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ABSTRACT: The motion of electrons and nuclei in photochemical events often involves
conical intersections, or degeneracies between electronic states. They serve as funnels in
nuclear relaxation processes where the electrons and nuclei couple nonadiabatically. Accurate
ab initio quantum chemical models are essential for interpreting experimental measurements of
such phenomena. In this Letter, we resolve a long-standing problem in coupled cluster theory,
presenting the first formulation of the theory that correctly describes conical intersections
between excited electronic states of the same symmetry. This new development demonstrates
that the highly accurate coupled cluster theory can be applied to describe dynamics on excited
electronic states involving conical intersections.

Conical intersections, or electronic degeneracies, are widely
recognized as central to the motion of nuclei and

electrons in photochemical events.1,2 They have been
implicated in a range of chemical reactions, from the ring-
opening reaction of 1,3-cyclohexadiene3 and the proton transfer
reaction in hydroxybenzaldehyde4 to the cis−trans isomer-
ization thought to be the primary photochemical event in
human vision.5 Our understanding of nuclear dynamics is firmly
rooted in the often accurate Born−Oppenheimer approxima-
tion, where the motion of the electrons creates potential energy
surfaces to which the nuclei in turn respond.6 However, the
approximation breaks down completely when a molecule
approaches a conical intersection, where the dynamics involves
an intricate interplay between nuclear and electronic motion.7

Advances in pump−probe techniques have made this
phenomenon increasingly open to experimental investigation.8

Rapid developments in ab initio quantum chemistry was
spurred by the realization that nonadiabaticity is the norm in
photochemistry. These include assessments of the potential
energy surfaces close to electronic degeneracies,9,10 attempts to
incorporate nonadiabaticity in dynamics simulations by solving
the time-dependent Schrödinger equation explicitly,7,11 im-
plementations of nonadiabatic coupling elements,12−14 and
schemes for constructing quasi-diabatic representations based
on ab initio data.15,16 A major overarching goal of this research
is the reliable prediction of nonadiabatic dynamics, which will
enable one to monitor, in real-time, processessuch as
electron density fluctuations7not directly accessible by
experiment.1 Because the Schrödinger equation cannot be
solved exactly for many-electron molecular systems, such
predictions must be grounded in approximate treatments of
electronic correlation, or electron−electron interactions.17

The most successful treatment of electronic correlation is
provided by coupled cluster theory,18,19 a model now routinely
applied to chemically interesting systems despite its steep
computational scaling.20 Nevertheless, as is true for all quantum
chemical models, the theory is not globally accurate and may
fail to describe certain regions of the potential energy surfaces.
The standard coupled cluster ground-state wave function,
which is based on a closed-shell Hartree−Fock reference, is less
accurate in regions where the exact wave function has
multireference character (e.g., when a molecule dissociates
into fragments). Accurately describing multireference ground
states within a coupled cluster framework is still an active
research area.21,22 In the following, we restrict ourselves to
excited electronic states, where multireference character is not
an issue23 but where other problems have hindered the theory
from being applied to conical intersections. About a decade ago,
Haẗtig24 argued that Hermitian symmetrya property that
coupled cluster theory does not haveis needed to describe
conical intersections between states of the same symmetry. The
unphysical complex energies, predicted to exist due to the
nonsymmetric eigenvalue problem,24 were later found in
coupled cluster singles and doubles (CCSD)25 and triples
(CCSDT)26,27 calculations.28 More recently, complex energies
were encountered in dynamics simulations using the
perturbative doubles (CC2)29 model, illustrating their relevance
in realistic applications.30 Moreover, because the vast majority
of degeneracies are same-symmetry conical intersections,2
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coupled cluster theory has been of limited use for conical
intersections in general.
The state-of-the-art theories for conical intersections are

complete active space (CAS) models, such as CASSCF and
CASPT2.31 However, while they give a physically correct
description of conical intersections by their Hermitian
symmetry (see, e.g., Ben-Nun et al.11), their ability to account
for dynamic correlation is limited.32 The same can be said for
the algebraic diagrammatic construction (ADC)33 theory
advocated by some groups.24,34 The ground-state wave function
in ADC, obtained by Møller−Plesset perturbation theory, is
known to have a limited domain of validity.35,36 For large
systems, computational chemists often resort to density
functional theory (DFT), which is less computationally
demanding than ab initio theories but also less accurate.37,38

On the other hand, coupled cluster theory accurately accounts
for dynamic correlation effects and multireference character in
excited states. A formulation of the theory able to treat conical
intersections will therefore be a highly desirable addition to
current methodologies.
A notable example is the ππ* nuclear relaxation in thymine,

where theoretical investigations by various methods have
provided inconsistent predictions.39 Some simulations predict
that relaxation proceeds first to a local minimum of the ππ*
state within 100 fs, followed by slow internal conversion from
the ππ* state to the nπ* state (CASPT2)40 or to the ground
state (CASSCF);41 others predict fast barrierless ππ*/nπ*
relaxation (TD-DFT)38 or direct ππ*/ground state relaxation
within a few hundred femtoseconds (CASPT2).42 Evidently,
accurate quantum chemical predictions are essential for reliable
predictions in dynamics simulations. The accuracy of coupled
cluster theory was recently shown in experiments confirming
ultrafast ππ*/nπ* conversion, emphasizing the need for highly
accurate methods in excited-state dynamics.43

In a recent paper, we showed that nonsymmetric theories
provide a correct description of conical intersections if they are
nondefective, a mathematical property that ensures nonparallel
eigenstates.44 Here we demonstrate that coupled cluster theory
can be constrained to be nondefective, thereby resolving the
long-standing intersection issues.24 The modified theory,
named similarity constrained coupled cluster theory, provides
a correct description of same-symmetry conical intersections. In
particular, we illustrate numerically that this is the case for a
conical intersection in hypofluorous acid. This new develop-

ment shows that coupled cluster theory can be applied to
nonadiabatic photochemical processes.
The coupled cluster ground-state wave function is written |Ψ⟩

= eT|Φ0⟩ for the Hartree−Fock state |Φ0⟩, where T = ∑ tμτμ,
the cluster operator, consists of excitation operators, τμ,
weighted by amplitudes, tμ.

19,45 The nth excitation energy and
electronic state, ωn and rn, are determined from

ω
τ τ

= = ⟨Φ | ̅ − |Φ ⟩
|Φ ⟩ = |Φ ⟩ =

μν μ ν

μ μ 

A H EAr r ( )n n n 0

0 0 (1)

where E0 = ⟨Φ0|H̅|Φ0⟩ and H̅ = e−THeT is the similarity
transformed Hamiltonian.46,47 For notational convenience, we
assume that {|Φμ⟩} is an orthonormal basis. In the CCSD
model, the cluster operator is restricted to one- and two-
electron excitations, with amplitudes determined by projection
onto the corresponding excited determinants.25

We recently traced the unphysical artifacts, observed using
coupled cluster methods at same-symmetry conical intersec-
tions,28 to defects in the nonsymmetric matrix A.44 Matrices are
known as defective when they are impossible to diagonalize,
that is, when two or more of their eigenvectors are parallel.48

Considering a representation of A in a basis of the
intersecting states, Jij(R), i,j = 1,2, where R is a nuclear
coordinate, Haẗtig24 argued that at a degeneracy of a
nondefective and nonsymmetric J

= = =J J J J0 011 22 12 21 (2)

and concluded, as others have since,9,28 that the intersections of
coupled cluster theory are qualitatively wrong. This is because
eq 2, for real H, has one more condition than in quantum
mechanics49,50 and might therefore be expected to give
intersections of dimension N − 3, where N is the number of
vibrational degrees of freedom. These three conditions are
redundant for nondefective matrices, however. It can be shown
that the R satisfying them are expected to inhabit a space of the
correct dimension44 N − 2.
In practice, A is defective with intersections where

(J11 − J22)
2 + 4 J12J21 = 0, an equation obeyed in a space of

dimension24 N − 1. While this dimensionality is incorrect, the
degeneracy is folded on itself. The intersection is a cylinder
instead of a curve for N = 3, for instance, resembling a seam of
dimension N − 2. See Figure 1. Inside of the cylinder, the

Figure 1. Conical intersections in coupled cluster theory. The illustrated shapes are for three vibrational degrees of freedom (N = 3), appropriate for
hypofluorous acid and other three-atom molecules. Superimposed on the illustrated vibrational space are potential energy surfaces in the plane
orthogonal to the seams at a point of intersection.
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excitation energies are complex, and on its surface, A is
defective.28,44

When the cluster operator is complete (i.e., includes
all excitation operators), A + E0I is mathematically
similar to a representation H of the electronic Hamiltonian
H. It can then be shown that if cn is an eigenvector of H, where
Hμν = ⟨Φμ|H|Φν⟩, then cn = Qrn, where Qμν = ⟨Φμ|e

T|Φν⟩. The
orthogonality of the cn, implied by the symmetric H, translates
to a generalized orthogonality for the eigenvectors rn of A

= = ≠k lc c r Q Qr 0k l k l
T T T

(3)

As this is a relation only satisfied for a complete cluster
operator, some of the eigenvectors rn may and indeed do
become parallel at same-symmetry intersections in truncated
coupled cluster methods. In the full space limit, the left
eigenvectors lk and ll are similarly orthogonal over the inverse
of the above metric, (QTQ)−1.
The wave function of similarity constrained CCSD (SCCSD)

is defined by including an additional triple excitation in cluster
operator

∑ ∑τ τ ζτ= + +t t
1
2ai

i
a

i
a

aibj
ij
ab

ij
ab

IJK
ABC

(4)

The amplitudes ti
a, tij

ab, and ζ are determined such that (i) eq 3 is
valid for the two intersecting states and (ii) the projected
equations of the CCSD model are satisfied. This leads to a
coupled set of equations that may be solved self-consistently.
The implementation is described in more detail in the
Supporting Information.

Note that generalized orthogonality over a positive definite
matrix is sufficient to ensure that the theory is nondefective.
Indeed, because QTQ is positive definite, parallel eigenvectors
cannot satisfy eq 3. The theory is consequently nondefective.
The additional term in the cluster operator may

equivalently be viewed as performing a second similarity
transformation of H. This similarity transformation

̅ = ̅ζτ ζτ−H He eccsd
IJK
ABC

IJK
ABC

(5)

is chosen such that H̅ guarantees the validity of the generalized
orthogonality condition, where H̅ccsd is the standard CCSD
similarity transformed Hamiltonian. Imposing constraints on
the matrix elements of model Hamiltonians is an idea that dates
back to Linderberg.51

As first shown by Köhn and Tajti,28 the lowest singlet excited
states of A1 symmetry in formaldehyde have a defective conical
intersection. Here we reproduce their findings and compare
them with the predictions of the similarity constrained theory.
The results are shown in Figure 2, where we have used the
same geometry as in the original study.28

The unphysical behavior of CCSD is evident. The states
become degenerate at 1.3515 and 1.3570 Å, giving a complex
pair of energies in between (E± = Ereal ± iEimag). Such artifacts
are absent in the constrained model, where the defective
intersection becomes an avoided crossing. If it exists, the
conical intersection of the theory is located elsewhere in nuclear
space.
The lowest singlet excited states of A′ symmetry in

hypoclorous acid intersect.52 We investigate this conical
intersection in hypofluorous acid. This three-atomic molecule

Figure 2. 21A1 and 31A1 excited states of formaldehyde using CCSD (red) and SCCSD (blue) with an aug-cc-pVDZ basis. The real part of the
CCSD energies is shown. A complex pair of energies is obtained for CO bond distances of 1.3515−1.3570 Å.
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(H−O−F) provides a pedagogical illustration of the model,
allowing direct comparisons with Figure 1. After locating a
point of intersection, we performed a scan in the branching
plane, the plane orthogonal to the intersection seam.53 The
results are shown in Figure 3.
In a recent paper, we showed that nondefective coupled

cluster models exhibit the correct first-order branching plane
energy gap linearity,44 that is, their intersections are conical.53

From Figure 3, we see that the energy surfaces have the
physically correct conical appearance; the energy gap linearity is
satisfied. Note the contrast to calculations on formaldehyde
using CCSD, where the energy gradient changes more rapidly
close to the intersection; this can be seen from Figure 2 in the
vicinity of the CO bond distances of 1.3515 and 1.3570 Å.
In this initial development, we used a conceptually simple

cluster operator that preserves the size-extensive structure of
the ground-state wave function and energy as well as the size-
intensive structure of A.54 Aiming for a small correction of the

wave function |Ψ⟩ = |Φ ⟩e 0 , we selected the excitation, from
the dominant single and double excitations contributing to the
two states, such that the ζ parameter was sufficiently small (we
used 2 as a threshold). The excitation was selected at a
particular geometry and kept unchanged in subsequent
calculations. This selection procedure can easily be made
black-box; in the initial geometry of the simulation, one can
identify an appropriate excitation from an automated test of
several excitations.
We have considered variations in the energies for 12 choices

of triple excitation; see Table S2 in the Supporting Information.
The energies are found to differ from CCSD by less than five
milliHartrees for all excitations, and the energy gaps are similar
to the CCSD and CC3 gaps (but different from the CC2 gap).

In terms of quality and the location of the intersection seam,
the constrained model is thus similar but not identical to
CCSD. This behavior is as expected this close to the seam,
given the proximity to the unphysical cylinder (see Figure 1).
For a numerical illustration of the cylinder, see our recent
paper.44

While conceptually simple, the single triple excitation in
implies a loss of orbital invariance and does not guarantee
continuous potential energy surfaces. Other formulations
preserving the N6 scaling are indeed possible where the cluster
operator is also orbital-invariant. For instance, this can be
achieved by defining the triples contribution in to be the
product of the singles and doubles contributions in one of the
states. This definition also guarantees continuity of the
potential energy surfaces. Let rμ1 and rμ2 denote the singles
and doubles contributions in the state r. The cluster operator is
then defined as

∑ζ τ τ= + +
μ μ

μ μ μ μT T r r1 2

1 2

1 2 1 2
(6)

where the ζ parameter is used to enforce the generalized
orthogonality in eq 3. In eq 6, only one of the intersecting
states is selected. However, both can be included to give a
balanced operator, state-invariant with respect to the
intersecting states. Alternatively, the states can provide two
parameters, ζ1 and ζ2, which will allow generalized orthogon-
ality to be enforced between the left and right eigenvectors
simultaneously. For the theory to be nondefective, however,
orthogonality between either sets of eigenvectors is sufficient. A
generalization for three-state intersections is straightforward. In
this case, the three states can each provide a parameter, ζ1, ζ2,

Figure 3. Branching plane in hypofluorous acid (SCCSD/aug-cc-pVDZ) between the 21A′ and 31A′ excited states.
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and ζ3, that may be used to enforce generalized orthogonality
bewteen the left or right eigenvectors.
Similarity constrained coupled cluster theory (SCCSD) gives

a physically correct description of a 21A′/31A′ same-symmetry
conical intersection in hypofluorous acid, with both the proper
dimensionality of the intersection seam as well as the correct
energy gap linearity in the branching plane.2 Confirming our
predictions from a recent paper44 and resolving a long-standing
problem in coupled cluster theory,24 this finding demonstrates
that the model can properly describe, with minor modifications,
same-symmetry conical intersections between electronic excited
states.
Nonadiabatic coupling elements and energy gradients govern

the dynamics close to a conical intersection.55 Implementing
these quantities in the similarity-constrained theory is thus
necessary for it to be applied in ab initio dynamics simulations.
These developments are within reach in the near future,
although some controversies for the nonadiabatic coupling
elements remain to be settled.14,56 On the other hand,
techniques for energy gradients are well-established.54,57 For
use in dynamics simulations on larger systems, the model
should be extended to the lower levels in the coupled cluster
hierarchy. Particularly relevant is a perturbative doubles model
(SCC2, analogous to CC229), which should scale as N5, where
N is the number of orbitals. Further developments include
implementations of cluster operators that ensure orbital
invariance, state invariance among the intersecting states, and
continuity of the potential energy surfaces.
As a closing remark, we note that the approach adopted in

this Letter, namely, to enforce a feature of the exact wave
function (i.e., nondefectiveness), could potentially have more
wide-reaching applications. The standard philosophy in ab
initio quantum chemistry is to solve ever more accurate
representations of the Schrödinger equation (the coupled
cluster hierarchy results by expanding the subspace onto which
the equation is projected). Yet, many desirable features of the
wave functionsuch as gauge invariance, the related origin
invariance,58 and the correct scaling of molecular properties and
transition moments54,59are only valid for a complete cluster
operator and, in some cases, a complete one-electron basis.
Constraining the approximate wave function to satisfy exact
properties may turn out to be very useful.

■ COMPUTATIONAL DETAILS

Calculations were carried out using the Dalton quantum
chemistry program.60 We converged energies and residuals to
within 10−8. The orthogonality in eq 3 was converged to within
10−6, giving energies correct to approximately 10−6 Hartrees.
The energies in Figures 2 and 3 are obtained by τIJK

ABC = τ8,8,7
7,2,3 and

τIJK
ABC = τ7,5,8

10,2,2, respectively, where the canonical orbitals are
ordered according to their energy, from low to high. Complex
energies were converged with a modified Davidson algorithm.28

A branching plane in hypofluorous acid was identified as
follows. First, we located a point of intersection. By searching
along three orthonormal vibrational coordinates, we then found
the intersection seam vector s, the direction in which the
degeneracy is preserved. To obtain an orthogonal basis of the
branching plane (the orthogonal complement to s), we chose
the direction in which the energy difference increased most
(denoted g, where g⊥s) and the vector orthogonal to s and g
(denoted h). The normal modes used in the above procedure,
as well as Cartesian coordinates of s, g, h, and of the

intersection geometry R0, are given in the Supporting
Information.
For formaldehyde, we performed the scan RCO =

1.3450:0.0005:1.3550 Å. Some additional points were included
for CCSD. For hypofluorous acid (where gscan = gg and hscan =
hh), g = −0.010:0.001:0.010 and h = −0.1160:0.0116:0.1160.
Interpolated values are shown in both figures.
The triples excitations used are as follows. In formaldehyde,

the excitation is the product of the second-largest singles and
the largest doubles excitations in the lower state at 1.3450 Å. In
hypofluorous acid, the excitation is the product of the largest
singles and doubles excitations in the lower states at the
geometry given by ROH = 1.1400 Å, ROF = 1.3184 Å, and θHOF
= 91.06°.
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(24) Haẗtig, C. In Response Theory and Molecular Properties (a Tribute
to Jan Linderberg and Poul Jørgensen); Jensen, H., Ed.; Advances in
Quantum Chemistry; Academic Press, 2005; Vol. 50; pp 37−60.
(25) Purvis, G. D., III; Bartlett, R. J. A Full Coupled-Cluster Singles
and Doubles Model: The Inclusion of Disconnected Triples. J. Chem.
Phys. 1982, 76, 1910−1918.
(26) Noga, J.; Bartlett, R. J. The full CCSDT model for molecular
electronic structure. J. Chem. Phys. 1987, 86, 7041−7050.

(27) Noga, J.; Bartlett, R. J. Erratum: The Full CCSDT Model for
Molecular Electronic Structure [J. Chem. Phys. 86, 7041 (1987)]. J.
Chem. Phys. 1988, 89, 3401−3401.
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