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Conical intersections between electronic states are of great importance for the understanding of
radiationless ultrafast relaxation processes. In particular, accidental degeneracies of hypersurfaces,
i.e., between states of the same symmetry, become increasingly relevant for larger molecular
systems. Coupled-cluster theory, including both single and multireference based schemes, offers a
size-extensive description of the electronic wave function, but it sacrifices the Hermitian character
of the theory. In this contribution, we examine the consequences of anti-Hermitian contributions to
the coupling matrix element between near-degenerate states such as linear dependent eigenvectors
and complex eigenvalues. Numerical examples are given for conical intersections between two
excited states calculated at the equation-of-motion coupled-cluster level which indeed show the
predicted artifacts. A simple method is suggested which allows physically meaningful potential
energy surfaces to be extracted from the otherwise ill-behaved results. This provides a perspective
for obtaining potential energy surfaces near conical intersections at the coupled-cluster level. ©
2007 American Institute of Physics. �DOI: 10.1063/1.2755681�

I. INTRODUCTION

The concept of conical intersections between electronic
states is of uttermost importance for the understanding of
radiationless ultrafast relaxation processes.1–4 Conical inter-
sections occur if two adiabatic potential energy surfaces be-
come energetically degenerate for a given molecular confor-
mation; the degeneracy is lifted along two orthogonal
trajectories leading to a double-cone shape. Along all other
degrees of freedom the degeneracy persists, giving rise to a
subspace usually called intersection seam.

For a long time the appearance of conical intersections
was believed to be largely symmetry driven. However, with
the development of new computational techniques5,6 that al-
lowed for a direct determination of the conical intersection
seam it became obvious that accidental intersections of po-
tential energy surfaces belonging to states of the same sym-
metry are a rather common phenomenon.4 In this case, the
vanishing coupling between the states is not symmetry in-
duced which leads to additional demands on the computa-
tional method. In particular, for coupled-cluster theory—
which otherwise has emerged to one of the most useful tools
in electronic structure theory, offering a hierarchy of size-
consistent methods with increasing accuracy—problems in
the vicinity of accidental degeneracies can be anticipated due
to the inherent non-Hermitian character of the ansatz but are
so far scarcely discussed in the literature, for an exception,
see Ref. 7.

Usual coupled-cluster theory,8–10 relying on a single ref-
erence configuration, is not generally capable of describing
intersections between the ground state and excited states.
Here, multireference �MR� treatments are called for and ap-

preciable progress in the direction of applicable multirefer-
ence coupled-cluster �MR-CC� schemes has been made in
the recent past.11–14 As long as the ground state remains
single-reference dominated, however, intersections between
excited states are, in principle, accessible by single-reference
coupled-cluster methods, via linear response �LR-CC� or,
equivalently as far as energies are concerned, the equation-
of-motion coupled-cluster �EOM-CC� method. Excited state
intersections are of great importance for the initial relaxation
dynamics after photon absorption in many systems.

The problems due to the non-Hermitian nature of the
coupled-cluster approach are the same for both LR-CC/
EOM-CC and multireference schemes. In the present article
we will mainly focus on LR-CC/EOM-CC, although the
analysis given in Sec. II is applicable to the multireference
case as well, as pointed out in Sec. III. We will thereby
extend the discussion of Ref. 7 and give, to our best knowl-
edge for the first time in the literature, numerical examples
for the artifacts occurring for coupled cluster in the vicinity
of conical intersections �Sec. IV�. A simple correction
method that allows to calculate physically meaningful poten-
tial energy surfaces at conical intersections with inherently
non-Hermitian methods is introduced and discussed in
Sec. V.

II. TWO-STATE MODEL

A. Hermitian theory

We consider a molecule with F degrees of freedom and
the corresponding electronic Hamiltonian H in the clamped
nuclei approximation. The Hamiltonian depends parametri-
cally on the molecular degrees of freedom and so do the
exact eigenstates ��i� and eigenvalues Ei. Without loss of
generality, the interaction of two close-lying states can be
analyzed in a 2�2 subspace spanned by the two states of
interest ��1� and ��2�. At the intersection both eigenvalues
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approach the same value. As both states are eigenvalues of
the same Hamiltonian, a second condition arises which is
more easily seen in the “crude diabatic basis.”4,15 The crude
diabatic basis is obtained by an arbitrary unitary rotation U
among the two eigenstates of interest, ��̃i�=U1i��1�
+U2i��2�. For convenience, we assume a shifted Hamil-

tonian, H=Hunshifted− Ē1, where Ē is the arithmetic mean of
the two excitation energies. The resulting 2�2 matrix rep-
resentation can be parametrized as

H̃ = ���̃1�H��̃1� ��̃1�H��̃2�

��̃2�H��̃1� ��̃2�H��̃2�
	 = �− � X

X �
	 , �1�

assuming real matrix elements �i.e., absence of magnetic
fields or spin-orbit interactions� for simplicity.

The eigenvalues of this matrix are obviously �±

= ±
�2+X2. This makes clear that the degeneracy of the two
states actually requires two conditions: �=0 and X=0, the
well-known crossing conditions of von Neumann and
Wigner16 and Teller.17 As the entries in Eq. �1� depend on the
F internal degrees of freedom in the molecule, it follows that
the two states may be degenerate in an �F−2�-dimensional
subspace �crossing space, denoted C hereafter, or conical in-
tersection seam�.

With approximate wave functions, the same topology is
obtained, as long as the Hermiticity of the problem is not
sacrificed. Non-Hermitian couplings between near-
degenerate states, however, will alter the topology unless
they vanish at the intersection, either due to group theoretical
reasons or if the correct behavior is guaranteed, e.g., by con-
nection to a Hermitian eigenvalue problem by a similarity
transformation.

B. Non-Hermitian theory: Unphysical crossing
conditions

We will start by reviewing the analysis of the general
unsymmetric 2�2 subspace problem as presented in Ref. 7,

� − � X + Y

X − Y �
	 . �2�

The eigenvalues of this matrix are

�± = ± 
�2 + X2 − Y2. �3�

leading to an unphysical topology of the crossing space. The
F-dimensional configuration space is partitioned into two
subspaces FR and FI; one is defined by the condition �2

+X2−Y2�0 �nondegenerate real eigenvalues�, and the other
is defined by �2+X2−Y2�0 �degenerate eigenvalues or
imaginary pairs�. The two subspaces are separated by an
�F−1�-dimensional subspace for which the condition �2

+X2−Y2=0 is fulfilled, which we will call enveloping space
E in the following. The actual crossing space C, defined by
�2+X2=0, is a subspace of FI. A conical intersection with
the physically correct shape will only be observed, if �2

+X2=0 and Y2=0 are fulfilled separately, i.e., in an
�F−3�-dimensional subspace of the actual crossing space.

C. Non-Hermitian theory: Extended analysis

Most non-Hermitian theories emerge from considering
the eigenvalue problem of a similarity transformed Hamil-

tonian H̄=W−1HW, where W is a nonsingular and nonunitary
operator, usually called wave operator. If the eigenvalue

problem of H̄ is solved in the entire basis in which W can be
represented �we will refer to this case as “complete expan-
sion”�, the eigenvalue spectrum remains unchanged and con-
sequently no problems will occur at or near intersections.
However, the actual purpose of the similarity transformation
is to fold physically important parts of the complete expan-
sion into a subspace in which a reduced eigenvalue problem
is solved. This means that in addition to the similarity trans-
formation a subspace projector P is applied,

H̄� = PW−1HWP .

At this, the similarity transformation character is lost. Nota-

bly, both the projected and unprojected H̄ are unsymmetric,
as W−1�W†, so this property alone is not sufficient for the
occurrence of the artifacts discussed above. In the following,
we want to further examine the origin of the antisymmetric
contributions to the coupling between two states in non-
Hermitian theories.

As H̄ is unsymmetric, we obtain for each eigenvalue Ei

different left and right eigenvectors, ��̄i� and ��i�. The right
eigenvectors form a nonorthogonal basis with the metric

��i�� j� ¬ Sij , �4�

where as convention the diagonal can be chosen to be Sii

=1. The left eigenvectors are related to the right ones by

��̄i� = �
j

�� j��S−1� ji, �5�

and left and right states fulfill the biorthogonality relation,

��̄i�� j� = �ij . �6�

We note that in the case of a complete expansion there exist
solutions ��i� of the Hermitian eigenvalue problem on the
same expansion space which are related to the non-Hermitian
solutions by

��i� = NiW��i� =
1

Ni
�W−1�†��̄i� , �7�

where Ni
−1= ��i�W†W��i��1, as usually a different normal-

ization is used. As the ��i� form an orthonormal basis, it
follows that

��i�W†W�� j� = Ni�ij, ��̄i�W−1�W−1�†��̄ j� =
1

Ni
�ij . �8�

Note, however, that the bare right eigenvectors are still non-
orthogonal, i.e., Sij��ij in the complete expansion case. This
has important consequences for the construction of correc-
tion schemes, see Sec. V.

Next, we turn to the two-dimensional subspace problem
which is diagonal in the eigenvector basis,
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A = ���̄1�H̄��1� ��̄1�H̄��2�

��̄2�H̄��1� ��̄2�H̄��2�
	 = ��− 0

0 �+
	

= �− � 0

0 �
	 . �9�

Note that we again consider a shifted Hamiltonian such that
A is traceless and has either purely real or purely imaginary
eigenvalues. In addition we assume that Re ��0 or, respec-
tively, Im ��0. The right-hand vectors ��1� and ��2� span a
nonorthogonal basis with the metric

S = �1 S

S 1
	 = � 1 cos 	

cos 	 1
	 , �10�

where 	 can be interpreted as the angle enclosed by the two
vectors. So for an orthonormal case we have 	=
 /2 and
cos 	=0. Note, that as we constrain our analysis to real
Hamiltonians, the phases of the eigenvectors can always be
chosen to give a real overlap S. Next, we introduce a param-
etrization of the unitary matrix U to transform the eigenstates
in the subspace to the crude diabatic basis,

U = �cos��/2� − sin��/2�
sin��/2� cos��/2�

	 . �11�

The appropriate transformation of A into a crude diabatic

basis is Ū=S1/2US−1/2, as S−1/2 orthogonalizes the right-hand
basis within the two-dimensional subspace. The left-hand
vectors are transformed by S1/2 which preserves the bior-
thogonality. Note, however, that the left-hand vectors are still
nonorthogonal after this transformation.

The result of the transformation Ã= ŪAŪ−1 has no
straightforward interpretation. For our analysis it is more il-
luminative to consider the matrix

Ão = S−1/2ÃS1/2 = US−1/2AS1/2U†

=
�

�sin 	�
� − cos � sin � + cos 	

sin � − cos 	 cos �
	 , �12�

i.e., we use the orthogonalized right-hand basis and the ap-
propriate biorthogonal left-hand basis. Comparison with Eq.
�2�, assuming real values for �, suggests to identify

� = �
cos �

�sin 	�
and X = �

sin �

�sin 	�
. �13�

As S=cos 	 and

�2 + X2 =
�2

sin2 	
, �14�

we can write the antisymmetric contribution as

Y = �
cos 	

�sin 	�
= S
�2 + X2, �15�

and the expression for the eigenvalues becomes

�± = ± � = ± 
��2 + X2��1 − S2� . �16�

Equation �15� relates the antisymmetric coupling directly to
the nonvanishing overlap of the eigenvectors. This has the

important consequence that the antisymmetric coupling van-
ishes for 
�2+X2→0 as long as �S��1 is fulfilled, which
ensures the correct behavior at the intersection. As for the
complete expansion the basis ���i� is complete and W is
nonsingular, it follows that ���i� is complete as well and
thus S�1. We note that, if ��1� and ��2� are degenerate, any
linear combination of these is a valid eigenvector and we
could choose them such that S=0. Yet, in any neighborhood
where the states are nondegenerate, S may be nonzero such
that the choice S=0 at the degeneracy could lead to a non-
continuous behavior of S as a function of the molecular de-
grees of freedom.

If �S�→1, as it may be the case for truncated expansions
�see Sec. IV�, � approaches zero as well. In this case, how-
ever, the metric becomes singular; in other words, the eigen-
vectors of A do not span the complete space. From the above
it is clear that S=1 is equivalent to �2+X2=Y2 which char-
acterizes an �F−1�-dimensional subspace of the nuclear con-
figuration space which we termed above as E �enveloping
space�.

Going beyond this point, we have Y2��2+X2 and we
enter the imaginary regime. The interpretation that this
means �S��1 is a bit deceptive, as we deal with normalized
vectors and −1�S�1 holds strictly. In order to continue the
discussion, we consider the more simple case of the matrix

Ao
�r� = S1/2AS−1/2 =

�

�sin 	�
� − 1 cos 	

− cos 	 1
	

= � − �̃ + S�̃

− S�̃ + �̃
	 = �− �̃ + Y

− Y + �̃
	 , �17�

where for the second identity the definition

�̃ =
�

�sin 	�
= 
�2 + X2 �18�

was introduced. The eigenvalues of the matrix are obviously

�±= ± �̃
1−S2 and the corresponding eigenvectors read

v± =
1

2

�cos�	/2�  sin�	/2�
cos�	/2� ± sin�	/2�

	 . �19�

�̃ may be interpreted as the energy splitting for vanishing
antisymmetric coupling. The magnitude of the antisymmetry
is reflected by the overlap matrix element. In particular, we
have

� Y

�̃
� = �S� . �20�

Thus, the relation �Y�� ��̃� must hold strictly to avoid singu-
larities and imaginary eigenvalues.

In the purely imaginary regime we can again start with
Eq. �9� and �= i���. With a proper choice of the phases for
the eigenvectors, the matrix S remains real, as stated above,
and we arrive at an expression for S1/2AS−1/2 similar to Eq.
�17�, which is then a matrix with purely imaginary entries.
We can turn this matrix into a real matrix with the same
eigenvalues by dividing each element by i and interchanging
the rows,
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Ao
�i� =

���
�sin 	�

�− cos 	 1

− 1 + cos 	
	

= �− S��̃� ��̃ �

− ��̃� + S��̃�
	 = � − �̃ + Y�

− Y� + �̃�
	 . �21�

The eigenvalues are �±= ± ��̃�
S2−1= ± i��̃�
1−S2, and the
corresponding eigenvectors are

v± =
1

2

�ei�	/2�

e±i�	/2� 	 . �22�

The ratio of the antisymmetric coupling and the energy split-
ting of the hypothetical symmetric matrix is larger than 1,

�Y�

�̃
� =

1

�S�
, �23�

which should be compared with Eq. �20� which is valid in
the real regime. In Secs. IV and V, we will use Eqs. �17� and
�21� to analyze the results of numerical calculations and to
derive a simple correction.

As a side note, for a complete expansion, we can, in

addition, use the relation of ��i� and ��̄i� to the solutions of
the Hermitian problem, Eq. �7�, and transform to a crude
diabatic basis using the orthogonal �but not normalized� sub-
space metric,

S� = �N1
2 0

0 N2
2 	, Ū� = �S��1/2U�S��−1/2. �24�

The transformed subspace matrix then reads

Ã = Ū�A�Ū��−1 = � − � �N1/N2�X
�N2/N1�X �

	 . �25�

The asymmetry is now purely due to the different normaliza-
tion factors of the states which cancel only on the diagonal.
This effect is harmless, however, as the normalization con-
stants will always be well behaved �if they become large this
is only due to an inappropriate choice of the reference state
which is a different problem�. It rather reflects the fact that
transition properties are not uniquely defined in coupled-
cluster theory, as usually the normalization factors cannot be
calculated in a way which is both size extensive and has
nonfactorial computational scaling. These problems are dis-
cussed in a recent work on the diagonal Born-Oppenheimer
correction.18 The product of the two off-diagonal elements
is well defined, however, as this cancels the normalization
factors.

III. A SELECTION OF COUPLED-CLUSTER METHODS

In the previous section, we considered the general wave
operator W. For usual single-reference coupled-cluster
theory8–10 W=eT, where

T = T1 + T2 + ¯ + Tn �26�

is the cluster operator consisting of up to n-fold excitation
operators with respect to the reference determinant �0�. For

n=2, the method is denoted as CCSD, for n=3 as CCSDT,
etc. The ground state energy is obtained as

E = �0�HeT�0� , �27�

and the cluster operator is subject to the condition

0 = ���e−THeT�0� , �28�

where ��� is an appropriately chosen projection manifold
constituted by excited determinants.

For the calculation of excited states, the EOM picture is
most convenient in the current context.19 One simply consid-
ers the eigenvalue problem of the similarity transformed

Hamiltonian H̄=e−THeT in the subspace of n-fold excitations
where n is the same as chosen for the maximum excitation
level of T. With these definitions, the general analysis from
the previous section can be directly applied to EOM-CC, as
will be done in the numerical study below. We note that the
linear-response picture20–22 provides a connection of the thus
obtained excited state energies with the poles of the time-
dependent coupled-cluster response function, thereby under-
lining the consistency of the approach.

While EOM-CC provides a multireference description of
excited states, it relies on the single-reference character of
the ground state wave function. If this becomes a problem,
MR-CC schemes are called for. Unlike the above described
single-reference CC, for which most basic theoretical prob-
lems are settled and efficient computer implementations ex-
ist, MR-CC is still in the development phase and many dif-
ferent approaches have been put forward.11–13,23,24

Substantial problems arise from the intruder state problem
and therefore in recent time focus was set to state-selective
methods. In way of caution it should be noted that most
state-selective methods will not work properly for conical
intersections, as they focus on one state and use an effective
Hamiltonian with bias toward this state. So, strictly speaking,
different Hamiltonians are solved for the two states under
consideration which sacrifices the crossing conditions.
Apparent intersections and avoided crossings with “ghost
states” will be the consequence.

As a review of all wave function Ansätze available from
the literature goes beyond the scope of the present work, we
only give a short remark on the state-universal Ansatz of
Jeziorski and Monkhorst.23 The wave operator reads

W = �
�

eT��������� , �29�

where � runs over the indices of the reference determinants
under consideration. T��� is a cluster operator which contains
excitation operators with respect to the given reference de-
terminant. In contrast to the case of EOM-CC, the projector
is directly part of the wave operator which as such is singular
for that reason. The energies are obtained from the effective
Hamiltonian

H��
eff = ���HeT������ =

c.m.s.

���e−T���HeT������ , �30�

where the last equality holds for complete model spaces,
only. Although this recovers the similarity transformation
character, it is clear that there is no guarantee for a proper
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behavior of Heff at intersections as �a� it is projected to a
subspace and �b� T��� is different in each column. We con-
clude that non-Hermiticity effects at near degeneracies are a
serious issue for all coupled-cluster methods.

IV. NUMERICAL EXAMPLE: ARTIFACTS
AT THE 2 1A1 /3 1A1 SURFACE CROSSING OF CH2O

In the numerical part of the present work, we concentrate
on EOM-CC. The test system is the 2 1A1 /3 1A1 surface
crossing in formaldehyde, which was also considered by
Dallos et al. at the MR-CISD level.25 Here, we are not inter-
ested in locating the minimum of the intersection seam, the
model system is only set up to pass through �up to some
numerical precision� the intersection point as a function of
one coordinate. For EOM-CCSD with an aug-cc-pVDZ
basis26 one appropriate choice is rCH=111.915 pm, �OCH

=118°, and a variable CO bond distance �about 134.5–136.3
pm�. For carrying out the calculations, some small modifica-
tion of the standard solver for nonsymmetric eigenvalue
problems have to be considered in order to converge com-
plex roots. The algorithm is described in the Appendix. It
works just as good as the usual Davidson-type algorithm27,28

for purely real roots, and converges stably, even in cases
where the eigenvectors become nearly linear dependent. It
was implemented in a local version of the ACES2 �Ref. 29�
code and the general coupled-cluster part of LUCIA.30

In Fig. 1 the results are presented in graphical form. In
panel �a� we plotted the total energies �including the ground
state contribution� relative to the energy at the actual inter-
section point which lies slightly beyond rCO=134.5 pm. At
some distance from the intersection, we still are in the FR

space and a pair of real eigenvalues is found. As rCO moves
toward the critical region, the energies of the two states ap-
proach each other in a square-root fashion and become de-
generate at the border between the region belonging to FR

and FI, i.e., at the enveloping space E. From panel �b� it can
be seen that the eigenvectors indeed become collinear here,
so the metric is singular in E and the basis of eigenvectors to

H̄ �projected� is not complete.
When approaching E from FI, the imaginary contribu-

tion develops towards the singularity in same way as the real
eigenvalues in FR do. The maximum imaginary contribution
in the current example is 0.02 eV. Along rCO, FI extends 0.7
pm; noticeable artifacts of the potential surface are found in
the range of 134.7–136.1 pm. Although the extent of the
region affected by the non-Hermiticity is small in the current
example, it cannot be ignored as the physical crossing space
�C� is located right in the center of FI, i.e., C�FI will always
hold.

Inside FI the overlap changes nearly linearly from +1 to
−1 for the current example, i.e., the eigenvectors change
from collinear to orthogonal �at the center� and to �antipar-
allel� collinear again. Note, however, that we can choose the
sign of the overlap arbitrarily at each point.

Finally, we plotted the reconstructed elements of the ma-

trix Ao, Eqs. �17� and �21�, �̃ and Y, or, respectively, in the

imaginary region �̃� and Y�. Noticeably, the curves are
smooth when crossing E although a step size of 0.0001 bohr

��0.0053 pm� was chosen in these regions. The curves are

remarkable, as well: �̃ behaves in the physically correct
way; it becomes �on the present numerical scale� zero at the
intersection point. Y, on the other hand, is nearly constant
over the presently investigated range. The singular points

occur where �̃=Y, as shown in Sec. II C.

V. A SIMPLE CORRECTION METHOD

One might conclude from the findings in Sec. IV that
inherently non-Hermitian methods are generally not suited
for the description of conical intersections. However, in the
light of the otherwise excellent performance of coupled-
cluster methods, it is difficult to just accept this as an irrevo-
cable fact. In particular, the extraordinary well behaved run

of �̃ in Fig. 1�c� suggests that physically meaningful infor-
mation can be extracted from the results.

In the following we will introduce a simple correction
for non-Hermitian methods which covers the special yet
most common case of two close-lying states. Two observa-
tions from the previous sections will guide us:

FIG. 1. Behavior of the near-degenerate solutions of EOM-CCSD for the
CH2O test system �see text� as a function of the CvO bond distance. Panel
�a�: Total energies of the two states relative to the energy at the intersection
point. Panel �b�: Overlap matrix element of the eigenvectors. Panel �c�:
Values of diagonal elements ��̃ in the regime of real splitting or �̃�, respec-
tively, for imaginary splittings� and off-diagonal elements �Y or Y�, respec-
tively� calculated according to Eqs. �17� and �21�.

044105-5 Conical intersections J. Chem. Phys. 127, 044105 �2007�



�a� Equation �17� gives the correct structure of the sub-
space matrix valid for both the approximate case and
the case of a complete expansion. S does not necessar-
ily vanish in that limit, as pointed out in Sec. II C, so

symmetrization of the entire H̄ or of the subspace is not
well founded.

�b� The artifacts in Sec. IV occur as S assumes large val-
ues, whereas in the case of a complete expansion �S�
�1 is guaranteed.

From the calculations, the energies and right eigenvec-
tors �E1 , ��1�� and �E2 , ��2�� are obtained. From these, the
apparent half splitting �= 1

2 �E2−E1� and the overlap S
= ��1 ��2� are calculated. Next, we formally transform the
two-dimensional subspace matrix to the form of Eq. �17�, if
� is real, or Eq. �21� if � is imaginary, i.e., we calculate

�̃ =
�


1 − S2
and � Y

�̃
� = �S�, if � real �31�

or

�̃ =
S���


1 − S2
and � Y

�̃
� =

1

�S�
, if � imaginary. �32�

From this, a new subspace matrix is built, which has the
correct structure

Ac = � − �̃ ��̃

− ��̃ �̃
	 �33�

and contains a modified overlap � that is a function of �Y / �̃�.
We require that

���Y/�̃�� → �Y/�̃� = S, if �Y/�̃� → 0,

���Y/�̃�� → Smax � 1, if �Y/�̃� → � . �34�

A possible function matching these conditions is

���Y/�̃�� = Smax tanh� �Y/�̃�
Smax

	 �35�

and the corrected eigenvalues are thus

�corr = ± �̃
1 − �2

= � ±�

1 − �2


1 − S2
, if � real

±��/i�
S
1 − �2


1 − S2
, if � imaginary.� �36�

Already at this point, we want to stress that the specific func-
tional form of � and the parameter Smax is much less impor-
tant for practical purposes than it might seem at first sight. In
fact it will only influence the interpolation between the re-
gion well outside the conical intersection region and the
conical intersection itself. Outside the conical intersection,

�Y / �̃� will be small �typically �10−1� and the uncorrected

method can be used. At the conical intersection, the contri-

bution from the corrected antisymmetric coupling Y =��̃

vanishes as �̃ goes to zero. Therefore the energy in the coni-
cal intersection seam does not depend on the chosen Smax and
optimizations within the conical intersection seam �the most
practical scheme for investigating intersections in large mo-
lecular systems� lead to unique results.

VI. NUMERICAL TESTS OF THE CORRECTION

We first turn to the 2 1A1 /3 1A1 intersection of CH2O. In
Fig. 2�a�, we plotted the uncorrected values �same as in Fig.
1� along with the corrected results for three different choices
of Smax. Only small differences result, in particular, as
pointed out in the previous section, all curves coincide at the
conical intersection. With Smax=0.5 the corrected energy fol-
lows the erratic behavior of the uncorrected curve a bit too
long. The slope at the conical intersection is visibly smaller
than that on the outside region, leading to a noticeable cur-
vature. For the choices Smax=0.2 and Smax=0.1 nearly
straight lines are obtained.

Figure 2�b� illustrates the decay of the corrections out-
side the intersection region. In addition to the above choices
for Smax, Smax=0 is included which corresponds to a com-

FIG. 2. Correction method applied to the 2 1A1 /3 1A1 intersection of CH2O
at the EOM-CCSD/aug-cc-pVDZ level. �a� Influence of different choices for
Smax. �b� Decay of the correction contribution ��c−��; note the different
scales on the x axis for �a� and �b�.
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plete symmetrization of the subspace or, respectively, to ig-
noring the antisymmetric part in Eqs. �17� and �21�. This
choice is theoretically not well founded, as in general S�0
even in the limit of complete expansions �see Sec. II C�. Yet,
even this choice deviates from the uncorrected result by less
than 10−3 eV at ±3.5 pm from the conical intersection, the
energy difference between the states is around 0.2 eV at this
point. Much smaller deviations are obtained, if Smax�0; in
particular, for the choice Smax=0.2 the difference to the un-
corrected value at ±3.5 pm away from the conical intersec-
tion is below 10−4 eV. In conclusion, for all practical pur-
poses the suggested correction is negligible in the
nondegenerate case and results from the uncorrected method
can be used.

Next, we move one step up in the coupled-cluster hier-
archy and redo the calculations on CH2O for EOM-CCSDT.
A bond distance rCH=107.4 pm and the same angle as be-
fore, �OCH=118°, were used. The region affected by the ar-
tifacts shrinks to less than 0.5 pm, as can be seen from Fig.
3�a�, but the complex eigenvalues persist and hinder us from
accessing the conical intersection point without resorting to
our correction method. After applying the correction it be-
comes apparent that the chosen reaction coordinate does not

cross the intersection for the given values; a tiny avoided
crossing results. Further optimization of the other molecular
parameters to find the intersection seam is computationally
expensive for CCSDT and beyond the scope of the present
work. As before, Smax=0.5 leads to some additional curva-
ture, whereas the other choices give nearly straight lines.
Again, close to the intersection, here rather avoided crossing,
the outcome hardly depends on the choice of Smax. The cor-
rections are smaller and decay faster than those in the CCSD
example, compare Figs. 2�b� and 3�b�.

As a second test system we chose the 
−
* states of
propinal �HCCCHO�. Upon excitation, the linear geometry
of the triple bond is distorted; the HCC and CCC angles
assume values of around 140°. The energies of the two pos-
sible 
−
* excitations can now be tuned by the HCCC di-
hedral angle such that they interchange their energetic se-
quence. The corresponding EOM-CCSD surfaces calculated
with the cc-pVDZ basis set are presented in Fig. 4; the pre-
cise structure parameters are available from the authors upon
request. The FI region is about 10° long and, looking at the
uncorrected surfaces, one cannot even decide whether we are
dealing with an avoided crossing or a real intersection. Em-
ploying the correction scheme described above, a physically
meaningful shape of a narrow avoided crossing can be ob-
served with a minimum energy gap of 0.0003 eV. As above,
we refrained from a further optimization of the structure pa-
rameters to find the actual conical intersection. Concerning
the effect of different choices for Smax, the same facts can be
concluded as in the case of CH2O, in particular, close to the
gap all corrected curves coincide.

Unfortunately, we are not in the position to present an
example where a full expansion could be studied. From the
above results it is not completely clear how the FI region
develops into a physical crossing seam C if the expansion
becomes complete. As indicated in Sec. II C, the overlap

FIG. 3. Correction method applied to the 2 1A1 /3 1A1 intersection of CH2O
at the EOM-CCSDT/aug-cc-pVDZ level. �a� Influence of different choices
for Smax. �b� Decay of the correction contribution ��c−��; note the different
scales on the x axis for �a� and �b�. Otherwise, the same scale as in Fig. 2
was used.

FIG. 4. Correction method applied to the �near-�intersection of the two 

*

states of HCCCHO at the EOM-CCSD/cc-pVDZ level, with different
choices for Smax.

044105-7 Conical intersections J. Chem. Phys. 127, 044105 �2007�



needs not become zero as we approach the crossing seam
�although, as the vectors are degenerate, it can be chosen as
zero at the crossing seam�. From the CCSDT results, how-
ever, we can expect S to remain small everywhere such that
the suggested correction will not significantly affect the
results.

VII. SUMMARY AND CONCLUSIONS

The inherent non-Hermiticity of coupled-cluster meth-
ods, including multireference coupled cluster, leads to prob-
lems at accidental near degeneracies, i.e., near degeneracies
between electronic states of the same symmetry. This has
been demonstrated both theoretically and by numerical ex-
amples, the latter for the case of equation-of-motion coupled
cluster �or linear-response coupled cluster, respectively�.

Here, we concentrated on the special, but most common,
case of two interacting states. As pointed out before in the
literature,7 for a given pair of interacting states the
F-dimensional nuclear configuration space F can be divided
into regions where real eigenvalues are obtained, here de-
noted FR, and regions with complex eigenvalues, FI. The
former can be characterized by the condition that half the
energy splitting arising from the Hermitian part of the inter-

action matrix, called �̃, is larger than the anti-Hermitian in-

teraction matrix element Y. For the latter �̃�Y holds. In an
�F−1�-dimensional subspace of F, the antisymmetry equals

the energy splitting, �̃=Y, leading to linear dependent eigen-
vectors and thus to a singular metric. This space was termed
enveloping space E as it surrounds the part of the configura-
tion space in which complex eigenvalues occur.

A relation between the antisymmetric coupling element
and the overlap matrix element of the two eigenvectors of
the nonsymmetric eigenvalue problem was derived which
facilitates the analysis of numerical calculations. Also, a
slight modification of the usual Davidson-type algorithm em-
ployed in the solution of nonsymmetric eigenvalue problems
was described �see appendix�, which allows to converge
complex roots. No modification of the underlying routines to
calculate the matrix-vector product is needed. These devel-
opments enabled numerical studies on excited state surface
crossing in formaldehyde and propinal, which indeed show
the predicted artifacts.

A simple correction method is put forward which pro-
vides real and smooth hypersurfaces with the correct topol-
ogy at the conical intersection. It works as an a posteriori

correction and imposes the condition �Y � � ��̃� in order to
ensure that the antisymmetric coupling vanishes for zero en-
ergy splitting, as it should in the exact case. It reproduces the
uncorrected values if it is sufficiently far away from the coni-
cal intersection and is thus compatible with conventional re-
sults obtained at other regions of the nuclear configuration
space. The energy at the conical intersection does not depend
on the choice of the functional form for the modified Y,
which influences the interpolation between the intersection
and the outside region only. Optimizations within the inter-
section seam thus lead to unique results.

The method is potentially unstable at the singular points,
i.e., in the enveloping space. However, no effect from this
was experienced in present test applications but the issue will
be monitored in future developments. As a next step, a
Lagrange formulation of the correction is to be developed
which then allows to derive expressions for gradients and
gradient coupling vectors. With this, the location and optimi-
zation of conical intersection seams at the coupled-cluster
level will come into reach.
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APPENDIX: A MODIFIED DAVIDSON ALGORITHM
FOR THE TREATMENT OF IMAGINARY PAIRS

The time-consuming step in solving the eigenvalue prob-

lem of H̄ for the lowest few eigenvectors is the calculation of
the matrix-vector product,

H̄�bi� = �H̄bi� . �A1�

This step is usually implemented for real arithmetic only.
However, as the trial vector enters linearly, with a few minor
modifications, all present quantum chemistry codes can be
adapted to solve the EOM-CC equations for imaginary roots,
provided that they are able to treat at least two eigenvectors
at a time.

From a given set of trial vectors ��bi� a subspace matrix,

M = �Mij� = ��bi�H̄bj�� , �A2�

is constructed and the right-hand eigenvalue problem is
solved in the subspace

Mci = �ici. �A3�

Here, �i is the current eigenvalue approximation and the cur-
rent approximation to the solution vector in the full basis is

�vi� = � �bj�cji. �A4�

As M is real valued by construction, imaginary roots appear
as pairs, and without loss of generality we assume �i=�i+1

* .
Furthermore, we can choose the phases of eigenvectors such
that the two conditions

ci = ci+1
* and S = ci+1

† ci, real �A5�

are fulfilled which is convenient in the further steps.
In order to have real arithmetics in the matrix-vector

product step, we separate real and imaginary contributions,

�i = �i
�r� + i�i

�i� and ci = ci
�r� + ici

�i�. �A6�

Note that the real and imaginary parts of �vi� are spanned in
the same basis of trial vectors. The real and imaginary parts
of the residual can be calculated as
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�ri
�r�� = �

j

���H̄bj� − �i
�r��bj��cji

�r� + �i
�i��bj�cji

�i�� , �A7�

�ri
�i�� = �

j

���H̄bj� − �i
�r��bj��cji

�i� − �i
�i��bj�cji

�r�� . �A8�

As the residuals for both vectors of the complex pair can be
constructed from this, considering the real and imaginary
components separately is sufficient. The new trial vectors are
obtained as usual by preconditioning of the above residuals
and orthogonalization to the present subspace.
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