) for DZ water employing canonical SCF and localized orbitals 

Calculation Canonical SCF orbital Localized orbital 
type 

total delta total delta 
energy energy 

reference -76.009838 
MBPT(2) -76.149315 
MBPT(3) -76.150707 
[ 1,0] -76.150721 
VPCI-1 -76.145220 
MBPT(4) -76.156876 
[ 1,1] -76.148910 
MBPT(5) -76.157056 
[2,1] -76.157358 
VPCI-2 -76.156617 

CISD -76.150015 
CCSD -76.156076 
fuU CI -76.157866 

92.9 -75.768438 244.4 
5.4 -76.125978 20.0 
4.5 -76.126578 19.6 
4.5 -76.126579 19.6 
7.9 -76.074547 52.3 
0.6 -76.151260 4.1 
5.6 -76.125963 20.0 
0.5 -76.154465 2.1 
0.3 -76.157366 0.3 
0.8 -76.140498 10.9 

4.9 -76.126161 19.9 
1.1 -76.155627 1.4 
0.0 -76.157866 0.0 

a) Total energies axe in au and delta, the remaining correlation energy, is in kcal/mole. 
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and Be 2 cases, for which  at most  only  quadruple  ex- 
ci tat ions are possible, E(6)  is typically about  one-half  

o f  E(5) ,  and the series generated is nearly geometr ic  

in bo th  cases. The  v a r i a t i o n - p e r t u r b a t i o n  CI approx- 

imat ions  suffer f rom all the problems o f  t runcated  CI, 

such as the lack o f  size-extensivity,  and do not  show 

part icularly good convergence to the full CI result. 

Their  main asset is guaranteeing a variat ional  bound 

and, hence,  convergence f rom above to the CI result. 

However ,  the Pad~ ext rapola t ion ,  a l though occasionally 

passing slightly below the full CI, provides fast, size- 

extensive convergence.  
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