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SUPPLEMENTARY NOTE 1: PHYSICAL MEANING OF A COMPLEX GAP

The presence of a complex gap has a significant influence on the non-equilibrium wave dynamics. To understand this, we
consider a three-level system shown in Supplementary Figure 1 (a) as an example. Here the ground state |g⟩ is resonantly
coupled to the two excited states |e1⟩ and |e2⟩ that have the same energy levels but the different decay rates (linewidths) γ1 and
γ2 (γ1 < γ2), and the driving strength (Rabi frequency) Ω between |g⟩ and |e1⟩ is equal to that between |g⟩ and |e2⟩. In the
framework of the non-Hermitian band theory, this situation corresponds to the presence of two modes having the same real parts
but the different imaginary parts of eigenenergies at a particular wavenumber k. Then when the wave function of the system is
denoted as |ψ⟩, the wave dynamics (in the rotating frame) is governed by

i
d

dt
|ψ⟩ = H |ψ⟩ , H :=

1

2

−iγ1 Ω 0
Ω 0 Ω
0 Ω −iγ2

 , (1)

where the basis is chosen as (|e1⟩ , |g⟩ , |e2⟩). Here |ψ⟩ represents an electric-field envelope in classical photonics and a quantum
wave function in quantum physics (the Planck constant ℏ is set to unity).

Now let us consider driving the system at the Rabi frequency Ω. When the state is initially prepared to be |g⟩, the intensity or
the population for the excited state |ei⟩ (i = 1, 2) at time t is obtained as

pi (t) =
∣∣⟨ei|e−iHt|g⟩

∣∣2 . (2)

The difference of the decay rates (imaginary parts of the eigenenergies) significantly affects the behavior of the wave dynamics,
although the two modes have the same energy levels (real parts of the eigenenergies). In fact, the excitation to the mode with the
larger decay rate is suppressed [Supplementary Figure 1 (b)]. We remark that such suppression of the wave dynamics due to the
presence of dissipation is known as the quantum Zeno effect [1, 2]. Although termed as the quantum Zeno effect due to some
historical reasons, this phenomenon occurs in any linear dynamics of probability amplitudes and especially in classical wave
dynamics. In fact, an early experimental demonstration was performed for classical light [3]. These dissipative effects are also
relevant in many-body systems [4, 5]. In particular, even a purely imaginary band gap can play a role similar to that of a real
band gap and confine the dynamics of a wave packet within the lower band, provided that the driving strength is weak enough
compared with the band gap [6].

Supplementary Figure 1. Physical meaning of a complex gap. (a) Energy-level diagram of a three-level system. The ground state |g⟩ is
resonantly coupled to the two excited states |e1⟩ and |e2⟩ that have the same energy levels but the different decay rates (linewidths) γ1 and γ2
(γ1 < γ2), and the driving strength (Rabi frequency) is equal to Ω for both excited states. (b) Evolution of the intensity or the population for
the excited states |e1⟩ and |e2⟩ (Ω = 1.0, γ1 = 0.5, γ2 = 5.0). The excitation to the mode |e2⟩ is suppressed due to the larger decay rate
(γ1 < γ2).

SUPPLEMENTARY NOTE 2: SYMMETRY CONSTRAINTS ON COMPLEX SPECTRA

We consider a non-Hermitian Hamiltonian H with a generalized antiunitary symmetry A defined by AHA−1 = eiφH
(0 ≤ φ < 2π). When E ∈ C is an eigenenergy of H and |ψ⟩ is the corresponding eigenstate, we have

H(A |ψ⟩) = e−iφAH |ψ⟩ = e−iφA (E |ψ⟩) =
(
E∗e−iφ) (A |ψ⟩). (3)

Hence A |ψ⟩ is an eigenstate of H with eigenenergy E∗e−iφ. If |ψ⟩ is also an eigenstate of A, we have E = E∗e−iφ; otherwise
eigenenergies come in (E, E∗e−iφ) pairs. In particular, when A describes time-reversal symmetry (φ = 0), either real eigenen-
ergies or (E, E∗) pairs appear [7]; when A describes particle-hole symmetry (φ = π), either pure imaginary eigenenergies or
(E, −E∗) pairs appear [8–10].
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SUPPLEMENTARY NOTE 3: NON-HERMITIAN MAJORANA CHAIN

Certain symmetry-protected topological phases survive even in the presence of non-Hermiticity. Such phases include super-
conducting wires that respect particle-hole symmetry with C2 = +1 (1D class D). Let us express the Bogoliubov-de Gennes
(BdG) Hamiltonian as H (k) = h0 (k) I + h⃗ (k) · σ⃗ with the identity matrix I and Pauli matrices σ⃗ := (σx, σy, σz). Then the
presence of particle-hole symmetry C := σxK implies

h0,x,y (k) = −h∗0,x,y (−k) , hz (k) = h∗z (−k) . (4)

Therefore, hz becomes real at the particle-hole-symmetric momentum k0 ∈ {0, π}, and hence the topological invariant νD can
be defined by

(−1)
νD := sgn [hz (0)hz (π)] (5)

as long as hz (0) and hz (π) are nonzero. The presence of particle-hole symmetry allows one to introduce the topological
invariant νD as in the Hermitian topological superconductors [11], although h0,x,y (k0) can be nonzero (pure imaginary) in
contrast to Hermitian systems. Moreover, when we introduce Majorana operators âk and b̂k in momentum space as â†k = â−k,
b̂†k = b̂−k, and ĉk = (âk + ib̂k)/2, the Hamiltonian is expressed as

ĤD =
∑
k∈BZ

(
ĉ†k ĉ−k

)( h0 + hz hx − ihy
hx + ihy h0 − hz

)(
ĉk
ĉ†−k

)
=

i
2

∑
k∈BZ

(
â†k b̂†k

)(−ih0 − ihx ihy + hz
ihy − hz −ih0 + ihx

)(
âk
b̂k

)
. (6)

Thus, the non-Hermitian part of the momentum-space Hamiltonian at the particle-hole-symmetric momentum k0 in the Ma-
jorana basis is obtained as X (k0) = ihz (k0)σy , and the topological invariant defined above is also expressed as (−1)

νD =
sgn [PfX (0) · PfX (π)].

The above discussion applies to a non-Hermitian Majorana chain with asymmetric hopping:

ĤM =
∑
j

[
−tLĉ†j ĉj+1 − tRĉ

†
j+1ĉj +∆ĉj ĉj+1 +∆∗ĉ†j+1ĉ

†
j − µ

(
ĉ†j ĉj −

1

2

)]
, (7)

where ĉj (ĉ†j) annihilates (creates) a fermion on site j; tL > 0 (tR > 0) is the hopping amplitude from right to left (from left to
right), ∆ ∈ C is the p-wave pairing gap, and µ ∈ R is the chemical potential. Here non-Hermiticity arises from the asymmetric
hopping tL ̸= tR [8, 12, 13]. The BdG Hamiltonian is given by

h0 = i (tL − tR) sin k, hx = 2 Im [∆] sin k, hy = −2Re [∆] sin k, hz = µ+ (tL + tR) cos k. (8)

Hence the energy dispersion is obtained as

E± (k) = i (tL − tR) sin k ±
√

(µ+ (tL + tR) cos k)
2
+ 4 |∆| sin2 k, (9)

and the complex bands are separated from each other by the gap of magnitude min {2 |µ+ (tL + tR)| , 2 |µ− (tL + tR)|}
as schematically illustrated in Supplementary Figure 2 (a,b). Moreover, the topological invariant is obtained as (−1)

νD =

sgn [µ2 − (tL + tR)
2
], and the non-trivial topology of the bulk (νD = 1; |µ| < tL + tR) is accompanied by the emergence of

the Majorana edge states that are topologically protected with particle-hole symmetry as shown in Supplementary Figure 2 (c,d).
Therefore, the topological phase in the Majorana chain survives non-Hermiticity.

Supplementary Figure 2. Non-Hermitian Majorana chain with asymmetric hopping (1D class D). (a) Real and (b) imaginary parts of the energy
dispersion of the chain with periodic boundaries (tL = 1.4, tR = 0.6, ∆ = 0.5, µ = 1.0). The complex bands are separated from each
other by the gap for |µ| ̸= tL + tR. (c) Real and (d) imaginary parts of the complex spectrum of the chain with 50 sites and open boundaries
(tL = 1.4, tR = 0.6, ∆ = 0.5). Majorana edge states with zero energy (red lines) appear in the topological phase (|µ| < tL + tR = 2.0).
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SUPPLEMENTARY NOTE 4: SYMMETRY AND COMPLEX-BAND STRUCTURE

We consider in detail a complex-band structure of a generic one-dimensional system with time-reversal symmetry (1D class
AI). We here investigate a two-band system (E+ (k) , E− (k)) for the sake of simplicity, but the discussion can be straightfor-
wardly generalized to arbitrary 2n-band systems. In the presence of Hermiticity, the real bands individually respect time-reversal
symmetry [Supplementary Figure 3 (a)]:

E+ (k) = E∗
+ (−k) , E− (k) = E∗

− (−k) , (10)

where topological phases are absent. In the presence of strong non-Hermiticity, on the other hand, time-reversal symmetry is
spontaneously broken and the two complex bands are paired via time-reversal symmetry [Supplementary Figure 3 (d, e)]:

E+ (k) = E∗
− (−k) . (11)

Remarkably, this band structure becomes gapless in the presence of Hermiticity since E+ (k0) = E− (k0) holds for a time-
reversal-invariant momentum k0 ∈ {0, π}, but a complex gap can be open for a non-Hermitian Hamiltonian. This complex-band
structure can exhibit both trivial [Supplementary Figure 3 (d)] and topological [Supplementary Figure 3 (e)] phases. Between
these two types of band structures, there should exist a non-Hermitian Hamiltonian that satisfies both Supplementary Equa-
tion (10) and Supplementary Equation (11) and

E+ (k) = E− (−k) . (12)

Hence the complex gap closes at a time-reversal-invariant momentum k0 for this Hamiltonian and gap closing associated with
a topological phase transition should be accompanied between these phases [Supplementary Figure 3 (a, d, e)]. Therefore,

Supplementary Figure 3. Complex-band structure of one-dimensional systems with time-reversal or particle-hole symmetry (1D class AI or
D). Blue and yellow bands represent complex bands and red dots represent the topologically protected edge states. When the system respects
time-reversal (particle-hole) symmetry, it belongs to 1D class AI; (a, d, e) [D; (b, e, f)]. (a) Hermitian gapped band structure in 1D class AI. All
the bands individually respect time-reversal symmetry, and topological phases are absent. (b, c) Hermitian gapped band structure in 1D class
D for the (b) trivial and (c) topological phases. Two bands are paired via particle-hole symmetry. (d, e) Non-Hermitian gapped band structure
in 1D class AI for the (d) trivial and (e) topological phases. Two bands are paired via time-reversal symmetry and gap closing associated with
a topological phase transition should occur between (a) and (d, e). (f) Non-Hermitian gapped band structure in 1D class D. All the bands
individually respect particle-hole symmetry, and topological phases are absent.
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Supplementary Figure 4. Complex-band structure of one-dimensional systems with chiral symmetry (1D class AIII). Blue and yellow bands
represent complex bands that are related to each other via chiral symmetry, and red dots represent the topologically protected states with zero
energy. (a) Hermitian and trivial gapped band structure. (b) Hermitian and topological band structure. Between (a) and (b), gap closing
associated with a topological phase transition should occur. (c) Non-Hermitian and trivial gapped band structure obtained by multiplying the
Hamiltonian in (a) by i (rotating the whole complex bands through 90 degrees). (d) Non-Hermitian and topological gapped band structure.
Between (c) and (d), gap closing associated with a topological phase transition should occur. Here (b) and (d) can be continuously deformed
to each other.

the emergent non-Hermitian topological phases cannot be continuously deformed into any Hermitian phase that belongs to the
same symmetry class. Importantly, there is a fundamental and non-trivial relationship between symmetry classes AI and D as
a direct consequence of the topological unification of time-reversal and particle-hole symmetries. If we begin with a Hermitian
Hamiltonian that belongs to 1D class D and possesses the topological phase [Supplementary Figure 3 (c)] and multiply it by i,
we obtain the non-Hermitian Hamiltonian that belongs to 1D class AI and also possesses the topological phase [Supplementary
Figure 3 (e)] (notice that the eigenstates remain the same under multiplication by i). The obtained topological phase can be
continuously deformed into the emergent non-Hermitian topological phases in 1D class AI.

There is a crucial distinction between this emergent non-Hermitian topological insulator and the non-Hermitian topological
insulator protected by chiral symmetry including the Su-Schrieffer-Heeger (SSH) model. In fact, the topological phase in the
non-Hermitian SSH model can be continuously deformed into the topological phase in the Hermitian SSH model (Supplementary
Figure 4), whereas those in the topological insulator induced by non-Hermiticity cannot be continuously deformed into any
Hermitian phase as discussed above. Here the crucial distinction is that chiral symmetry is unitary (unrelated to complex
conjugation) in stark contrast to the anti-unitary time-reversal and particle-hole symmetries (see Table I in the main text).

SUPPLEMENTARY NOTE 5: GENERALIZED KRAMERS THEOREM

Anti-unitarity of A gives ⟨ψ|Aψ⟩ = ⟨A2ψ|Aψ⟩. Assuming A2 = −1, we obtain ⟨ψ|Aψ⟩ = −⟨ψ|Aψ⟩, which leads to
⟨ψ|Aψ⟩ = 0. If |ψ⟩ and A |ψ⟩ belong to the same eigenenergy (E = E∗e−iφ), they are orthogonal and thus degenerate.
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When A describes time-reversal symmetry (φ = 0), this reduces to the conventional Kramers degeneracy; when A describes
particle-hole symmetry (φ = π), this implies the degeneracy with pure imaginary eigenenergies.

SUPPLEMENTARY NOTE 6: NON-HERMITIAN QUANTUM SPIN HALL INSULATOR

A generic non-Hermitian Hamiltonian that forms four bands in momentum space can be expressed by the identity matrix I , five
Dirac matrices Γi, and their ten commutators Γij := [Γi, Γj ]/2i as in Eq. (7) in the main text. If we choose the Dirac matrices to
be PT -symmetric [(PT ) Γi (PT )−1 = Γi], their commutators become anti-PT -symmetric [(PT ) Γij (PT )−1 = −Γij] due
to the anti-unitarity of T . In the simultaneous presence of time-reversal and inversion symmetries, the Hamiltonian is also PT -
symmetric [(PT )HQSH (k) (PT )−1 = HQSH (k)], which makes the coefficients d0 (k), di (k), and dij (k) real. Moreover, if
we choose Γ1 as P , we have [14]

P Γi P−1 =

{
+Γ1 for i = 1,

−Γi for i ̸= 1,
T Γi T −1 =

{
+Γ1 for i = 1,

−Γi for i ̸= 1;

P Γij P−1 =

{
−Γ1j for i = 1,

+Γij for i ̸= 1,
T Γij T −1 =

{
+Γ1j for i = 1,

−Γij for i ̸= 1.

(13)

Therefore, the presence of both time-reversal and inversion symmetries [T HQSH (k) T −1 = HQSH (−k) and P HQSH (k) P−1 =
HQSH (−k)] implies

di (−k) =

{
+di (k) for i = 0, 1,

−di (k) for i ≥ 2;
dij (−k) =

{
−d1j (k) for i = 1,

+dij (k) for i ≥ 2.
(14)

Hence di’s for i ≥ 2 and d1j’s vanish at the time-reversal-invariant and inversion-symmetric momenta k = k0.

Supplementary Figure 5. Complex-band structures of the non-Hermitian quantum spin Hall insulator (2D class AII). Cyan (pink) bands
correspond to E (k) , E∗ (k) [−E (k) , −E∗ (k)] in (a, b, d, e). (a) Gapped bands in the complex energy plane (ReE, ImE), and (b) real
and (c) imaginary parts of the energy dispersion as a function of the wavenumber (kx, ky) in the topological phase (t = 1.0, m = −1.0,
λ = 0.5, γ = 0.8; νAII = 1). (d) Gapped bands in the complex energy plane (ReE, ImE), and (e) real and (f) imaginary parts of the energy
dispersion as a function of the wavenumber (kx, ky) in the trivial phase (t = 1.0, m = 3.0, λ = 0.8, γ = 1.2; νAII = 0).
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In particular, we consider the non-Hermitian quantum spin Hall insulator described by Eq. (7) in the main text with

d1 (k) = m+ t cos kx + t cos ky, d2 (k) = t sin ky, d3 (k) = λ (sin kx + sin ky) , d5 (k) = t sin kx, d25 (k) = γ, (15)

where t, m, λ, and γ are real. The eigenstates form four bands in momentum space and their energy dispersions are obtained as
(E (k) , E∗ (k) , −E (k) , −E∗ (k)). Using the anticommutation relations {Γi, Γj} = 0, {Γ1, Γ25} = −2Γ34, {Γ3, Γ25} =
2Γ14, and {Γ2, Γ25} = {Γ4, Γ25} = 0, we have

H2
QSH (k) =

[
(m+ t cos kx + t cos ky)

2
+ t2 sin2 kx + t2 sin2 ky + λ2 (sin kx + sin ky)

2 − γ2
]
I

− 2iγ (m+ t cos kx + t cos ky) Γ34 + 2iγλ (sin kx + sin ky) Γ14,
(16)

which leads to

E (k) =
{
(m+ t cos kx + t cos ky)

2
+ t2 sin2 kx + t2 sin2 ky + λ2 (sin kx + sin ky)

2 − γ2

+2iγ
[
(m+ t cos kx + t cos ky)

2
+ λ2 (sin kx + sin ky)

]1/2}1/2

.
(17)

The complex bands are gapped with the same parameters used in Fig. 5 in the main text (Supplementary Figure 5). The Z2

topological invariant is determined as

(−1)
νAII = sgn [d1 (0, 0) d1 (0, π) d1 (π, 0) d1 (π, π)] = sgn

[
m2 − 4t2

]
. (18)

SUPPLEMENTARY NOTE 7: ROBUSTNESS AGAINST DISORDER

The topological phase in the non-Hermitian Majorana chain given by Supplementary Equation (7) is immune to disorder that
respects particle-hole symmetry. To confirm this robustness, we consider the following disordered non-Hermitian Majorana
chain:

Ĥ =
∑
j

[
− (tL)j ĉ

†
j ĉj+1 − (tR)j ĉ

†
j+1ĉj +∆ĉj ĉj+1 +∆∗ĉ†j+1ĉ

†
j − µj

(
ĉ†j ĉj −

1

2

)]
, (19)

where (tL)j [(tR)j] is the disordered hopping amplitude from site j + 1 to j (from site j to j + 1), and µj is the disordered
chemical potential on site j. The Majorana edge states are protected to have zero energy even in the presence of disorder
(Supplementary Figure 6); they are topologically protected with particle-hole symmetry.

Supplementary Figure 6. Robustness against disorder in the non-Hermitian Majorana chain. (a) Real and (b) imaginary parts of the complex
spectrum of the disordered Majorana chain described by Supplementary Equation (19) as a function of the disorder strength d. Black and
red dots represent the bulk and Majorana edge states, respectively. The chain with 50 sites is characterized by the parameters (tL)j =

1.4 + 0.3ϵj , (tR)j = 0.6 + 0.3ϵ′j , ∆ = 0.5, and µj = 1.0 + dϵ′′j , where (tL)j [(tR)j] is the disordered hopping amplitude from site j + 1

to j (from site j to j + 1), µj is the disordered chemical potential on site j, and ϵj , ϵ′j and ϵ′′j are random variables uniformly distributed over
[−0.5, 0.5].
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The topological phase in the non-Hermitian topological insulator given by Eq. (3) in the main text is also immune to disorder
that respects time-reversal symmetry. To confirm this robustness, we consider the following disordered non-Hermitian chain:

Ĥ =
∑
j

[
itj
(
â†j−1âj − b̂†j−1b̂j + â†j âj−1 − b̂†j b̂j−1

)
+
(

iδj
(
b̂†j−1âj − b̂†j+1âj

)
+ iδ∗j

(
â†j b̂j−1 − â†j b̂j+1

))
+ iγj

(
â†j âj − b̂†j b̂j

)]
,

(20)

where tj and δj are the disordered hopping amplitudes between sites j−1 and j, and γj is the disordered gain/loss on site j. The
edge states are protected to have zero energy even in the presence of disorder (Supplementary Figure 7); they are topologically
protected with time-reversal symmetry.

Supplementary Figure 7. Robustness against disorder in the non-Hermitian topological insulator protected by time-reversal symmetry. (a) Real
and (b) imaginary parts of the complex spectrum of the disordered non-Hermitian topological insulator described by Supplementary Equa-
tion (20) as a function of the disorder strength d. Black and red dots represent the bulk and edge states, respectively. The insulator with 50
sites is characterized by the parameters tj = 1.0+ 0.5 ϵj , δj = 0.5+ 0.3 ϵ′j , and γj = 1.0+ d ϵ′′j , where tj and δj are the disordered hopping
amplitudes between sites j − 1 and j, γj is the disordered gain/loss on site j, and ϵj , ϵ′j , and ϵ′′j are random variables uniformly distributed
over [−0.5, 0.5].

Finally, the topological phase in the non-Hermitian quantum spin Hall insulator given by Eq. (7) and shown in Fig. 5 in the
main text is immune to disorder that respects time-reversal symmetry. To confirm this robustness, we consider the following
disordered non-Hermitian insulator with open boundaries in the x direction and periodic boundaries in the y direction:

Ĥ =
∑
x

∑
ky∈BZ

{
1

2

[
ˆ⃗c †
x, ky

(t (σz ⊗ I − iσx ⊗ sz)− iλxσx ⊗ sx) ˆ⃗cx+1, ky
+H.c.

]
+ˆ⃗c †

x, ky
[(mx + t cos ky)σz ⊗ I + (t sin ky)σy ⊗ I + (λx sin ky)σx ⊗ sx − iγxσz ⊗ sz] ˆ⃗cx, ky

}
,

(21)

where ˆ⃗cx, ky
(ˆ⃗c †

x, ky
) annihilates (creates) a fermion on site x and with momentum ky that has four internal degrees of freedom;

mx, λx, and γx denote the disordered parameters. The helical edge states are topologically protected with time-reversal symme-
try even in the presence of disorder [Supplementary Figure 8 (a,b)]. Moreover, we confirm their robustness also in the following
disordered non-Hermitian insulator with open boundaries in both x and y directions:

Ĥ =
∑
x

∑
y

{
1

2

[
ˆ⃗c †
x, y T

(x)
x, y

ˆ⃗cx+1, y + ˆ⃗c †
x, y T

(y)
x, y

ˆ⃗cx, y+1 +H.c.
]
+ ˆ⃗c †

x, yMx, y
ˆ⃗cx, y

}
, (22)

with (
T

(x)
x, y

T
(y)
x, y

)
:=

(
t (σz ⊗ I − iσx ⊗ sz)− iλx,y σx ⊗ sx
t (σz ⊗ I − iσy ⊗ I)− iλx,y σx ⊗ sx

)
, Mx, y := mx,y σz ⊗ I − iγx,y σz ⊗ sz. (23)

Here ˆ⃗cx, y (ˆ⃗c †
x, y) annihilates (creates) a fermion on site (x, y), and mx,y , λx,y , and γx,y denote the disordered parameters. The

helical edge states are robust also in this case [Supplementary Figure 8 (c)]; the topological phase in the non-Hermitian quantum
spin Hall insulator is immune to disorder that respects time-reversal symmetry.
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Supplementary Figure 8. Robustness against disorder in the non-Hermitian quantum spin Hall insulator. (a) Real and (b) imaginary parts of
the complex spectrum of the disordered non-Hermitian quantum spin Hall insulator described by Supplementary Equation (21) as a function
of the wavenumber ky . Black and red dots represent the bulk and edge states, respectively. The open boundary condition is imposed in the x
direction, whereas the periodic boundary condition is imposed in the y direction. The insulator with 30 sites is characterized by the parameters
t = 1.0, mx = −1.0+0.3 ϵx, λx = 0.5+0.2 ϵ′xand γx = 0.5+0.3 ϵ′′x , where ϵx, ϵ′x, and ϵ′′x are random variables uniformly distributed over
[−0.5, 0.5]. (c) Complex spectrum of the disordered non-Hermitian quantum spin Hall insulator described by Supplementary Equation (22)
and Supplementary Equation (23). The open boundary condition is imposed in both x and y directions. The insulator with 30 × 30 sites is
characterized by the parameters t = 1.0, mx,y = −1.0 + 0.3 ϵx,y , λx,y = 0.5 + 0.2 ϵ′x,y and γx,y = 0.5 + 0.3 ϵ′′x,y .

SUPPLEMENTARY NOTE 8: DYNAMICS OF TOPOLOGICAL EDGE STATES IN NON-HERMITIAN SYSTEMS:
EXPERIMENTAL SIGNATURE OF NON-HERMITIAN TOPOLOGICAL PHASES

A hallmark of the topological phases is the emergence of robust edge states that reflect the non-trivial topology of the bulk.
Remarkably, non-Hermiticity can make these edge states amplified (lasing) [15–18] and anomalous [19]. The non-Hermitian
topological insulators considered in this work also exhibit unique topologically protected edge states that have no Hermitian
counterparts, which serves as an experimental signature of the non-Hermitian topological phases. In the following, we consider

Supplementary Figure 9. Population dynamics in the non-Hermitian topological insulator protected by time-reversal symmetry (1D class AI).
An initial state is prepared to be a localized wave function |ψ0⟩ ∝

∑L
x=1 e

−x |x⟩, and the evolutions of the population (normalized intensity)
|⟨x|ψt⟩|2 / ⟨ψt|ψt⟩ are shown for (a) |x⟩ = |a1⟩, (b) |x⟩ = |b1⟩, (c) |x⟩ = |a2⟩ and (d) |x⟩ = |b2⟩ [see Fig. 3 (a) in the main text for
details]. The insulator with L = 50 sites is characterized by the parameters t = δ = 1.0 and γ = 0.2 for the topological phase (blue curves)
and γ = 3.0 for the trivial phase (orange curves). In the topological phase, there emerges time-reversal-symmetry-protected topological edge
states whose imaginary parts vanish. As a consequence, the population of the wave function in the topological phase is greater than that in the
trivial phase.
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Supplementary Figure 10. Population dynamics in the non-Hermitian quantum spin Hall insulator (2D class AII). The insulator with 30× 30
sites is characterized by the parameters t = 1.0, m = −1.0, λ = 0.5, γ = 0.8 for the topological phase (left) and t = 1.0, m = 3.0, λ =

0.8, γ = 1.2 for the trivial phase (right). An initial state is a localized wave function |ψ0⟩ ∝
∑

x,y e
−(x−15.5)2/36−(y−1)2/9 |x, y⟩, and the

evolutions of the population (normalized intensity) |⟨x, y|ψt⟩|2 / ⟨ψt|ψt⟩ are shown at t = 0, 10, 20. In the topological phase, the wave
packet remains localized due to the presence of the helical edge states. In contrast to the Hermitian quantum spin Hall insulator, the spin-
up component is more localized than the spin-down component due to the presence of the imaginary gap between the helical edge states.
Moreover, the wave packet does not move along the edges since the real parts of the energy dispersions are flat for the helical edge states. In
the trivial phase, on the other hand, the wave packet quickly diffuses into the bulk due to the absence of the edge states.

the dynamics of non-Hermitian topological systems. When an initial state is prepared to be

|ψ0⟩ =
∑
n

cn |φn⟩ , cn = ⟨χn|ψ0⟩ , (24)

where |φn⟩ (|χn⟩) is a right (left) eigenstate of the non-Hermitian Hamiltonian [20], the wave function evolves as

|ψt⟩ = e−iHt |ψ0⟩ =
∑
n

cne
−iEnt |φn⟩ . (25)

Although the system eventually reaches a stationary state |φn⟩ with the largest imaginary part of En, unique topological features
appear in the non-Hermitian transient dynamics, which have been observed in recent experiments [15–18].

For the non-Hermitian topological insulator given by Eq. (3) in the main text, the imaginary parts of the eigenenergies of the
topologically protected edge states vanish due to the presence of time-reversal symmetry. Consequently, these edge states are
stable, despite instability of the bulk states. The presence of such stable edge states can be detected by focusing on the evolution
of the particle population near the edges. In fact, when an initial state is prepared as a localized state at one edge, its population
near the edge in the topological phase is greater than that in the trivial phase (Supplementary Figure 9).

For the non-Hermitian quantum spin Hall insulator given by Eq. (7) and shown in Fig. 5 in the main text, the helical edge
states emerge corresponding to the non-trivial topology of the bulk. As a consequence, when an initial state is prepared as a
localized state at one edge, the wave packet remains localized near the edge in the topological phase (Supplementary Figure 10).
In the trivial phase, on the other hand, the wave packet quickly diffuses into the bulk due to the absence of the edge states. There
are several significant distinctions between the Hermitian and non-Hermitian quantum spin Hall insulators. In contrast to the
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Hermitian one, the spin-up component is more localized than the spin-down component due to the presence of the imaginary
gap between the helical edge states [see Fig. 4 (b) in the main text]. Moreover, the wave packet does not move along the edges
since the real parts of the energy dispersions are flat for the helical edge states [see Fig. 4 (a) in the main text].

SUPPLEMENTARY NOTE 9: BULK-EDGE CORRESPONDENCE IN NON-HERMITIAN SYSTEMS

The bulk-edge correspondence in Hermitian topological systems is generally understood with a continuum model described by
a Dirac Hamiltonian [21, 22]. Although the topological classification is drastically altered by non-Hermiticity as demonstrated
in the main text, the bulk-edge correspondence can be generalized to a non-Hermitian continuum model in the same manner
as the Hermitian one. We here consider a one-dimensional Dirac Hamiltonian that respects chiral symmetry S := σz (hence
belongs to 1D class AIII):

H (k) = (k + ig)σx + (m+ iδ)σy, (26)

where k is a wavenumber (momentum), and g, m, δ ∈ R are real parameters that characterize the topological or trivial phase.
The energy dispersion of this continuum model is obtained as

E (k) = ±
√

(k + ig)2 + (m+ iδ)2 = ±
√
k2 +m2 − g2 − δ2 + 2i (kg +mδ), (27)

and hence the complex bands are gapped for |m| > |g|. As with the Hermitian case, the topological invariant (winding number)
can be defined for the gapped phases as

W =

∫ ∞

−∞

dk

4πi
tr

[
SH−1 dH

dk

]
= −

∫ ∞

−∞

dk

2π

m+ iδ

(k + ig)2 + (m+ iδ)2
= − sgn [m]

2
. (28)

Here the half-integer topological invariant W is common to the continuum models and should be complemented by the structure
of wave functions away from the Dirac point [23, 24].

To investigate the emergence of topologically protected boundary states, we consider a domain wall defined by

g (x) = g+θ (x) + g−θ (−x) , m (x) = m+θ (x) +m−θ (−x) , δ (x) = δ+θ (x) + δ−θ (−x) , (29)

with a step function θ (x). Then we solve the Schrödinger equation[(
−i

d

dx
+ ig (x)

)
σx + (m (x) + iδ (x))σy

]
φ (x) = 0 (30)

to find the topologically protected boundary states with zero energy. For x > 0, if we take an ansatz φ+ (x) = (a b)
T
e−x/ξ+ ,

the above Schrödinger equation reduces to(
ξ−1
+ + g+ +m+ + iδ+

)
a =

(
ξ−1
+ + g+ −m+ − iδ+

)
b = 0. (31)

We notice that Re [ξ+] > 0 is needed for the localization of the boundary states. Then, for m+ > 0, we have g+ +m+ > 0
and hence Re

[
ξ−1
+ + g+ +m+ + iδ+

]
> 0; for m+ < 0, we have g+ −m+ > 0 and hence Re

[
ξ−1
+ + g+ −m+ − iδ+

]
> 0.

Therefore, we obtain

φ+ (x) =

(
0
1

)
exp [− (m+ − g+ + iδ+)x] for m+ > 0;

φ+ (x) =

(
1
0

)
exp [− (−m+ − g+ − iδ+)x] for m+ < 0.

(32)

For x < 0, on the other hand, we obtain

φ− (x) =

(
1
0

)
exp [− (m− + g− + iδ−)x] for m− > 0;

φ− (x) =

(
0
1

)
exp [− (−m− + g− − iδ−)x] for m− < 0.

(33)

Due to the boundary condition φ+ (0) = φ− (0), the bound states emerge if and only if the signs of m+ and m− are different,
reflecting the different winding numbers in each region; the emergence of the topologically protected bound states corresponds
to the non-trivial topology of the bulk. Notably, similar discussions for non-Hermitian continuum models in two dimensions are
found in Supplementary References [25, 26].
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