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Convergence of Projected Unrestricted Hartree-Fock Moller-Plesset Series
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The problem of spin contamination in the unrestricted Hartree-Fock Moller-Plesset (UMP) series is examined, using our
full Cl programs to generate the series to high order. A scheme involving spin projection of the MP series wave functions
has been devised, which shows a substantial improvement over the regular UMP series. Practical schemes for implementing
reasonable approximations to the scheme are discussed. It is shown that it is possible to perform a projected second-order
calculation at little extra cost, but with substantially better results in cases where spin contamination is severe.

Introduction
The unrestricted self-consistent field (UHF) method1 is used

regularly by quantum chemists in molecular structure calculations.
For closed-shell molecules, often the UHF wave function becomes
a restricted Hartree-Fock (RHF) wave function, but away from
equilibrium geometry the UHF energy is lower than the RHF
energy. The principal criticism of UHF theory is that the wave
function is not an eigenfunction of S2, and this has long been
recognized as the spin contamination problem. As a measure of
this contamination, it is useful to examine <^|S2|^>, where \ )
denotes the UHF wave function. Perturbation theory is the
simplest way to introduce electron correlation into the wave
function it is often said, although of course a UHF wave function
contains some electron correlation effects because of the different
orbitals for different spins concept. Nevertheless, perturbation
theory is applied to the UHF wave function, and nowadays it is
often referred to as unrestricted Moller-Plesset (UMP) theory.2

In the past we have examined3 the convergence of the
Moller-Plesset series for both the restricted (RMP) and unres-
tricted (UMP) cases. This was possible because of the availability
of our efficient program4 for full Cl calculations. We are able
to perform full Cl calculations using double f size basis sets for
small molecules, although more recently, the availability of the
CRAY-2 with its very large main memory has considerably in-
creased the size of full Cl calculations which may be carried out.5

The RMP and UMP series showed some interesting charac-
teristics; we briefly discuss these for H20 (double   basis), C2v
symmetry, for the bond lengths Re, 1.5Rt, and 2Rt. At Rt, UHF
is equivalent to RHF, and the MP series was rapidly convergent.
At 1.5Re, the RHF series was slightly erratic, but had converged
to within 0.001 hartree by RMP-7, whereas the UMP series was

smooth, but slowly convergent, and converges within 0.001 hartree
by UMP-23. At 2RC, the RHF series was highly erratic up to
RMP-10, but after that stage it rapidly converges, whereas at
UMP-48, the energy is in error by 0.01 hartree, even though the
series is smooth, and the UHF energy is 0.20 hartree lower than
the RHF energy. Furthermore, the error in the UMP-4 energies
at Re, 1.5Re, and 2Rt are 0.001, 0.031, and 0.028 hartree, com-

pared to 0.001, 0.006, and 0.018 hartree for RMP-4. This dem-
onstrates the very unsatisfactory behavior of UMP near 1.5J?e.

Recently a comment on this problem has been made by es-
tablished scientists who regularly use the UMP method. Gill and
Radom6 have studied He22+ to conclude that, for a closed-shell
singlet system, “incorrect dissociation of RHF does not impede
the rapid convergence of the MP series as much as spin contam-
ination in the UHF wavefunction does”.

We also argued that this very slow convergence of the UMP
series is a reflection of the spin contamination referred to earlier.
For H20 at 1.5/?e and 2Rt, <S2)UHF = 0.92 and 1.79, respectively.
In simple terms, it may be that the UMP series wave functions
are very slowly converging toward an exact eigenfunction of S2.
It is the purpose of this paper to examine this problem further.
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Any good perturbation theory is built upon a well chosen and
unambiguous H0. In MP theory, H0 obeys these strictures, and
is  “/·'“(/) +  ,^  , and furthermore, the eigenfunction of H0
is the single determinant  0. Unfortunately we, in common with
many others, cannot devise such a H0 for general open-shell
systems for which  0 has a simple form and is an eigenfunction
of S2. It is possible, using appropriate projection operators, to
devise a form for H0 for open-shell (high spin) systems, as shown
by Hubac and Carsky,7 but the form of H0 is difficult to attribute
useful meaning. Schlegel8 observes that perturbation theory for
open-shell systems based on this H0 is slow to converge when
occupied and unoccupied orbitals are nearly degenerate.

An alternative procedure is to work with the wave function   ,
where O is the Lowdin spin projection operator9 and   is a single
determinant. The spin extended Hartree-Fock method10 optimizes
the parameters in the wave function by the variational method,
but the procedure is complicated, and it is difficult to devise a

perturbation theory built on this method.8
Accepting this position, one way to proceed is to use the UMP

wave function series in combination with the Lowdin spin pro-
jection operator; spin projection for UHF wave functions was first
suggested by Amos and Hall.11 Recently, Schlegel8 has attempted
this, but in a limited fashion. He has not used the full projection
operator, but he has used the entirely reasonable premise that (a)
the dominant contamination will arise from the next highest spin
state (this was suggested by Rossky and Karplus12), and (b) the
spin contamination in the zeroth-order function will be much
greater than in higher order functions, as far as energy effects
are concerned. He has used these ideas successfully in a study
of bond dissociation for LiH and CH4.

In this paper we present a scheme for determining a new UMP
energy series, using spin projection on the previously determined
UMP wave function series, which was determined without spin
projection. In other words it is still based on the simple repre-
sentation for H0. We shall see that there is much to be gained
by spin projection, if it is done properly. We shall also present
a practical spin-projected second-order scheme which, in cases
where spin contamination is significant, is both more accurate and
less expensive than regular unprojected UMP-4 calculations.

Method
Elementary Rayleigh-Schródinger perturbation theory can be

used to develop the standard Meller-Plesset series for the energy
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and wave function, starting from the single UHF determinant as
zeroth-order wave function  0, and the usual zeroth-order Fock
Hamiltonian H0. The Arth-order correction to the energy is

Ek = (i0\Hx\fk-t) (1)

where    = H - H0 is the first-order Hamiltonian, and fk is the
Arth-order correction to the wave function

fk - -(#o ~ EoYKHAk-x -      (2)
r=l

In the investigative calculations reported in this paper, these
quantities are computed in the complete basis of Slater deter-
minants; technical details may be found in ref 3 and 4.

We are concerned with developing alternative series for the
correlation energy by incorporating some form of spin projection
to remove the spin contamination which is present in the individual
\pk (although it is not present in the exact wave function, in the
absence of degeneracy). For this, we will use the Lówdin spin
projection operator9

. S2 - J(J + 1)°~ }}s S(S + 1) -J(J+ 1)
(3)

The effect of this operator when acting on a wave function is to
remove all components except that with total spin S. In a basis
of Slater determinants, the action on any wave function of S1 (and
hence Ó) can be computed straightforwardly. In second quantized
form, the spin operator is

S2 = Sf + §  +  ß-  ^  , ,* (4)
ij
ki

where  ß is the number of occupied ß spin orbitals in all deter-
minants, Éfj, É{¡ are spin orbital annihilation-creation operators,
and   is the overlap matrix between the spatial parts of the a and
ß sets of orbitals. This operator is similar to the Hamiltonian in
structure (the two electron integrals (ifikl) are replaced by  ,·* ;·;),
and its action on a wave function represented in a basis of de-
terminants can be computed by using the techniques described
in ref 4, with some simplifications.

It is not in general possible to simply replace \p0 by   0 and
then apply eq 1 and 2, since those equations are dependent on the
zeroth-order wave function being an eigenfunction of H0. Thus
our approach is to use the regular Moller-Plesset theory to obtain
the \pk's, and then subsequently apply spin projection to obtain
a series for the energy.

The complete Hamiltonian H is spin free, and so it commutes
with the operator Ó. The same, however, is not true for H0 or

   individually, since H0 is built from the occupied orbitals in
 0, which are different for a and ß spins. The exact wave function
is known to satisfy the Schrodinger equation

   =    (5)

and so, since [Ó,H] = 0, it also satisfies

    =     (6)

Our approach is to project (6) onto some suitable trial function,
and then collect terms of the same order in    to obtain a series
for the energy. The first obvious choice in this context for a trial
function is   0, the spin projected UHF function. The Arth-order
energies Ek are given by the projection of (6)

( 0\ (   +  0)   I   =     0\0 \   (7)
k=0 r=0 J=0

(where the idempotency relation CP = Ó has been used). This
gives the series

Ek = {  \0\ 0  ((  \0 \ ^ ) - ( 0\0 0 \ ,_ ) +

( 0\0 0 \   -     \ \ , ) (8)
r=0

Note that straightforward application of this formula requires the
evaluation of 0 0 and   0  0. In addition, Ek contains a nonzero

contribution from  * which enters through a term { 0\0( 0 -

 0) \  ,). The magnitude of this term will be expected to vary
directly with the degree of spin contamination in H0, since in the
limit of no contamination, H0 commutes with O and the term
vanishes. However, we note that this presence of   ( does not in
fact introduce extra computational difficulties; in Moller-Plesset
calculations, the zeroth-order Hamiltonian is very simple, and the
solution for the wave function at any order is not a problem. It
is interesting to see that the energy correct to first order

   +    = ( 0\ \ 0 '(( 0\0 \ 0) + ( 0\ ( 0 -  0) \  ))
(9)

is not a simple expectation value, because of the presence of this
term in   , also E0 ^ E0.

A slightly simpler series can be generated by projecting (6) with
 0 alone, rather that   0, i.e.

(  \(   +  0)  \   =   ,{ 0\0 \  ) (10)
k-0 r~0 s-0

giving
Ek =

(  \0\   '((  \0 \ ^ ) -  0( 0\0\ ,- ) -    {  \0\ , )
r= 1

(11)

Here there is not contribution from  /  to Ek, and it is easy to verify
that E0 = E0 and

 0 +    = ( 0\ \ 0 '( 0\  \  ) (12)

which is simply the expectation value of the Hamiltonian for the
function   0\ thus in this case, the energy at first order is identical
with that obtained in the projected UHF (PUHF) approach.

Application
In order to test the efficacy of any spin projection scheme, it

is important to choose a case where any effects of spin contam-
ination are not masked by other deficiencies of either the UHF
or RHF reference functions, for example, as a molecule is stretched
to dissociation. For this reason we chose to study the water
molecule close to the point where the UHF and RHF wave

functions first begin to differ, as the two OH bonds are stretched
symmetrically. In the basis set which we used, this transition point
is at approximately 1.33i?e; here comparison of any UHF-based
perturbation series with that based on RHF is meaningful since
the latter is still reasonably rapidly convergent at this geometry.

All calculations were carried out in the 6-21G basis set,13 with
the 8 valence electrons being correlated, the lat core orbital being
taken from the RHF or UHF calculation as appropriate. Cal-
culations were carried out at a bond angle of 107.649° at a number
of O-H bond distances R between 1.3/?c and 1ARC, and also at
R = 1.5Re and R = 2R, (where Re = 0.966 58 A). Tables I-IV
show the computed energies at a selection of these geometries at
successive orders of perturbation theory for the Moller-Plesset
series based on RHF and UHF, and the two spin-projected series
presented in the preceding section.

The results indicate that up to R ^ 1.333/?e, RHF and UHF
are identical, but beyond that point the convergence of the
UHF-based series becomes considerably worse than that based
on RHF orbitals; for example, at 1.35/?e the RHF series is con-

verging monotonically, without any of the oscillations encountered
at longer bond lengths,3 and at 4th order has already converged
to within 4 mhartree of the exact energy. In contrast the UHF
series is much more slowly convergent, being in error by 11
mhartree at 4th order and 3 mhartree at 8th order. This behavior
is illustrated in Figures 1-4, which display the as a function of
R the energies at 1st, 2nd, 4th, and 8th order of perturbation
theory. At first order, which for both RHF and UHF are just
the SCF energies, the UHF and RHF energies are extremely close

(13) Binkley, J. S.; Pople, J. A.; Hehre, W. J. J. Am. Chem. Soc. 1980,
¡02, 939.
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TABLE I: Convergence of RMP Series for H20“
Rb

1.33 1.34 1.35 1.50 2.00
-

0“ -59.401 79 -59.429 75 -59.457 37 -59.833 62 -60.701 58
1 -75.786 82 -75.782 26 -75.777 67 -75.707 21 -75.491 41
2 -75.934 99 -75.931 44 -75.927 87 -75.874 10 -75.733 05
3 -75.937 60 -75.93402 -75.93043 -75.876 12 -75.72693
4 -75.948 94 -75.945 64 -75.942 33 -75.893 04 -75.773 39
5 -75.949 87 -75.946 59 -75.943 31 -75.894 39 -75.77761
6 -75.951 72 -75.948 52 -75.945 31 -75.897 81 -75.78998
7 -75.951 96 -75.948 76 -75.945 56 -75.898 15 -75.791 01
8 -75.95232 -75.94914 -75.945 96 -75.898 98 -75.795 08

var*' -75.95247 -75.949 30 -75.946 12 -75.899 20 -75.791 27

“ For details of the calculation, see text. The table shows the total
energies given by successive orders of RMP perturbation theory.
6 Bond length in units of Rc = 0.966 58 Á. c Order of perturbation
theory. ‘'Exact variational energy.

TABLE II: Convergence of UMP Series for H20“
Rb

1.33 1.34 1.35 1.50 2.00

0“ -59.401 79 -59.446 23 -59.505 82 -60.20490 -61.488 56
1 -75.786 82 -75.782 29 -75.777 99 -75.735 01 -75.69930
2 -75.934 99 -75.928 47 -75.919 33 -75.829 39 -75.75467
3 -75.93760 -75.931 50 -75.923 11 -75.836 82 -75.76022
4 -75.948 94 -75.943 33 -75.93553 -75.848 21 -75.76242
5 -75.949 87 -75.944 75 -75.937 82 -75.853 90 -75.763 37
6 -75.951 72 -75.947 11 -75.941 04 -75.86035 -75.76422
7 -75.951 96 -75.947 71 -75.942 32 -75.865 18 -75.76488
8 -75.952 32 -75.948 39 -75.943 58 -75.869 87 -75.765 51

var'' -75.95247 -75.949 30 -75.94611 -75.899 18 -75.791 18

“For details of the calculation, see text. The table shows the total
energies Y,Ek given by successive orders of UMP perturbation theory.
6 Bond length in units of Re = 0.966 58 Á. “ Order of perturbation
theory. ‘'Exact variational energy.

75.78

Figure 1. Comparison of first-order perturbation theory energies for
symmetric stretching of H20: RMP (-----); unprojected UMP (—);
projected UMP, eq 8 (···); projected UMP, eq 11 (---).

in the range of geometries shown. Furthermore, the energy and
its gradient are continuous at the transition point. However, at
second order, the UHF energy rises considerably above that ob-
tained from RHF orbitals, and the UHF-based energy is dis-
continuous in its gradient at the transition point. This discontinuity
arises, of course, because the zeroth-order UHF wave function
is discontinuous in its first derivative at this point, whereas the
UHF energy and its gradient are continuous. The figures show
very graphically the slow convergence of the UHF series beyond
the transition point, and we conclude that in this region ^0UHF,
which has a very slightly lower energy than ^-0RHF but a consid-
erably different form, is not at all a good reference function for
the perturbative treatment of electron correlation effects.

-75.91

1.32 1.34 1.36

R/Re
Figure 2. Comparison of second-order perturbation theory energies for
symmetric stretching of H20. Key as in Figure 1.

Figure 3. Comparison of fourth-order perturbation theory energies for
symmetric stretching of H20. Key as in Figure 1.

-75.93
-j

-75.941

1.32 1.31 1 36

R Rl,

Figure 4. Comparison of eighth-order perturbation theory energies for
symmetric stretching of H20. Key as in Figure 1.

At first order of perturbation theory, the two spin projection
schemes give energies which are lower than either their UHF or
RHF counterparts. However these energies are also discontinuous
in their first derivative at the transition point. In particular, the
second, simpler scheme of eq 11 gives rise to a spurious minimum
in the potential curve; such behavior has long been known to be
a serious defect of the PUHF method, to which this first-order
energy is equivalent. Our first and more complicated spin pro-
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TABLE III: Convergence of Projected UMP Series for H20‘1

1.33 1.34 1.35 1.50 2.00

0' -59.401 79 -59.43090 -59.459 39 -59.71675 -60.197 72
1 -75.786 82 -75.78412 -75.783 36 -75.772 33 -75.71961
2 -75.934 99 -75.931 89 -75.929 41 -75.897 73 -75.787 17
3 -75.937 60 -75.93406 -75.93072 -75.89099 -75.787 32
4 -75.948 94 -75.945 47 -75.941 96 -75.89947 -75.789 57
5 -75.949 87 -75.946 32 -75.942 60 -75.897 36 -75.789 14
6 -75.951 72 -75.948 28 -75.944 64 -75.89907 -75.78966
7 -75.951 96 -75.948 54 -75.94494 -75.898 53 -75.789 74
8 -75.952 32 -75.948 97 -75.945 46 -75.89900 -75.79009
var1' -75.95247 -75.949 30 -75.94611 -75.899 18 -75.791 18

<’/o|S2I^o>< 0.00000 0.04068 0.11952 0.91702 1.790 52
(    ,^ ,   ) 0.00000 0.001 48 0.01341 1.088 60 3.54477
(  \ 2 2 2\ 0) 0.00000 0.00000 0.00001 0.002 53 0.02903
(^ ,&   ) 0.00000 0.00000 0.00000 0.00001 0.00004

“ For details of the calculation, see text. The table shows the total energies Y,Ek given by successive orders of projected UMP perturbation theory
as defined by eq 8. 6Bond length in units of Rt = 0.966 58 Á. Order of perturbation theory. ‘'Exact variational energy. ‘ Expectation values of S2
with respect to  0. Subsequent rows show expectation values of S2 with respect to \pa partially spin projected according to (13).

TABLE IV: Convergence of Projected UMP Series for H20°
Rb

1.33 1.34 1.35 1.50 2.00

0' -59.401 79 -59.446 23 -59.505 82 -60.204 90 -61.488 56
1 -75.786 82 -75.785 90 -75.788 33 -75.788 65 -75.72066
2 -75.934 99 -75.93246 -75.930 78 -75.888 93 -75.777 97
3 -75.937 60 -75.93445 -75.931 71 -75.88793 -75.783 04
4 -75.948 94 -75.945 65 -75.942 40 -75.895 48 -75.785 51
5 -75.949 87 -75.94643 -75.942 90 -75.895 57 -75.786 36
6 -75.951 72 -75.948 33 -75.944 82 -75.897 76 -75.787 22
7 -75.951 96 -75.948 58 -75.945 07 -75.898 20 -75.787 79
8 -75.952 32 -75.948 99 -75.945 55 -75.89908 -75.788 34

vaH -75.95247 -75.949 30 -75.946 11 -75.899 18 -75.791 18

“ For details of the calculation, see text. The table shows the total
energies Y,Ek given by successive orders of projected UMP perturba-
tion theory as defined by eq 11. ‘Bond length in units of Rc = 0.966 58
Á. Order of perturbation theory. ^Exact variational energy.

jection scheme of eq 8 gives no spurious minimum, but the po-
tential curve still has a small discontinuity in its slope.

However, we are more interested in the performance of these
methods in accounting for electron correlation than their behavior
at first order. At second order, Figure 2, the potential energy
curves are much smoother, particularly that derived from eq 8,
and the very poor behavior of the unprojected second-order
Moller-Plesset energy is not observed. At fourth order, Figure
3, both schemes, espeically that of eq 8, give energies which are

virtually identical with those obtained by using RHF orbitals, and
so the perturbation series as a whole are rapidly convergent, like
the RHF series. This improvement in the energies is remarkable.
There is a large discontinuity in i/'oUHF as reflected by the dis-
continuity in the UMP-2 energies, but its effect on the perturbation
series for the energy can be almost entirely smoothed out by
suitable spin projection.

Furthermore, we observe that at the longer bond lengths 1.5/?c
and 2Rt, where the RHF-based series is not reliable except at very
high order3 and one is forced to adopt a UHF reference, the
spin-projected series seem to converge remarkably well, at a rate
which makes them useful at low orders of perturbation theory.

We have two expressions for the new series, eq 8 and 11, with
the former being more satisfactory. Both require evaluation of
expectation values involving O, which, according to (4), generates
functions which are very highly excited with respect to  0. This
presents severe computational difficulties^ However, practical
simplification follows by replacing Ó by Ó, where

s+z S2 - J(J +

J<f+i S(S + 1) - J(J + 1)
(13)

where / is the number of bonds being broken in the distortion of
the molecule under consideration (1 = 2 for the H20 distortions
considered). Furthermore because, from (4), S2 is equivalent to
a double excitation operator, Ó¡\¡/0 is represented as 2/-fold ex-
citation of \p0. We find for H20 that, using 1 = 2 (instead of /
= 5), identical results to four decimal figures are found for all
numbers presented in the tables. Although the use of (8) is
preferable to that of (11), in practical calculations it will be more
difficult. The term (\p0\OH0O\fk) can be formulated as the
expectation value with respect to f0 of an operator containing up
to 4/ + 2k excitations; in contrast, in (11) there are no terms where
O appears more than once, and so one need only deal with 21 +
2/c-fold excitation operators to obtain Ek\ this in turn means that
in the evaluation of the matrix elements required in (11), ope need
generate functions which are only / + k-fold excited with respect
to the reference function f0.

Therefore we recommend that, for example for a case such as

H20 where eq 13 should be used with / = 2, instead of calculating
£0, £K£2, £3, £4 using eq 1, eq 11 is used to calculate £0, £j,
and £2. The results to second order in Table IV are a great
improvement (typically. 75%) over the fourth-order results in Table
II. In particular, the difference in energy between 1.33i?e and
2Re is in error, compared to the full Cl result, by just 4 mhartree
when the projected second-order scheme is used, whereas UMP-4
overestimates this energy difference by 25 mhartree. The cost
of calculating £2 is not great; it involves only the same two electron
integrals which are used in £2, multiplied by overlap integrals
between the spatial parts of the a and ß orbitals. Obviously, for
systems where essentially only one bond is being broken as one
moves across the potential energy surface, a single spin projection
term (/ = 1 in (13)), as advocated by Schlegel,8 would suffice,
and one could then calculate £3 with about the same effort as £4.

Finally we may summarize our results. We find that by suitable
projection of the equations, after the determination of the MP
wave functions, much improved series for the MP energies can
be obtained. The formulas for these new energies are more

complicated than the usual formulas, but the improvement is so
marked that calculations at second order using the new formulas
are a great improvement over the original fourth-order energies,
in the cases where the latter are affected by spin contamination;
we have shown that it will be practical to calculate these projected
second-order energies. Our results confirm the suspicions that
it is spin contamination which causes the poor convergence of the
UMP series, but we express some surprise that, after projection,
such good results may be obtained.
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