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We derive the crossing conditions at conical intersections between electronic states in coupled cluster
theory and show that if the coupled cluster Jacobian matrix is nondefective, two (three) independent
conditions are correctly placed on the nuclear degrees of freedom for an inherently real (com-
plex) Hamiltonian. Calculations using coupled cluster theory on a 21A′/31A′ conical intersection
in hypofluorous acid illustrate the nonphysical artifacts associated with defects at accidental same-
symmetry intersections. In particular, the observed intersection seam is folded about a space of the
correct dimensionality, indicating that minor modifications to the theory are required for it to pro-
vide a correct description of conical intersections in general. We find that an accidental symmetry
allowed 11A′′/21A′′ intersection in hydrogen sulfide is properly described, showing no artifacts as
well as linearity of the energy gap to first order in the branching plane. Published by AIP Publishing.
https://doi.org/10.1063/1.4998724

I. INTRODUCTION

A realistic description of nuclear motion in excited elec-
tronic states requires reliable predictions of the energies of
such states and the nonadiabatic coupling between them.
Electronic state degeneracies, more commonly referred to
as conical intersections, are now widely recognized to play
a prominent role in such dynamics, for instance, in photo-
chemistry.1,2 Using ab initio quantum chemical methods to
predict dynamics successfully is challenging, however. An
accurate simultaneous treatment of static and dynamic cor-
relation comes at high computational cost and is an active
research area in quantum chemistry.3–5 Still, several stud-
ies have demonstrated that dynamics simulations involving
conical intersections, for both isolated and condensed-phase
systems, can be predictive and offer novel insights into the
mechanisms following photoexcitation.6–10

In the early days of quantum mechanics, von Neumann
and Wigner derived the conditions necessary for two elec-
tronic states to become degenerate.11 They realized that two
conditions are satisfied at such degeneracies. More precisely,
u (R) = 0 and v (R) = 0, where R are the vibrational coordi-
nates and the functions are defined in terms of the Hamilto-
nian matrix elements.12 Although the proof and its interpre-
tation were once a subject of some controversy,13 there now
exist many independent mathematical proofs of their origi-
nal insight.14–16 The number of conditions has implications
for the structure of conical intersections. Two conditions are
expected to be satisfied in a subspace of dimension N � 2,
where N is the number of internal nuclear degrees of free-
dom.17 In this subspace, known as the intersection seam, the
degeneracy is preserved; in its complement, the branching
plane, the surfaces adopt the shape of two facing cones (giving

a)Author to whom correspondence should be addressed: henrik.koch@ntnu.no

the intersections their name, conical).14 Note that the number
of conditions is not always two. When effects that render the
Hamiltonian inherently complex are accounted for, the two
crossing conditions become three.11

For diatomics, the proof implies the noncrossing rule,
which states that states of the same symmetry cannot inter-
sect. This is because the likelihood that two conditions are
satisfied by varying one parameter, the distance between
the atoms, is vanishingly small, and it will therefore never
happen in practice. The path in the uv-plane, traced out
by u(R) and 3(R) by varying the internuclear distance R,
would have to accidentally pass through the origin for this
to occur.16 For polyatomic molecules, on the other hand, con-
ical intersections between states of the same symmetry are
abundant.

If an approximate theory does not faithfully reproduce
the crossing conditions, its description of conical intersections
may be qualitatively wrong. Considering the eigenvalue equa-
tion associated with a nonsymmetric matrix, Hättig18 noted
that it seems to enforce three conditions, rather than two,
when two eigenvalues become equal. This would imply that
Hermitian symmetry is needed to obtain the correct num-
ber of conditions, thereby ruling out coupled cluster response
theory (CCLR or EOM-CC)19,20 as a viable model at coni-
cal intersections. Furthermore, the nonsymmetric eigenvalue
problem implies that the excitation energies are not necessar-
ily real numbers.18 Soon afterwards, Köhn and Tajti21 found
complex energies and parallel eigenvectors at an intersection
in formaldehyde using coupled cluster theory, truncated after
singles and doubles (CCSD)22 and triples (CCSDT)23,24 exci-
tations. These artifacts have also been observed in the context
of ab initio dynamics; in particular, complex energies have
been encountered in simulations using the perturbative doubles
coupled cluster (CC2)25 model.26 Given the incorrect repre-
sentation of the crossing conditions, the qualitative shapes
of the potential energy surfaces, in coupled cluster and other
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ab initio theories, have also been considered in several recent
papers.27–29

We should also mention that complex energies may also
be encountered in other theories. For instance, the response
theories associated with Hartree-Fock (TD-HF)30 and den-
sity functional theory (TD-DFT)31 both lead to non-Hermitian
eigenvalue problems for the excitation energies.32,33 These
types of instabilities, which arise due to coupling between
excitation and deexcitation operators, will not be discussed
in the present paper.

Here, we reconsider the crossing conditions of nonsym-
metric matrices, with particular attention given to the case of
coupled cluster theory. We show that nonsymmetric matri-
ces reproduce the crossing conditions of quantum mechanics
if the matrices are nondefective. Moreover, we argue that it
is misleading to identify the conical intersections of coupled
cluster theory with the (N � 3)-dimensional space resulting
from Hättig’s conditions, as some authors have.18,21,28 In light
of the theory’s behavior in the limit where all excitation opera-
tors enter the cluster operator, the conical intersection is more
appropriately identified with an (N � 1)-dimensional space,
also discussed by Hättig,18 that is folded about a space of the
correct dimensionality (i.e., N � 2).

We restrict our attention to intersections between excited
states here and defer to a later publication the treatment of
intersections with the ground state. The observations made in
this paper form the basis for a modified coupled cluster model
that is nondefective and therefore able to correctly describe
conical intersections between excited states of the same
symmetry.34

II. COUPLED CLUSTER CROSSING CONDITIONS

Let us first derive the crossing conditions in quantum
mechanics, where we follow closely the argument given by
Teller.14 Denote the two electronic states of interest byΨ1 and
Ψ2, where

H Ψk = Ek Ψk , k = 0, 1, 2, . . . . (1)

Here and in subsequent discussions, H is the electronic Hamil-
tonian expressed in the determinantal basis. Let us define a
reduced space representation of H in an orthonormal basis
that spans Ψ1 and Ψ2, say Φ1 and Φ2,

H rk = Ek rk , Hij = 〈Φi |H Φj〉, i, j = 1, 2. (2)

The eigenvalues of H then satisfy

E2 − E1 =

√
(H22 − H11)2 + 4 H2

12. (3)

As long as the basis functions Φ1 and Φ2 are real, H will
be symmetric (H = HT ) because its elements will be real
for all nuclear coordinates R. Since E2 � E1 vanishes by
definition at an intersection, Eq. (3) gives us the crossing
conditions

0 = u(R) = H22(R) − H11(R),
0 = v(R) = H12(R).

(4)

If u(R) and v(R) are expanded to first order about an inter-
section point, R0, we expect to obtain solutions to Eq. (4), R,

in a subspace of dimension N � 2, where N is the number of
vibrational degrees of freedom.17

An analogous proof can be attempted in the framework
of coupled cluster theory. The excitation energies ωk in this
model are the eigenvalues of the nonsymmetric coupled cluster
Jacobian matrix A,

A rk = ωk rk , k = 0, 1, 2, . . . . (5)

In terms of the cluster operator T =
∑
µ>0 tµτµ, a sum of exci-

tation operators τµ weighted by amplitudes tµ that satisfy the
amplitude equations, the elements are

Aµν = 〈µ|e
−T (H − E0) eT |ν〉, |ν

〉
= τν |R

〉
, (6)

where E0 = 〈R |e−T HeT |R〉, |R
〉

is the Hartree-Fock determi-
nant, τ0 = I, and µ, ν ≥ 0. Although A is usually defined only
for µ, ν > 0,20,35 we include the reference terms in our defini-
tion. This is useful because A is then directly related to H in
the limit of a complete cluster operator.

We denote the left eigenvectors of A by lk and define a
reduced representation of A, given in a biorthonormal basis
{λi, ρi}i=1,2 of the space spanned by {li, ri}i=1,2,

J =
(
J11 J12

J21 J22

)
, Jij = λ

T
i A ρj, λT

i ρj = δij. (7)

The eigenvalues of J are then seen to satisfy

∆ω = ω2 − ω1 =

√
(J22 − J11)2 + 4 J12 J21. (8)

At this point in the proof, we see that because J12 J21

may be negative for nonsymmetric A, the crossing conditions
cannot be inferred directly from Eq. (8). To proceed, we have
to consider the linear independence of the eigenvectors of A.
Note that this complication is not encountered in symmetric
theories, where the eigenvectors are linearly independent due
to their orthonormality.

The Hamiltonian is Hermitian, having real eigenvalues
and orthogonal eigenvectors. It always has a diagonal repre-
sentation, and its eigenvectors always span the entire Hilbert
space.36 Orthogonality is lost for the nonsymmetric A matrix,
and there is no guarantee that its eigenvectors span the entire
space. If they do, A is called nondefective and can be written
as

A =
∑

k

ωk rk lTk , I =
∑

k

rk lTk . (9)

Equivalently, A is nondefective if it can be diagonalized: that
is, if there exists an M such that A = M−1ωM, where ω is
a diagonal matrix. The eigenvalue associated with a matrix
defect is known as a defective eigenvalue.37

Symmetric matrices are nondefective because they can
always be diagonalized. Nonsymmetric matrices, on the other
hand, are guaranteed to be nondefective only at R where
the eigenvalues are distinct. When the eigenvalues are dis-
tinct, the associated eigenvectors can be shown to be linearly
independent.17 Nonsymmetric matrices may therefore become
defective at intersections, though this is not neccessarily the
case. For instance, coupled cluster theory is nondefective for
a complete cluster operator, at which point A is a matrix
representation of H.35
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The coupled cluster crossing conditions may be derived
for nondefective J. Denoting the right and left eigenvectors of
J by qk and pk , for k = 1,2, we find that

J =
∑

k=1,2

ω qk pT
k = ω

∑
k=1,2

qk pT
k = ω I, (10)

from which it follows, by Eqs. (7) and (10), that

0 = u(R) = J22(R) − J11(R),

0 = v(R) = J12(R),

0 = w(R) = J21(R).

(11)

These crossing conditions were first postulated by Hättig,
representing what he named a true intersection.18 The num-
ber of conditions has led some to erroneously conclude that
the branching plane for a two-state intersection is always
three-dimensional in nonsymmetric theories.18,21

III. INTERSECTION DIMENSIONALITY

Let us show that a nondefective J implies the correct inter-
section seam dimensionality. Suppose that J is nondefective in
some region S ⊆ RN , where, for illustrative purposes, we let
R space be three-dimensional (N = 3), as is true for triatomic
systems. Then, if u, v , and w, as defined in Eq. (11), are inde-
pendent functions of R, each condition defines a plane, say
A, B, and C, which might be expected to intersect at a point.
This is not what occurs, however. The situation is instead one
where two of the planes intersect to form a curve (A∩B) in the
third plane (C). To show this, we let N be general and consider
the two sets

J = {R ∈ S : u(R) = 0, v(R) = 0}, (12)

I = {R ∈ S : u(R) = 0, v(R) = 0, w(R) = 0}. (13)

We wish to prove that J = I. Clearly, I ⊆ J, so it is sufficient
to show that J ⊆ I. Suppose on the contrary that J * I, that
is, suppose there is an R in J that is not in I. Then J can be
written as

J = *
,

J11 0

J21 J11

+
-

. (14)

This is a defective matrix: it has one eigenvector, (0 1)T , asso-
ciated with the doubly degenerate eigenvalue J11. In other
words, J * I leads to a contradiction (that J is defective at
R), so J ⊆ I and hence J = I. We have thus shown that two
independent conditions are enforced at conical intersections,
provided A is nondefective in the subspace of the intersecting
eigenvectors.

That the number of independent conditions is two can also
be understood by noting that J is similar to a symmetric matrix
in S. To be nondefective the matrix must be diagonalizable,
J = M−1ωM. This observation leads to an alternative but
equivalent proof. The columns of M are the right eigenvectors,
x and y, of the matrix J,

M = *
,

x1 y1

x2 y2

+
-

, det M = x1 y2 − y1 x2. (15)

In terms of M and ω, the crossing conditions read

u(R) =
2∆ω
det M

(x1 y2 + y1 x2), (16)

v(R) =
2∆ω
det M

(−y1 y2), (17)

w(R) =
2∆ω
det M

(x1 x2). (18)

Now suppose it were true that w(R) , 0 while u(R) = 0 and
v(R) = 0. From Eq. (18) we then see that ∆ω , 0. It follows
that y1 y2 = 0 and x1 y2 = �y1 x2. If y1 = 0, then det M = 0;
if y1 , 0, then y2 = 0, implying det M = 0. This contradicts
the fact that the determinant of M is nonzero because J is
nondefective. We thus conclude that u(R) = 0 and v(R) = 0
together imply that w(R) = 0.

In quantum mechanics, three conditions are satisfied at an
intersection when H is inherently complex. This is because the
off-diagonal element H12 cannot be assumed real, giving the
modified crossing conditions38

0 = u(R) = H22(R) − H11(R),

0 = v1(R) = Re H12(R),

0 = v2(R) = Im H12(R).

(19)

Retracing the steps made for real A, we find the coupled cluster
crossing conditions for complex A to be

0 = u1(R) = Re (J22(R) − J11(R)),

0 = u2(R) = Im (J22(R) − J11(R)),

0 = v1(R) = Re J12(R),

0 = v2(R) = Im J12(R),

0 = w1(R) = Re J21(R),

0 = w2(R) = Im J21(R).

(20)

We assume that the eigenvalues ωi are real and nondefective.
If we then let

J = {R ∈ S : u1(R) = 0, vi(R) = 0}, (21)

I = {R ∈ S : ui(R) = 0, vi(R) = 0, wi(R) = 0}, (22)

where i = 1, 2, J = I can be shown as follows. Clearly, I ⊆ J.
To prove that J ⊆ I, we suppose that there is an R ∈ J that is
not in I. Then we find

∆ω = i | Im (J11 − J22) | (23)

from Eq. (8). As the ωi are real, Im (J11 � J22) = 0. But then

J = *
,

J11 0

J21 J11

+
-

, (24)

contradicting the assumption that J is nondefective. For com-
plex H, three independent conditions are thus enforced at con-
ical intersections, provided A is nondefective in the subspace
of the intersecting eigenvectors.

The reduced number of independent conditions explains
some facts not accounted for in earlier analyses. One is that A is
nonsymmetric even in the full configuration interaction limit,
meaning that the three conditions in Eq. (11) are satisfied at
its intersections. Yet the eigenvalues of A and H, and therefore
also their conical intersections, are the same in this limit.35
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All of this stems from the fact that symmetric theories can
be disguised as nonsymmetric. A symmetric matrix, say B,
can be made nonsymmetric by a similarity transform by a
nonorthogonal matrix, say C,

B 7→ B′ = C−1 B C. (25)

But the intersections of B and B′ are identical because such a
transformation does not change the eigenvalues.17 There are
only two independent conditions in both cases, as A is similar
to H in the limit, and B′ similar to B. Both are nondefective
for all R.

Note that similarity of A to a symmetric matrix, which
would amount to a complete symmetrization of the theory,
is too strict a criterion. To correctly predict intersections,
only the representation of A in the space spanned by the two
eigenvectors, that is, J, needs to be nondefective.

IV. ENERGY GAP LINEARITY IN THE BRANCHING
PLANE: A PERTURBATION THEORETICAL ANALYSIS

In the present section, we adapt the analysis of Zhu and
Yarkony for the special case of coupled cluster theory2 and
examine the behavior of the energy gap in the branching plane
close to the conical intersection.

We let R0 be a point of intersection and expand A at
R = R0 + δR,

A(R) = A(R0) +
N∑
α=1

δRα
∂A(R)
∂Rα

���R0

+
1
2

N∑
α,β=1

δRα
∂2A(R)
∂Rα∂Rβ

���R0
δRβ + · · · . (26)

Then we define a fixed matrix M, whose columns are the right
eigenvectors of A at R0. Let us partition A into a block of
intersecting states (I) and its complement (C) and transform it
to the eigenvector basis at R0,

M−1A M = *
,

AI ,I AI ,C

AC,I AC,C
+
-

. (27)

We assume that A is nondefective in a neighborhood of R0,
implying in particular that M is invertible. Folding the C block
into the I block, the eigenvalue problem for the intersecting
states becomes

(AI ,I + AI ,C(ωk − AC,C)−1AC,I − ωk) rI
k = 0. (28)

As M consists of the eigenvectors of A at R0, we have

AI ,I
ij = δij ω

R0
i +

∑
α

δRα
∂AI ,I

ij

∂Rα
���R0

+ · · · , (29)

AI ,C
ij =

∑
α

δRα
∂AI ,C

ij

∂Rα
���R0

+ · · · , (30)

AC,I
ij =

∑
α

δRα
∂AC,I

ij

∂Rα
���R0

+ · · · , (31)

AC,C
ij = δij ω

R0
i +

∑
α

δRα
∂AC,C

ij

∂Rα
���R0

+ · · · . (32)

Both AI ,C and AC,I are first order in δRα. The second term in
Eq. (28) has no contributions to first order, and the equation
therefore reads, to first order,∑

j

(
δij(ω

R0
i − ωi) +

∑
α

δRα
∂AI ,I

ij

∂Rα
���R0

)
rI

i,j = 0, (33)

where rI
i,j is the jth element of rI

i . Denote the degenerate eigen-

value at R0, ωR0 , by ω. Restricting ourselves to the I block, i
= 1,2, we can write Eq. (33) as

*
,

ω + (s − g) · δR h1,2 · δR

h2,1 · δR ω + (s + g) · δR
+
-

ri = ωi ri, (34)

where

h1,2
α =

∂AI ,I
12

∂Rα
���R0

, (35)

h2,1
α =

∂AI ,I
21

∂Rα
���R0

, (36)

and

sα =
1
2

*
,

∂AI ,I
11

∂Rα
���R0

+
∂AI ,I

22

∂Rα
���R0

+
-

, (37)

gα =
1
2

*
,

∂AI ,I
22

∂Rα
���R0
−
∂AI ,I

11

∂Rα
���R0

+
-

. (38)

The difference in the energy of the states is

ω2 − ω1 = 2
√

(g · δR)2 + (h1,2 · δR)(h2,1 · δR). (39)

In the nondefective case, A is similar to a symmetric
matrix B. Let Q be the matrix that relates A to B, that is,
A = Q−1B Q. Since lT1 = rT

1 QT
0 Q0, the off-diagonal A12

element can be written as

AI ,I
12 = lT1 A r2 = rT

1 QT
0 Q0 Q−1B Q r2. (40)

Above and in the following, we let Q0 and B0 denote the value
of Q and B at R0, reserving Q and B for their value at R = R0

+ δR. Let us expand Q−1B Q about R0,

Q−1B Q = Q−1
0 B0 Q0

+
∂

∂R
(Q−1B Q)���R0

· δR + · · · . (41)

By defining A0 = Q−1
0 B0Q0, we can write

∂

∂R
(Q−1B Q)���R0

= Q−1
0
∂B
∂R

���R0
Q0

+
∂Q−1

∂R
���R0

Q0A0Q−1
0 Q0

+ Q−1
0 Q0A0Q−1

0
∂Q
∂R

���R0
. (42)

Inserting this expression for the derivative into Eq. (40),

AI ,I
12 =

∑
α

rT
1 QT

0
∂B
∂Rα

���R0
Q0 r2 δRα

+ω
∑
α

lT1
( ∂Q−1

∂Rα
���R0

Q0 + Q−1
0
∂Q
∂Rα

���R0

)
r2 δRα + · · · .

(43)
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The second term vanishes by the product rule

AI ,I
12 =

∑
α

rT
1 QT

0
∂B
∂Rα

���R0
Q0 r2 δRα

+ ω
∑
α

lT1
∂

∂Rα
(Q−1Q)���R0

r2 δRα + · · ·

=
∑
α

rT
1 QT

0
∂B
∂Rα

���R0
Q0 r2 δRα + · · · . (44)

We have thus found that

h1,2
α = rT

1 QT
0
∂B
∂Rα

���R0
Q0 r2. (45)

An analogous derivation shows that

h2,1
α = rT

2 QT
0
∂B
∂Rα

���R0
Q0 r1, (46)

showing that h1,2 = h2,1 by the symmetry of the matrix
QT

0 (∂B)(∂Rα)|R0 Q0. It follows that

ω2 − ω1 = 2
√

(g · δR)2 + (h1,2 · δR)2, (47)

which is the well-known linearity of the energy gap obtained
in symmetric theories2 and more generally in exact quantum
theory.14 We therefore expect that nonsymmetric theories that
are nondefective have the correct energy gap linearity in the
branching space close to the conical intersection.

V. THE DESCRIPTION OF ACCIDENTAL
SAME-SYMMETRY INTERSECTIONS

At accidental same-symmetry conical intersections, also
known as no-symmetry conical intersections, neither of the
crossing conditions are satisfied by group theoretical argu-
ments.2 Coupled cluster theory has been found to be defective
at this class of intersections.21 As discussed by Hättig, a degen-
eracy is then obtained in a subspace of dimension N � 1
where18

ω2 − ω1 =

√
(J22 − J11)2 + 4 J12 J21 = 0. (48)

The intersection defined by Eq. (48) is folded such that
it resembles, from the perspective of large changes in R, an
object of dimension N � 2. An illustration for N = 3 is given
in Fig. 4. The reason for this is that the eigenvalues of A will
converge to the eigenvalues of H � E0 as more excitations are
included in the cluster operator.39 For a given intersection of H,
the complex energies predicted by A must eventually vanish,
leaving the intersection of H in the limit of a complete T.
Consider the case N = 3. An intersection of H, for this number
of internal degrees of freedom, is a curve in R space (N � 2
= 1). The coupled cluster intersection, on the other hand, while
resembling a curve from the perspective of large changes in R,
is in reality a cylinder whose surface has the dimensionality
expected in light of Eq. (48) (N � 1 = 2). On its surface, the
eigenvectors are parallel, and in its interior, the energies are
complex. The cylinder shrinks to a curve of dimension N � 2 as
all excitations are included in T (i.e., to the conical intersection
predicted by H).

For completeness, we note that there may exist a space of
dimension N � 3 where

J11 = J22, J12 = 0, J21 = 0. (49)

For N = 3, this space corresponds to places along the intersec-
tion seam where the cylinder shrinks to a point. The subspace
is of interest because some authors have identified it as the
intersection.18,21 This is correct if A is nondefective, but in
that case the number of independent conditions reduces to
two (see Sec. III). When A is defective, the seam should
instead be identified with the (N � 1)-dimensional space that
becomes the (N � 2)-dimensional seam in the complete T
limit.

VI. THE DESCRIPTION OF ACCIDENTAL SYMMETRY
ALLOWED INTERSECTIONS

When the off-diagonal conditions are satisfied by group
theoretical arguments, the intersection is known as accidental
symmetry allowed.2 An example is the 1 A′′/2 A′′ intersection
in SH2 (Cs), which is located in the subspace of geometries
where the molecule has C23 symmetry.12 For such R, the states
possess B1 and A2 symmetries, and the off-diagonal elements
of the totally symmetric H vanish due to symmetry. This is
also true in coupled cluster theory, where lT A r = 0 for l and
r of different symmetries.

At symmetry allowed intersections, r1 and r2 do not
become parallel since they possess different symmetries. It
follows that J is diagonal, and therefore nondefective, at the
intersection. Expanding the matrix about a point of intersec-
tion, R = R0 + δR, where the displacement δR preserves
the molecule’s C23 symmetry, lT1 A r2 = 0. Only the diago-
nal condition needs to be met (by accident, as far as symmetry
is concerned) in the subspace D ⊂ RN of C23 geometries.
There is thus one condition in D, the same as in the symmetric
case.40

Partitioning the displacement δR in a totally symmet-
ric part, δRs, and a non-totally symmetric part, δRn, the
eigenvalues can be written to first order as follows:

∆ω =
1
2

√
(gs · δRs)2 + (h1,2

n · δRn)(h2,1
n · δRn). (50)

To derive the above, we made use of gn = 0, which follows
because ∂A/∂Rn does not span A1, and h1,2

s = h2,1
s = 0. The

latter is seen by noting that the two states possess different
symmetries for totally symmetric displacements.

In the SH2 system, there is associated with g and h
one totally symmetric (δRs) and one non-totally symmetric
displacement (δRn), respectively, giving

∆ω =
1
2

√
g2

s δR2
s + h1,2

n h2,1
n δR2

n, (51)

where h1,2 and h2,1 are parallel due to their orthogonality to
both s and g. An imaginary pair of excitation energies can
result if h1,2

n h2,1
n becomes negative. Although this is possible

in principle, we have not found it to occur in practice (for SH2),
as shown below in Sec. VIII.

In general, we may encounter defects when δR breaks the
symmetry of the point group (R < D) and the states start to
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TABLE I. Coordinates of g and h at the intersection point of SH2 (see text).
The molecule lies in the xz-plane with S positioned at the origin and H1 on
the z-axis.

Atom q gq hq

S x 0.000 000 00 0.000 000 00
y 0.000 000 00 0.000 000 00
z 0.000 000 00 0.000 000 00

H1 x −0.007 575 88 0.000 000 00
y 0.000 000 00 0.000 000 00
z −0.111 457 09 0.256 689 76

H2 x −0.111 714 02 −0.256 134 61
y 0.000 000 00 0.000 000 00
z −0.000 233 09 0.016 872 98

span the same symmetry. Loss of similarity to a symmetric
matrix means that the energy gap linearity in the branching
plane, as well as the uniqueness of h, may be lost for this class
of intersections (see Sec. IV).

VII. COMPUTATIONAL DETAILS

All calculations were carried out using the Dalton quan-
tum chemistry program.41 The CCSD20,22,35 energies were
obtained with Dunning’s augmented correlation consistent
double-ζ basis (aug-cc-pVDZ).42

For the excited states of hypofluorous acid (HOF) and
hydrogen sulfide (SH2), the residuals were converged to within
10�5. For HOF, we performed the scan

ROH = 1.0900 : 0.0005 : 1.0950 Å,

ROF = 1.3050 : 0.0002 : 1.3084 Å,

ϑHOF = 90.50 : 0.05 : 91.50◦.

(52)

FIG. 1. An accidental symmetry allowed conical intersection of the 11A′′ and
21A′′ states of SH2 using CCSD/aug-cc-pVDZ.

For SH2, the investigated intersection point is

RSH = 1.5092 Å,

ϑHSH = 93.7689◦,
(53)

and the scan we performed in g and h as follows:

g = −0.2500 : 0.0125 : 0.2500,

h = −0.0500 : 0.0025 : 0.0500.
(54)

The vectors h and g are given in Table I. The plots in Figs. 1–3
are of interpolated values.

FIG. 2. The 21A′/31A′ CCSD/aug-cc-
pVDZ intersection seam in HOF. The
coloring corresponds to the real part
of the energy difference, in hartrees,
between the 21A′ and 31A′ electronic
states.
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FIG. 3. As in Fig. 2, but showing the
imaginary part of the energy difference
between the 21A′ and 31A′ electronic
states.

VIII. NUMERICAL EXAMPLES

We study two systems with three vibrational degrees of
freedom, HOF and SH2. These molecules provide simple illus-
trations of the arguments in Secs. II–VI since the intersection
is a curve for both (see Fig. 4).

A. The 21A′/32A′ accidental same-symmetry conical
intersection of hypofluorous acid (HOF)

An intersection between the first two singlet excited states
of A′ symmetry in hypochlorous acid (HClO) was identified
by Nanbu and Ivata some two decades ago.43 Here we study
the analogous intersection between the 21A′ and 31A′ states
of hypofluorous acid (HOF).

In Fig. 2, we show a series of slices of R space, in the
ROH direction, where the coloring corresponds to the real
part of the energy difference between the two states. This

FIG. 4. Accidental same-symmetry conical intersections using coupled clus-
ter theory. Illustrated objects are for three vibrational degrees of freedom
(N = 3).

difference becomes zero at the seam, which has the shape
of a filled cylinder, as shown in Fig. 4 and discussed in
Sec. V.

The real part of the energy difference vanishes at its sur-
face, and an imaginary pair is created in its interior. In Fig.
3, the magnitude of the imaginary part of the complex pair is
shown for the same slices in ROH. The extent of the cylinder is
approximately 0.5◦ in the H–O–F angle and 0.0010 Å in the
ROF direction.

B. The 1 1A′′/21A′′ accidental symmetry allowed
intersection in hydrogen sulfide (SH2)

The 1 1A′′/21A′′ symmetry allowed intersection of SH2 is
a standard example of this class of intersections.40

The vectors g and h were determined as follows. Since
both g and s only have components in the two A1 modes, a
search in this plane provided s, as the direction that preserved
the degeneracy, and g, as the direction orthogonal to s in the
A1 space; h was then determined as the vector orthogonal to
both s and g.

In Fig. 1, the branching plane is shown at a point of inter-
section along the seam. We did not observe complex energies,
indicating that A is nondefective in this region of R. Linearity
to first order in g and h appears valid, in agreement with the
analysis given in Sec. IV.

IX. CONCLUDING REMARKS

By reconsidering the eigenvalue problem in coupled clus-
ter theory, we have shown that the correct number of crossing
conditions is predicted as long as the coupled cluster Jacobian
is nondefective. With this property, the theory is expected to
give a proper description of conical intersections, with the cor-
rect conical shape of the energy surfaces to first order in the
branching plane.
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However, the Jacobian matrix is defective at acciden-
tal same-symmetry conical intersections. As we have shown
in hypofluorous acid, the defective intersection seam is a
higher-dimensional surface (N � 1) folded about an (N � 2)-
dimensional space. In the limit of a complete cluster operator,
the dimensionality reduces to N � 2, indicating that minor
modifications are needed to allow a correct description of
intersections.

In a recent paper, we were indeed able to remove defects
in the Jacobian matrix by appropriately modifying the coupled
cluster model.34

Point group symmetry ensures that the Jacobian is nonde-
fective at accidental symmetry allowed intersections, though
not necessarily in their vicinity. Nevertheless, we found
that coupled cluster theory is nondefective, with the correct
first order energy gap linearity in the branching plane, at a
symmetry allowed intersection in hydrogen sulfide.
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