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ABSTRACT: We present a similarity constrained coupled
cluster method able to describe conical intersections between
two excited electronic states of the same symmetry. For a given
pair of states, this singles and doubles method (SCCSD) is
unique and orbital invariant. The computational cost scales as
the sixth power with respect to the number of orbitals, and
preliminary calculations indicate that the excitation energy
difference relative to CCSD is within the error range of CCSD
(approximately 0.10 eV). We also analyze the size-scaling
properties of the orthogonality condition. For a projected
orthogonality condition we show, and demonstrate numerically,
that the method is rigorously size-intensive.

1. INTRODUCTION

The importance of nonadiabatic phenomena in excited state
chemistryresulting from the prevalence of electronic
degeneracies, or conical intersectionsis widely recognized.1

While ground state chemistry is often treated successfully by
adiabatic dynamics within the Born−Oppenheimer2 approx-
imation, the fate of excited electronic states following
photoexcitation typically involves many potential energy
surfaces. To describe such processes theoretically, the applied
electronic structure method must describe excited states with
high accuracy, and the nuclei must be treated quantum
mechanically or semiclassically.3,4 The interest in nonadiabatic
simulation methods has increased in recent decades, but the
field has a long history. Established methods include, but are
not limited to, surface hopping,5,6 multiple spawning,4,7,8

mean-field Ehrenfest dynamics,9 and multiconfiguration time-
dependent Hartree.10

Regardless of the nuclear dynamics method, a sufficiently
accurate treatment of the electronic wave functions is necessary
to obtain reliable predictions. For instance, a balanced
description of dynamical and nondynamical electron correla-
tion is crucial when nuclei pass through a conical intersection.3

Given their high accuracy, it would be useful, in certain cases,
to treat the electronic structure using the linear response11 or
equation of motion12 coupled cluster methods. As long as the
ground state is dominated by a single determinant, coupled
cluster theory accurately accounts for dynamical correlation,
but it can also describe multireference character in the excited
electronic states due to the linear parametrization of these
states.13 Close to conical intersections, the electronic states
acquire multireference character. Consequently, near-degener-
acies between excited states are in general treatable, whereas
near-degeneracies with the ground state are not.

The electronic structure quantities needed for coupled
cluster dynamics simulations have been studied extensively.
The calculation of analytical gradients is well-established in
coupled cluster theory,14,15 and implementations and deriva-
tions of nonadiabatic coupling vectors have been re-
ported,16−19 most recently the equation of motion singles
and doubles (EOM-CCSD)12,20 implementation by Faraji et
al.19 Evidently, much of the machinery needed to perform
coupled cluster dynamics is already available, yet using the
method for excited state dynamics is difficult given its well-
known problems at conical intersections between electronic
states of the same symmetry.21−23 The existence of such
problematic regions was first postulated and characterized by
Haẗtig,21 who observed that complex energy pairs were to be
expected due to the non-Hermiticity of coupled cluster theory.
Haẗtig also argued that the dimensionality of the intersections
would be incorrect, rendering the surfaces qualitatively
incorrect close to electronic degeneracies.21 In this context,
coupled cluster methods are called non-Hermitian because the
excitation energies are eigenvalues of a non-Hermitian matrix

known as the Jacobian.11,12 The existence of complex
energies was first confirmed numerically by Köhn and Tajti22

in calculations using coupled cluster singles and doubles
(CCSD) and triples (CCSDT)24,25 theory. More recently,
complex energies have also been reported in a surface hopping
simulation on adenine using the perturbative doubles (CC2)26

model.27

As shown by von Neumann and Wigner28 and by Teller,29 a
conical intersection between two electronic states, for real
Hamiltonians, can exist in an (N−2)-dimensional subspace of
the internal nuclear coordinate space, where N is the number
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of internal coordinates. Two conditions must be satisfied at an
intersection. Expressed in the subspace of the two eigenstates,
the diagonal elements of the electronic Hamiltonian H have to
be equal (H11 = H22) and the off-diagonal element has to
vanish (H12 = 0).29 In coupled cluster theory, the analysis is
more involved. If is assumed to be diagonalizable, three
conditions are satisfied at an intersection due to the
nonsymmetry of :

= = =, 0, 011 22 12 21 (1)

If diagonalizability is not assumed, only one condition is
obtained:

− + =( ) 4 022 11
2

12 21 (2)

Both cases appear to give the wrong number of conditions.21,23

We say that = R( ) is nondiagonalizable/defective at
the molecular geometry R if the algebraic multiplicity of an
eigenvalue of exceeds its geometric multiplicity.30,31 At a
two-state intersection, can, for instance, have a doubly
degenerate eigenvalue associated with one eigenvector. Upon
approaching this geometry, the two eigenvectors gradually
collapse and become parallel, reducing the number of
eigenvectors by one. The term “defective” is used to emphasize
that nondiagonalizable points are unphysical for Hamiltonian
matrices where the eigenvectors represent the electronic
states.23

Recently, we reconsidered the question of intersection
dimensionality and the causes of the nonphysical behavior in
coupled cluster theory.23,32 First we noted that since
diagonalizability cannot be assumed at same-symmetry
intersections, the intersection seam, defined as the space
where there is an eigenvalue degeneracy,1 has the dimension-
ality N − 1. The numerical evidence confirms this,22,23

seemingly supporting the claim that the intersection is
qualitatively incorrect. However, the seam has some interesting
geometrical features. By mapping out two potential energy
surfaces in hypofluorous acid, for which N = 3, we found that
the seam is folded. It is cylindrically shaped with complex
energies in its interior and a defective, degenerate eigenvalue
on its two-dimensional surface (N − 1 = 2). The geometry of
the seam can be understood from the exact limit of the theory.
Because the coupled cluster hierarchy converges to the full
configuration-interaction (CI) limit, the cylinder-shaped
intersection seam must shrink to become a curve as more
excitations are included, gradually altering its dimensionality
from N − 1 to the correct N − 2.23

A nondefective implies that the three conditions in eq 1
are satisfied at a conical intersection. This does not mean that
the dimensionality of the seam is N − 3, however. As long as

R( ) is nondefective for all R , the three conditions are
redundant.23 For example, the untruncated limit gives the
correct N − 2 dimensionality even though is non-Hermitian
in this limit. More generally, this means that making
nondefective represents an approach to obtain correctly shaped
conical intersections with seams of the correct dimension-
ality.23,32 Another approach is to employ nonstandard
Hermitian coupled cluster models, such as the unitary and
variational approaches investigated by some researchers in the
field.33−36

Defects are avoided in the full CI limit because the
eigenvectors of become, in that limit, orthogonal with
respect to a positive definite matrix . This ensures that two

eigenstates never become parallel, eliminating the possibility of
a defective eigenvalue in their subspace.23 A useful corollary is
that intersections between two states are described correctly as
long as the eigenvectors are -orthogonal. In the similarity
constrained coupled cluster (SCC)32 method recently
introduced by us, -orthogonality is enforced among two
or more states using a similarity transformation of the
electronic Hamiltonianin particular, a similarity trans-
formation of the standard similarity transformed Hamiltonian
in coupled cluster theory. By using a simple similarity
constrained model, SCCSD, in which a single triple-excitation
is added to the CCSD cluster operator, we were able to show
that an intersection seam in hypofluorous acid became (N−2)-
dimensional. The potential energy surfaces also exhibited the
proper conical shape in the branching plane of an intersection
point.32

In this work we present a more robust similarity constrained
model to address the two main limitations we identified in the
single-excitation model, the lack of orbital invariance and the
nontrivial selection of triple excitation.32 To obtain orbital
invariance, we use a triple excitation operator that consists of
the single and double excited state operators of the right
eigenstates. This also preserves the size-extensive and size-
intensive structure of the ground and excited state equations.
Furthermore, we show that one may apply a projection
operator in to obtain a size-intensive orthogonality
condition. As a result, the model satisfies all the proper size-
scaling criteria, meaning that no inconsistency errors are
introduced in the ground or excited state energies or wave
functions. The computational cost of the model is still O(M6),
where M is the number of orbitals, and the only input the user
needs to specify are the states that are to be made

-orthogonal.

2. SIMILARITY CONSTRAINED COUPLED CLUSTER
MODEL
2.1. Theory. We define the ground state wave function as

| ⟩ = | ⟩ = + = + +e T X T T XCC HF , 3 1 2 3 (3)

where |HF⟩ is the closed-shell Hartree−Fock state. The single
and double excitation contributions to are

∑ ∑= =T t E T t E E,
1
2ai

i
a

ai
aibj

ij
ab

ai bj1 2
(4)

where i, j, ··· and a, b, ··· denote occupied and virtual orbitals
and Eai = aaα

† aiα + aaβ
† aiβ. In this work we restrict ourselves to

singlet states, though we note that a generalization to triplet
states is straightforward.37,38 The triple excitation operator in

is expressed as

∑=X x E E E
1
6 aibjck

ijk
abc

ai bj ck3
(5)

and the similarity transformed Hamiltonian as

̅ = = = ̅− − − −e He e He e e He(e )X T T X X X3 3 3 3 (6)

where H̅ = e−THeT is known as the standard similarity
transformed Hamiltonian.39 The purpose of X3 is to constrain

̅ so that two excited electronic states become -orthogonal.
In the reference, single, and double excitation space, the

governing equations are identical to the standard coupled
cluster equations, except that corrections due to X3 are
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accounted for. We compute the ground state energy using the
standard expression

= ⟨ | ̅ | ⟩ = ⟨ | ̅ | ⟩E HHF HF HF HF0 (7)

and solve the amplitude equations

μ μΩ = ⟨ | ̅ | ⟩ = ⟨ | ̅ | ⟩ =μ
−e HeHF HF 0X X3 3 (8)

for singly and doubly excited kets |μ⟩ = τμ|HF⟩. Here {τμ} is
the set {Eai, EaiEbj} of spin-free excitation operators. For the
corresponding bra vectors ⟨μ|, we use linear combinations of
these excitation operators in order to ensure biorthonormality
with the kets |μ⟩.
The electronic states are, as in equation of motion coupled

cluster theory, represented by { }, , , ...0 1 2 and
{ }, , , ...0 1 2 , the left and right eigenvectors of the Jacobian

, respectively. The matrix may be defined as

μ ν

μ ν μ ν

= ⟨ | ̅ − | ⟩

= ⟨ | ̅ − | ⟩ ≥

μν

−

E

e H E e

( )

( ) , , 0X X

0

0
3 3 (9)

where we let |0⟩ ≡ |HF⟩ and otherwise restrict μ and ν to
single and double excitations with respect to |HF⟩. In
expectation values and transition matrix elements, the left
eigenvectors represent the bra states and the right eigenvectors
the ket states. The eigenvalues of are the excitation energies,
ωn = En−E0.

11,12

For convenience, the ground and excited states of are
usually treated separately. By defining η and A as

η ν= ⟨ | ̅ | ⟩ν HF (10)

μ ν δ= ⟨ | ̅ | ⟩ −μν μνA E0 (11)

where μ, v > 0, we can partition according to |HF⟩ and {|μ⟩
: μ > 0} contributions. Assuming that Ω = 0, we have

i

k
jjjjj

y

{
zzzzz

η=
A

0

0

T

(12)

This block structure implies that the left and right ground
states are

i
k
jjjj

y
{
zzzz

i
k
jjj

y
{
zzz=

̅
=

t
1

,
1
00 0

(13)

provided the multiplier vector40 t ̅ satisfies

η + ̅ =t A 0T T (14)

The left ground state 0 is often referred to as the “lambda”
state (and denoted ⟨Λ|) when expressed in the left basis

μ{⟨ | ⟨ | }− −e eHF , . Analogously, 0 is the coupled cluster
s ta te |CC⟩ when expressed in the r ight bas i s

μ{ | ⟩ | ⟩}e eHF , .11,39 Making use of the biorthogonality of
the left and right eigenvectors, we can express the excited states
(n = 1, 2, ...) as

i
k
jjjj

y
{
zzzz

i

k

jjjjjj
y

{

zzzzzz
i

k
jjjjjj

y

{
zzzzzz= =

− ̅ ≡
L

t R

R R

R0
,n

n
n

T
n

n

n

n

0

(15)

The {|μ⟩ : μ > 0} state contributions satisfy the eigenvalue
equations

ω=AR Rn n n (16)

ω= =L A L n, 1, 2, ...n
T

n n
T

(17)

Note that it is A that is usually called the Jacobian in the
literature,11,39 although we use the same term when referring to
the extended matrix .23,32

We have already noted that the right eigenvectors of are
orthogonal with respect to a positive definite metric when
the excitation space is untruncated. The proof is as follows.
Suppose that {|μ⟩ : μ ≥ 0} is an orthonormal basis. Then I =
∑μ≥0|μ⟩⟨μ| and so

∑
μ ν

μ σ σ τ τ ν

+ = ⟨ | | ⟩

= ⟨ | | ⟩⟨ | | ⟩⟨ | | ⟩

=

μν

στ

μν

−

≥

−

−

IE e He

e H e

( )

( )

0

0

1
(18)

where μ ν= ⟨ | | ⟩μν e transforms the eigenvectors of to
those of . Orthonormality of the eigenvectors of implies
that the eigenvectors of are orthonormal with respect to the
positive-definite matrix ≡ T . In other words,

δ

≡

=

= =k l

( )

, , 0, 1, 2 ...

kl k
T

l

k
T T

l

kl (19)

For same-symmetry states, these -orthogonality relations
cease to hold for truncated excitation spaces and must in that
case be enforced.23 This is possible for orthogonalities not only
between excited states but also between the ground and the
first excited state. However, as noted, ground state
intersections can only be described using a model that is
able to treat multireference character in the ground state.
In the original similarity constrained model, we truncated μ

and ν in μν to include the reference as well as single and

double excitations. Then we imposed =( ) 0ab for a pair of
states { },a b .32 In this work, we introduce the projected
orthogonality relation

=

≡ =

( )

0

ab a
T

b

a
T T

b (20)

where is the projection operator onto the subspace spanned
by { },a b .
Before discussing the size-scaling properties of eqs 19 and

20, let us express the orthogonality conditions in a form more
convenient for implementation purposes. Partitioning into
|HF⟩ and {|μ⟩ : μ > 0} contributions, we get

i
k
jjjj

y
{
zzzz=

q Q
1 0

(21)

Then, writing

i

k
jjjjjj

y

{
zzzzzz=

R

R
k

k

k

0

(22)

we find that
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i

k

jjjjjjj
y

{

zzzzzzz≡ =
+q QR

R

R
k k

k

k
k

0

0 (23)

The nonprojected overlap can hence be written as

= + +

+ +

q q q QR

R Q q R Q QR

R R R

R

( ) (1 )kl k l
T

k
T

l

k
T T

l k
T T

l

0 0 0

0
(24)

The projected overlap is conveniently expressed as

∑
=

=

−

=

−

W G W

W G W

( ) ( )kl
T

kl

m n a b
km
T

mn nl

1

, ,

1

(25)

where it is understood that k, l = a, b and where

=Gkl k
T

l (26)

=Wkl k
T

l (27)

The expression in eq 25 follows from inserting

∑=
=

−G
m n a b

m mn n
T

, ,

1

(28)

into eq 20. To compute the elements of G and W , we partition
into |HF⟩ and {|μ⟩ : μ > 0} contributions, rewriting eqs 26 and
27 as

= + R RG R Rkl
k l

k
T

l0 0 (29)

= + +R q QRW R R R( )kl
k l

k
T l

l0 0 0 (30)

Programmable expressions are given in Section 2.2.
We introduce ( )ab because it satisfies size-intensivity.

For the nonprojected overlap ( )ab , size-intensivity is
satisfied only when the excitation space is not truncated. To
see why the overlap should be size-intensive, consider two
noninteracting subsystems C and D. Let a

C and b
C be states

located on system C with block structure denoted as

i

k
jjjjjj

y

{
zzzzzz

i

k
jjjjjj

y

{
zzzzzz= =

R R

R R
,a

a

a
b

b

b

C
0

C
0

(31)

Excited states are size-intensive in the sense that an excited
state on C is also an excited state of the noninteracting CD
system. Let us order the CD excitation manifold as

μ μ μ{| ⟩| ⟩ | ⟩| ⟩ | ⟩| ⟩ | ⟩}HF HF , HF , HF ,C D C D C D CD (32)

Then the states

i

k

jjjjjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzzzzz

i

k

jjjjjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzzzzz

= =R R

R R

0
0

,
0
0

a

a

a
b

b

bCD

0

CD

0

(33)

can be shown to satisfy the CD equations with the same
excitation energies as the isolated C system.41 Consequently, if
the overlap is zero in system C (for a

C and b
C) given some

metric , it must also be zero in the CD system (for a
CD and

b
CD). That is, we have the size-intensivity condition

= ⇒ =( ) 0 ( ) 0ab ab
C CD

(34)

If this condition is not fulfilled, imposing =( ) 0ab
CD will

change a
CD and b

CD relative to a
C and b

C, thereby changing
the excitation energies such that ωa

CD ≠ ωa
C and ωb

CD ≠ ωb
C.

Let us show that while the projected orthogonality condition
is size-intensive, the nonprojected condition is not, although
the errors introduced appear to be small in practice. The k

vector, where =( )kl k
T

l, can be written

∑μ ν μ ψ= ⟨ | | ⟩ + | ⟩ ≡ ⟨ | ⟩μ
ν

νe R e R( ) ( HF )k
T k T k

k0
(35)

and hence

∑ψ μ μ ψ ψ ψ= ⟨ | | ⟩⟨ | | ⟩ ≡ ⟨ | | ⟩
μ≥

( ) ( )kl k l k l
0 (36)

Here μ in is restricted by the truncation of the excitation
space. Note that if we define |ψk⟩ = eT|ψ̅k⟩, the projected
condition in eq 20 can be cast in the same form, with
replaced by the projection onto the space spanned by |ψ̅a⟩ and
|ψ̅b⟩.
By the size-extensivity of T,39 the kth eigenstate in the CD

system factorizes as

∑
ψ ψ ψ

ν

| ⟩ = | ⟩| ⟩

= | ⟩ + | ⟩ | ⟩
ν

νe R e R e( HF )( HF )

k k

T k T k T

CD C
0
D

C 0 C D
C

C

C
C

D

(37)

Thus, we can write

ψ ψ ψ ψ= ⟨ |⟨ | | ⟩| ⟩( ) ( ) ( )kl k l
CD C

0
D CD C

0
D

(38)

Size intensivity is obtained as long as there exists a such that

= ⊗CD C
(39)

in which case

ψ ψ= ⟨ | | ⟩( ) ( )kl kl
CD C

0
D

0
D

(40)

In the untruncated limit, ( )ab is size-intensive because

= = ⊗ = ⊗  CD
C D

C D
(41)

That is, = D.
No such factorization is possible for truncated excitation

spaces. This is straightforward to see in particular cases. For
example, in CD for CCSD, double excitations in C combine
with the reference in D, giving terms of the type |μ2

C⟩⟨μ2
C

|⊗|HFD⟩⟨HFD|, while single excitations in C combine with the
reference and single excitations in D. This gives inconsistent
definitions of , meaning that no such exists. In turn this
means that ( )ab is not size-intensive, a fact we confirm
numerically in Section 3.
On the other hand, the size intensivity of the projected

overlap ( )ab follows directly from the size intensivity of G
and W. That is, since

= = =G G( ) ( )kl k
T

l k
T

l kl
CD CD CD C C C

(42)

= = =W W( ) ( )kl k
T

l k
T

l kl
CD CD CD C C C

(43)

we get =( ) ( )ab ab
CD C. In eq 43, we have used that

the elements of l
CD that correspond to the |HFC⟩|HFD⟩ and
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|μC⟩|HFD⟩ blocks are identical to the vector l
C. This is a

straightforward consequence of eqs 35 and 37.
We now turn to the choice of the operator X3. In this work,

X3 is chosen based on a set of requirements. These restrict the
set of permissible X3 but do not uniquely define it. The
requirements are as follows.

1. To give a set of equations that is not under- or
overdetermined, X3 must be uniquely specified by a
single additional wave function parameter ζ.

2. To scale correctly with the system size, X3 must be size-
intensive. If X3

CD = X3
C, then ̅ CD separates correctly,

meaning that

̅ = ̅

= ̅ + ̅

= ̅ + ̅

−

−

e He

e H e H

H

X X

X X
D

C D

CD

C

3
CD

3
CD

3
C

3
C

(44)

3. To imply a computational scaling of O(M6), X3 must be
factorizable. It can consist of products of single and
double excitation operators, but it cannot be a
connected triple excitation operator.

4. To satisfy orbital invariance, X3 must be such that a
rotation of the occupied or virtual Hartree−Fock
orbitals does not imply a change in observable quantities
like the energies.

5. To avoid a correction when none is needed, X3 must
become the zero operator if the states possess different
symmetries. In that case, =( ) 0ab automatically.

6. To treat the a and b states identically, X3 must be state
invariant with respect to these states; that is, X3 should
not depend on what we designate as “state a” and “state
b”.

First we note that X3 can depend on other wave function
parameters, provided no parameters other than ζ are
introduced (condition 1). In this work we let X3 = ζZ3,
where Z3 is a triple excitation operator allowed to depend on
the ground and excited state amplitudes. However, the wave
function parameters that enter in Z3 must not violate size
intensivity with respect to the C subsystem (condition 2). The
only viable parameters, satisfying this criterion, are the right
excited state amplitudes Rμ

a and Rμ
b; the ground state

amplitudes and the left excited state amplitudes are not size-
intensive. Thus, conditions 1 and 2 lead us to require the
functional dependence

ζ ζ=R R R RX Z( , , ) ( , )a b a b3 3 (45)

To obtain factorizability and orbital invariance (conditions 3
and 4), we construct Z3 using products of the single and
double state excitation operators

∑ τ=
μ

μ μR Rk
a a

k

k k
(46)

∑ τ= =
μ

μ μR R k, 1, 2k
b b

k

k k
(47)

Of the possible operator products, we can construct Z3 as a
fixed linear combination of R1

aR2
b and R1

bR2
a but not of R1

aR2
a and

R1
bR2

b. By condition 5, the X3 operator must tend to zero for
point group transitions G → G′ in which the states possess the

same symmetry in G but different symmetries in G′ (e.g., G =
Cs and G′ = C2v in H2O). For the diagonal products, aa and bb,
the Z3 operator is totally symmetric. This implies that

=( ) 0ab for any ζ when the states possess different
symmetries, so there is no unique solution to the equations in
G′. This is not the case for the nondiagonal terms ab and ba;
Z3 will then possess the symmetry Γa⊗Γb ≠ A1. The resulting
X3 will break the symmetry of the electronic states in G′ unless
ζ = 0. Thus, X3 = ζZ3 = 0 as required by condition 5.
Of such linear combinations, only the plus and minus

combinations, which are unique up to an arbitrary prefactor
that can be absorbed in ζ, satisfy state invariance (condition 6).
These combinations define the operators

ζ= ++X R R R R( )a b b a
3 1 2 1 2 (48)

ζ= −−X R R R R( )a b b a
3 1 2 1 2 (49)

Note that X3
− vanishes at a defect, where Ra = Rb, for any ζ.

In this contribution we use X3
−, but we do not exclude the

possibility that X3
+ could serve as a viable alternative. While an

extensive study is needed to compare the performance of X3
+

and X3
− in general, calculations on a few systems indicate that

X3
+ gives larger deviations from CCSD in some cases (see Table

S3 in the SI). We let X3 ≡ X3
− in the following.

Summarizing, the orbital invariant SCCSD model is defined
as follows. Using X3 as given in eq 49, we solve the equations

Ω = 0 (50)

η + ̅ =t A 0T T (51)

ω=AR Ra a a (52)

ω=AR Rb b b (53)

=( ) 0ab (54)

for tμ, tμ̅, Ra, Rb, and ζ. All equations depend on X3, implicitly
in eq 54 and explicitly in the other equations. Other excited
electronic states Rk, where k ≠ a, b, can be solved for separately
after X3 has been determined by eqs 50−54.
We mention that it is possible to generalize X3 to treat

several close-lying excited states. Denoting this set by , we
can define X3 as

∑ ∑ ζ= = −
> ∈ > ∈

X X R R R R( )
m n

mn

m n
mn

m n n m
3 3 1 2 1 2

(55)

where X3
mn is associated with the orthogonality condition

=( ) 0mn . In this case, is an orthogonal set with
respect to , where can be taken to be the projection
operator onto the span of .
The method can also be modified such that a subset of states
cannot have defects with other electronic states. In this

approach, one requires for ∈k that

=k
T

k
T

(56)

Biorthogonality of the eigenvectors of then implies that k
is orthogonal to all other right states with respect to . If

is used in eq 56, k is similarly orthogonal to all other left

states with respect to −1. The relation can be enforced by
solving

ω=k k k (57)
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ω=k
T

k k
T

(58)

using a suitable wave function parametrization. Further analysis
and discussion of this model is deferred to a future publication.
2.2. Implementation Details. The model was imple-

mented in eT, a coupled cluster program currently under
development by the authors and collaborators.42 In this section
we list programmable expressions and describe the algorithm
employed to solve the equations. We use the conventional
biorthonormal basis defined by39

= | ⟩ = | ⟩a
i E ab

ij E EHF , HFai ai bj (59)

and

i
k
jjj

y
{
zzzδ

= ⟨ |

=
+

⟨ | + ⟨ |

a
i E

ab
ij E E E E

1
2

HF ,

1
1

1
3

HF
1
6

HF

ia

ai bj
ia jb ja ib

, (60)

Expressions for the CCSD contributions to Ω and η and to the
A and AT transformations are given in the literature and will
not be repeated here.40

To simplify, we express the triple excitation operator X3 as in
eq 5 using an appropriately chosen xijk

abc which we define below.
Expressed in terms of xijk

abc, the corrections relative to CCSD are
identical to the CCSDT24 corrections to the single and double
excitation blocks of Ω, η, and A. The η vector can be written

η τ η= ⟨ |[ ̅ ]| ⟩ =ν ν νHF , HF CCSD
(61)

since only T1 contributes. For the Ω vector we have

μ

μ μ

Ω = ⟨ | ̅ | ⟩

= ⟨ | ̅ | ⟩ + ⟨ |[ ̂ ]| ⟩

= Ω + ΔΩ

μ

μ μ

H H X

HF

HF , HF3

CCSD
(62)

where Ĥ = e−T1HeT1 is the T1-transformed Hamiltonian. We
express Ĥ as

∑ ∑ δ̂ = + − +H h E g E E E h
1
2

( )
pq

pq pq
pqrs

pqrs pq rs qr ps nuc

(63)

The electron repulsion integrals, gpqrs, are constructed from the
Cholesky vectors obtained using the implementation described
by Folkestad et al.43 The single and double excitation
corrections to Ω are given by

∑ΔΩ = −x x L( )ai
bjck

ijk
abc

kji
abc

jbkc
(64)

where Ljbkc = 2gjbkc − gjckb and

∑

∑

∑

δ
ΔΩ =

+
−

+ + −

+ − −

x x F

x x x g

x x x g

1
1

( ( )

( 2 )

(2 ) )

aibj
ai bj

ij
ab

ck
ijk
abc

ikj
abc

kc

ckl
lkj
bac

jlk
bac

jkl
bac

lcki

cdk
jik
bcd

kij
bcd

jki
bcd

ackd

,

(65)

Here, Fpq is the Fock matrix expressed using T1-transformed
integrals hpq and gpqrs, and ij

ab is defined by

= +Y Y Yij
ab

ij
ab

ij
ab

ji
ba

(66)

The elements of A can be expressed as μ τ= ⟨ |[ ̅ ]| ⟩μν νA , HF ,
giving

i

k
jjjjjj

y

{
zzzzzzμ τ

= + Δ

= +
⟨ |[[ ̂ ] ]| ⟩ν

A A A

A
H X

0 0

, , HF 0

CCSD

CCSD

2 3 1 (67)

where we have written the matrix in terms of the blocks given
by {⟨μ1|,⟨μ2|} and {|ν1⟩,|ν2⟩}. Defining Δρ = (ΔA)c, we get
Δρai = 0 while Δρaibj may be obtained from the expression for
ΔΩaibj by redefining the integrals in eq 65. In particular,

∑→ =F X c Lkc kc
dl

dl ldkc
(68)

∑→ =g Y g clcki lcki
d

lckd di
(69)

∑→ = −g Z c gackd ackd
l

al lckd (70)

For the left transformation, Δσ = bT(ΔA), we have

∑

∑

∑

σΔ = −

+ + −

+ + −

x x b L

x x x b g

x x x b g

( )

( 2 )

( 2 )

ck
dlemfn

lmn
def

lnm
def

dlem kcnf

dlemfn
mln
def

lnm
def

lmn
def

dlcn mekf

dlemfn
lnm
def

nml
def

lmn
def

dlek mcnf
(71)

and Δσaibj = 0.
Finally, we define xijk

abc. The implemented expressions exploit
the factorization of X3 in eqs 64, 65, and 71 to give O(M6)
computational scaling. Defining δ̃ = +R R (1 )bjck

n
bjck
n

bj ck, , we
can write the product operator R1

mR2
n as

∑ ∑

∑

=

= ̃

≥

R R R E R E E

R R E E E
1
2

m n

ai
ai
m

ai
bj ck

bjck
n

bj ck

aibjck
ai
m

bjck
n

ai bj ck

1 2

(72)

Because {Eai} commutes, we furthermore have

i
k
jjj

y
{
zzz∑= ̃R R R R E E E

1
6

1
2

( )m n

aibjck
ijk
abc

ai
m

bjck
n

ai bj ck1 2
(73)

where

= + + + + +Y Y Y Y Y Y Yijk
abc

ijk
abc

ijk
abc

ikj
acb

jik
bac

jki
bca

kij
cab

kji
cba

(74)

Comparison of eqs 49 and 73 thus implies that

ζ= ̃ − ̃x R R R R
2

( )ijk
abc

ijk
abc

ai
a

bjck
b

ai
b

bjck
a

(75)

Using the bj ↔ ck symmetry of ̃Rbjck
a and ̃Rbjck

b , the number of
terms arising from eq 75 can be reduced by a factor of 2. The
implementation includes routines that compute the contribu-
tions in eqs 64, 65, and 71 for an yijk

abc defined by
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ζ

ζ

=

= + +

y U V

U V U V U V
2

( )

( )

ijk
abc

ijk
abc

ai bjck

ai bjck ck aibj bj ckai (76)

To compute the entire correction resulting from the
amplitudes xijk

abc given in eq 75, these routines are called
twice using appropriately defined U and V.
To derive the overlap in the biorthonormal basis, we

introduce an orthonormal basis that relates the bra and ket
vectors in eqs 59 and 60, where we also include the reference
bra and ket, ⟨HF| and |HF⟩. To distinguish the different
vectors, we denote the kets in eq 59 as |μ⟩ and the bras in eq
60 as ⟨μ̃|, with μ ≥ 0. From the Cholesky decomposition

μ ν= ⟨ | ⟩ =μν μν( )T
(77)

we define the orthonormal basis

∑ ∑μ ν ν| ̅ ⟩ ≡ | ⟩ = |∼⟩
ν

μν
ν

μν
≥

−

≥

T

0

1

0 (78)

If we express the equations in this orthonormal basis, we can
translate to the biorthonormal basis using eq 78. Denoting the
matrices in the biorthonormal and orthonormal bases by
and ̅ , respectively, we have

∑
μ ν

σ θ

̅ = ⟨ ̅ | | ̅⟩

= ⟨∼| | ⟩

=

μν

σθ
μσ νθ

μν

≥

−

−

X

X

( )

T

T T

0

1

(79)

and so

̅ = ̅ =− −,T T T T (80)

The right eigenvectors of and ̅ are thus related as
̅ = T , implying that

= ̅ ̅ ̅ ̅

=

( )kl k
T T

l

k
T T

l (81)

Furthermore, since

i
k
jjj

y
{
zzz=

S
1 0
0 (82)

we can also write

= + + +

+

q Sq q SQR R Q Sq

R Q SQR

R R R R( ) (1 )kl k l
T

k
T

l k
T T

l

k
T T

l

0 0 0 0

(83)

Similarly, we have

∑= ̅ ̅ ̅
=

−W G W( )kl
m n a b

km
T

mn nl
, ,

1

(84)

where

̅ = ̅ ̅ =Gkl k
T

l k
T

l (85)

̅ = ̅ ̅ ̅ =Wkl k
T

l k
T

l (86)

Using the block structure of , , k, and l, we can write

̅ = + R SRG R Rkl k l k
T

l
0 0

(87)

Figure 1. 11A′/21A′ CCSD/aug-cc-pVDZ branching plane in HOF. Given is the real part (left) and the imaginary part (right) of the energies.
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̅ = + +R Sq R SQRW R R R( )kl k l k
T

l k
T

l
0 0 0

(88)

The q vector is given by

=q tai i
a

(89)

δ
=

+
+q t t t

1
1

( )aibj
ai bj

ij
ab

i
a

j
b

, (90)

and the S, Q, and QT transformations are given by

ρ = =Qc c( )ai ai ai (91)

ρ
δ

= = +
+

+Qc c c t c t( )
1

1
( )aibj aibj aibj

ai bj
ai j

b
bj i

a

, (92)

∑σ = = +b Q b t b( )ai
T

ai ai
ck

k
c

aick
(93)

σ = =b Q b( )aibj
T

aibj aibj (94)

ρ = =Sc c( ) 2ai ai ai (95)

ρ δ= = + −Sc c c( ) 2(1 )(2 )aibj aibj ai bj aibj ajbi, (96)

To solve the equations simultaneously, we employ a direct
inversion in the iterative subspace (DIIS)44 algorithm on the
residuals in eqs 50−54. The residuals in eqs 50−53 are
preconditioned using the diagonal orbital differences approx-
imation of A. For details regarding this preconditioner and the
update estimates for ground and excited state amplitudes used
in the DIIS algorithm, we refer the reader to the literature.39,45

No preconditioner is applied to the orthogonality condition in
eq 54. To update ζ, we apply DIIS to the update estimate given
by ζ + Δζ, where ζΔ = − ( )ab . Computing the derivative
of ( )ab with respect to ζ, as was done numerically in ref
32, can be used to improve this updating scheme.

3. RESULTS AND DISCUSSION
First we reconsider the intersection seam between the first two
A′-excited states (11A′, 21A′) in hypofluorous acid (HOF)
investigated in our previous papers.23,32 In Figures 1 and 2 we
compare the CCSD and SCCSD branching planes at the
intersection point R0 in the plane where the OH bond length is
1.090 Å.
The findings are consistent with earlier work.22,23,32 The

CCSD intersection points form an approximately elliptical
shape in the branching plane with pairs of complex energies in

Figure 2. 11A′/21A′ SCCSD/aug-cc-pVDZ branching plane in HOF.
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the interior of the ellipse (see Figure 1). In the three-
dimensional internal coordinate space, this translates to a
cylindrically shaped intersection seam, as demonstrated and
explained previously.23 In contrast, the SCCSD energy surfaces
are conically shaped in the branching plane with a single
intersection point (see Figure 2), just as for the single-
excitation model.32 This translates to a correct one-dimen-
sional seam in the internal coordinate space (N − 2 = 1). In
Figure 3 we map out parts of this intersection seam,
demonstrating that it is is a curve. The point (g, h) = (0, 0)
in Figure 2 is the intersection point in the OH slice in Figure 3
for which ROH = 1.090 Å.

The g and h vectors and the seam vector s were determined
using internal coordinates obtained from a normal mode
Hartree−Fock calculation at R0 using QChem.46 Details are
given in the SI. In this work we use orthonormalized non-mass-
weighted normal modes, which correctly preserve the
molecule’s center of mass, not the mass-weighted normal
modes used in ref 32. Qualitatively, the results are not affected
by this; in particular, the branching plane in Figure 2 exhibits
the same features as Figure 3 in ref 32.
To show that the projected condition =( ) 0ab

satisfies size intensivity, we have performed calculations on a
noninteracting CD system consisting of a formaldehyde

Figure 3. 11A′/21A′ SCCSD/aug-cc-pVDZ intersection seam. The coloring shows the energy difference between the two states in Hartrees. Here θ
denotes the H−O−F angle, while ROH and ROF are the OH and OF bond distances, respectively.

Table 1. Excitation Energies ωk and Discrepancies Δωk, k = a, b, for the Nonprojected ( ) and Projected ( )
Orthogonality Conditions on CH2O(He)n

a

method n ωa Δωa ωb Δωb

SCCSD( ) 0 0.29396556345 − 0.30073161296 −
1 0.29396557140 8.0 × 10−9 0.30073164810 3.5 × 10−8

2 0.29396557935 1.6 × 10−8 0.30073168325 7.0 × 10−8

3 0.29396558730 2.4 × 10−8 0.30073171839 1.1 × 10−7

4 0.29396559525 3.2 × 10−8 0.30073175353 1.4 × 10−7

8 0.29396562704 6.4 × 10−8 0.30073189406 2.8 × 10−7

SCCSD( ) 0 0.29396403184 − 0.30072483930 −
1 0.29396403184 <10−11 0.30072483930 <10−11

2 0.29396403184 <10−11 0.30072483930 <10−11

3 0.29396403184 <10−11 0.30072483930 <10−11

4 0.29396403184 <10−11 0.30072483930 <10−11

8 0.29396403184 <10−11 0.30072483930 <10−11

CCSD 0 0.29375048778 - 0.29969409128 -
aAll He atoms are placed at a distance of about 200 Å from CH2O. Energies are in units of Hartrees. Energies and residuals were converged using a
threshold equal to 10−11. The CH2O geometry is given in the SI.
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molecule (C) and n He atoms, n = 1, 2, 3, 4, 8 (D). These
atoms are positioned at a distance of 200 Å from form-
aldehyde, making their interaction with formaldehyde negli-
gible. We also include numbers for the nonprojected condition

=( ) 0ab to illustrate the errors obtained in that case. In
Table 1, we compare excitation energies for the 11A1 and 21A1

states using ( )ab and ( )ab . As expected, no
inconsistency errors arise using the projected condition

=( ) 0ab while nonzero deviations result from using
=( ) 0ab . The results verify numerically the proof of

intensivity for =( ) 0ab ; see eqs 42 and 43 and the
surrounding text. They also confirm the nonintensivity of

=( ) 0ab , which is found to give errors that increase
linearly with the number of He atoms (see Figure 4). The
errors introduced using the nonprojected overlap =( ) 0ab
are small (<10−6 Hartree), so they might not be important in
practice. Nevertheless, given the energy consistency that is
guaranteed by it, the projected condition =( ) 0ab
appears preferable.
We have reinvestigated the known defect in formaldehyde as

well.22,32 For details regarding the geometry, we refer the
reader to the original study by Köhn and Tajti.22 Again, the
numbers, shown in Figure 5, are consistent with earlier
findings. The defective region is replaced by an avoided
crossing, as expected; two coordinates need to be varied to find
an intersection point.32 For all CO bond lengths, the
correction relative to the real part of the CCSD energies
stays below 0.05 eV. They are thus smaller than the usual error
of CCSD within its domain of validity, approximately ≤0.10
eV.47 This is also the case for HOF. The real part of the
SCCSD−CCSD energy difference in the branching plane in
Figures 1 and 2 is less than 0.01 eV. We emphasize that
although the cited 0.10 eV error range is a convenient measure
of the magnitude of the SCCSD−CCSD deviation, the CCSD
errors may be larger or smaller depending on such factors as

the degree of multireference character in the ground state and
the proximity to a defective intersection seam.
Finally, we have performed single-point calculations on a set

of molecules using the projected and nonprojected orthogon-
ality conditions (see Table 2). These calculations provide some
indication of the SCCSD-CCSD deviation in regions of the
potential energy surfaces where the electronic states are not
nearly degenerate. From Table 2 we see that the deviations are
less than 0.02 eV in all cases and that the nonprojected and
projected energies are more similar to each other than to
CCSD. Note also that the comparatively small magnitude of
the energy deviations in Table 2 is expected. Overlaps between

Figure 4. Deviations Δω in SCCSD/aug-cc-pVDZ excitation energies of CH2O(He)n relative to a calculation on an isolated CH2O. Obtained Δω
are shown both using (labeled “nonprojected overlap”) and (“projected overlap”). The He atoms are distanced sufficiently far away from
CH2O (200 Å) to be noninteracting to within 10−11 Hartree in the CCSD and projected SCCSD energies.

Figure 5. Relative 1 1A1 and 2 1A1 excited state SCCSD (blue) and
CCSD (red) energies for formaldehyde using aug-cc-pVDZ. For
CCSD, the energy Ek = Re Ek + i Im Ek of the kth state is represented
as Ek = Re Ek + Im Ek, where k = 1, 2.
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states in CCSD are often close to zero when the energy
difference is large.

4. CONCLUDING REMARKS

In this work we have shown that the similarity constrained
approach admits a formulation at the CCSD level of theory
that is orbital invariant, size-intensive, and unique for a chosen
pair of electronic excited states. Preliminary calculations
indicate that the correction relative to CCSD falls within the
commonly observed error range of CCSD. Future develop-
ments needed for coupled cluster dynamics include molecular
gradients and nonadiabatic coupling elements, as well as
generalizations of the model to other levels in the coupled
cluster hierarchy. Given the expensive nature of dynamics
simulations, we are currently looking into a less expensive
perturbative doubles SCC2 method based on the well-
established CC226 method.
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Table 2. Single-Point Excitation Energiesa

a b ωa
CCSD ω ( )a ω ( )a ωb

CCSD ω ( )b ω ( )b

ammonia 11A1 21A1 5.9372 5.9376 5.9379 9.3400 9.3401 9.3401
water 11B1 21B1 7.4104 7.4078 7.4077 11.0739 11.0749 11.0749

11A1 21A1 9.9436 9.9368 9.9357 11.7632 11.7740 11.7756
uracil 11A″ 21A″ 5.1285 5.1276 5.1276 6.0073 6.0073 6.0073
thymine 11A″ 21A″ 5.3086 5.3069 5.3069 5.7934 5.7933 5.7933
glycine 11A′ 21A′ 6.4401 6.4400 6.4400 7.2609 7.2610 7.2610
butanal 11A′ 21A′ 6.7083 6.7079 6.7079 7.4199 7.4184 7.4184

aWe use the aug-cc-pVDZ basis and a 10−6 residual threshold. The excited states are listed as a and b, with associated excitation energies ωa and ωb

given in eV. The metric used in the SCCSD calculations is denoted by and . Geometries are in the SI.
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Ansaẗze of second order to excitation energies and frequency-
dependent dipole polarizabilities. Phys. Rev. A: At., Mol., Opt. Phys.
2012, 86, 052519.
(36) Liu, J.; Asthana, A.; Cheng, L.; Mukherjee, D. Unitary coupled-
cluster based self-consistent polarization propagator theory: A third-
order formulation and pilot applications. J. Chem. Phys. 2018, 148,
244110.
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