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A b s t r a c t :  The  Golds tone  l inked c lus te r  expans ion  is used  to  de t e rmine  the  energy  as  an  ana ly t i c  
func t ion  of t he  coupl ing  cons t an t .  Th i s  func t ion  is m a n y - v a l u e d  a n d  descr ibes  the  va r ious  
ene rgy  levels of the  s y s t e m .  The  ene rgy  of each  level can  be  ob ta ined  f rom the  Golds tone  
expans ion  b y  con t i nu i ng  it  ana ly t i ca l ly  a long  a p rope r ly  chosen  p a t h  in t he  complex  p lane .  
The  B r u e c k n e r  l adder  a p p r o x i m a t i o n  s) is s h o w n  to  be  a n  a p p r o x i m a t i o n  to  an  ana ly t i c  
c o n t i n u a t i o n  a long a p a t h  which  a lways  leads to  the  n o r m a l  s t a t e  - -  t he  s t a t e  in which  no 
b ind ing  occurs .  

1. Introduct ion 

I t  is well-known that  convergence difficulties arise in the Goldstone 1) 
expansion (also known as linked cluster expansion) for the ground state energy 
of a many-fermion system. Sometimes it is even claimed that  this series never 
converges 3). Such claims generally follow the t rea tment  of an infinite system 
with a continuous energy spectrum. In this paper finite systems with dicrete 
energy spectra are considered. In sect. 6 it is shown that  the radius of conver- 
gence of the Goldstone series as a power series in the coupling constant g 
tends to zero as the volume of the system becomes infinite. For any finite 
volume, however, the radius of convergence is finite but small. For sufficiently 
large volumes it is so small that  for the actual value of g the series fails to 
converge. In most macroscopic systems this is the case. 

In most applications in physics a power series is used as a basis for a class of 
approximations. The approximations are the sums of the first few terms of the 
series. In order for these approximations to be valid it is necessary that  the 
series converge. The Goldstone expansion in a large system is useless in this 
respect. A power series, however, means more than a formula from which 
numerical values can be obtained. A power series defines an analytic function 
which may be meaningful also far away from the region of convergence of the 
series. I t  is argued in sect. 2 that  the analytic function of g defined by  the 
Goldstone series is a multivalued one, and its different values on the real axis 
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correspond to all the energy levels of the system ¢. The Goldstone series there- 
fore defines all the energy levels of the system for all values of g. In order to 
obtain them it is necessary to perform analytic continuation from the region 
of convergence of the series to the desired value of g along a properly chosen 
path in the complex plane. 

The exact analytic continuation is a process which is as complicated as the 
summation of the expansion to all orders. Approximation methods for the 
analytic continuation along certain paths, however, may be of practical value. 
It  is shown tb.~.t the Brueckner 3) ladder approximation can be regarded as 
such an approximation. The analytic continuation which it approximates is 
along a path which always leads to the "normal s tate" of the system. This is 
shown in model calculation in sect. 5. In sect. 6 the same is established for a 
general many-fermion system treated by  the Bethe-Goldstone 4) method. 
This method, although inconsistent for treatment of the ground state 5), is 
justified for the normal state. 

The difference between our description of the ladder approximation and the 
usual one is that  we regard it as an approximation to an analytic continuation 
whereas usually it is presented as an analytic continuation of an approximation. 
Usually it is argued that the ladder diagrams are the largest contributions to the  
perturbation series in every order. This establishes the ladder approximation 
within the region of convergence of perturbation theory. The ladders are, 
however, used outside this region of convergence where some partial sums of 
ladders (the ones with holes close to the Fermi surface) diverge. What  one uses 
is therefore the analytic continuation of the ladder approximation. The analytic 
continuation of an approximation makes very little sense because an approxi- 
mation which reproduces the numerical values of a function in a certain region 
does not necessarily reproduce its analytic properties. Thus, the ladders which 
approximate the ground state of a system inside the region of convergence are 
a single-valued function while the true energy function is many-valued. In our 
way  of justification, the ladders are regarded as the first term in a convergent 
series (which is roughly an expansion in the density of the system). The region 
of convergence of this expansion dictates the path of analytic continuation in 
the complex plane and determines which level is approximated by  the ladders 
outside the region of convergence. 

Although it should be possible in principle to obtain the energy of any level 
of the system starting from the Goldstone expansion, we are unable to offer a 
workable approximation to any such continuation different from the one 
represented b y  the ladders. In particular it would be interesting to find the  
way to approximate the ground state. The ground state in the case of at t ract ive 
interaction may  be of the "superconducting" type. The formulation of an 

? All those which belong to  the same values of conserved quant i t ies  (e.g. to ta l  m o m e n t u m )  
as the  ground state.  
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approximation to the ground state starting from the Goldstone expansion is 
therefore also a derivation of superconductivity in terms of Feyman diagrams. 
We cannot at present formulate such an approximation. The path of analytic 
continuation at which one should aim in order to obtain the ground state is, 
however, evident (see sect. 3); it is the real axis. Any summation of the series 
of diagrams which is to lead to the ground state must therefore be free of 
singularities on the negative part  of the real g axis. The ladders violate this 
requirement. 

2. The Analytic  Structure of the Energy Funct ion 

The energy of a quantal  system is obtained by  the diagonalizationof a matrix. 
This matrix is in general of infinite order. We shall content ourselves here to 
examine the properties of energy levels derived from a mtrix of order n, 
hoping that the general features will persist even as n --> oo. (Another possible 
point of view is the assumption that the real problem could be approximated to 
any desired accuracy by  replacing the infinite matrix by  a large finite matrix. 
Our arguments would then be valid for all such approximations). We shall 
limit ourselves to systems of finite size and therefore the spectrum will be 
discrete and no continuous matrices will be considered. 

The Hamiltonian matrix generally depends on a number of parameters, such 
as, for example, the coupling constant g of the interaction between particles 
and the density p of the particles. The matrix elements are generally simple 
analytic functions of these parameters (e.g. they are usually linear functions 
of g), so that the same (analyticity, not linearity) would hold for the eigenvalues. 
The eigenvalues obtained by  solution of an algebraic equation are therefore 
also analytic functions of the parameters except at a set of isolated singular 
points. Let us now consider the secular equation 

[ n ( g ) - - E  I =.~ P ( E )  : 0. (2.1) 

This is an algebraic equation of the nth order, P being a polynomial of that  or- 
der. I t  therefore has in general • distinct solutions E~(g), i = 1 . . . .  n. The 
polynomial P ( E )  can be expressed in terms of these functions as 

n.  

PCE) = H ( E - - E , ( g ) ) .  (2.2) 
i = l  

The functions E~(g) are analytic functions of g. From the hermiticity of H 
it follows that the E~ are real for real values of g. The E ,  represent the energy 
levels of the system. We shall further assume that  these levels do not cross *, 

* It is of course poss ible  to  cons t ruc t  examples  in which levels  do crosS. Such a degeneracy  can  
a lways  be removed  b y  an  in f in i t e s ima l  change  in  the  in te rac t ion .  Crossings do occur  of course  
for levels  be longing  to  d i f fe ren t  va lues  of conserved quan t i t i e s  ( to ta l  m o m e n t u m ,  t o t a l  a n g u l a r  
m o m e n t u m  etc,). I n  th i s  case the  conse rva t ion  l a w  which  we do not  wish  to  v io la te  forbids  t h o  
sma l l  change  in  the  in te rac t ion .  
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which is the general case, i.e. 

Ez(g ) < E,.(g) < Ea(g) . . .  < E.(g) for all real values of g. 

We therefore assume Ei(g ) ~ Ej(g) for i v~/" and for real g. On the other hand 
the equation E,(g) = E~(g) for given values of i and/" must have a solution g,~ 
in the complex plane. This follows from the analyticity of the function E~(g)- 
--Ej(g) which must therefore assume every value including zero at least once 
(excluding the trivial case E,(g)--E~(g) = constant). We can further see that  
E,(g~j) : E~(g,j) implies also E~(g~*.)= Ej(g*), where the star denotes the 
complex conjugate. (This is so because E(g) is real for real g and therefore 
E(g*) = E*(g).) 

Let us now examine the behaviour of the energy functions in the neighbour- 
hood of the points g,j in the complex g plane for which 

E,(g,j) = E~(g,j) ~-- E,~. (2.3) 

From the form (1.2) for P(E) it follows that 

P(E,,) dP(E)  E=E,, - = 0 .  

Therefore, if we expand P(E) around the values g = g , ,  E ---- E~j, the expan- 
sion would be 

P(E) = { (E- -E , , )*  d2P(E'J)  OP(E'J) l + . . . .  (2.5) 
dE,• + ' ' "  + ( g - g ' ' )  ~ g -  ~=u,, 

Confining ourselves to a small neighbourhood of the values g,j and E,j we may  
omit the higher order terms. Imposing eq. (2.1) we find an approximate solution 
for the neighbourhood of g,j which is 

_ _ 20P/Og 
E = E , , 4 -Vg - -g ,  d,p--p~,]  ~=~: . (2.6) 

The two solutions in eq. (2.6) correspond to E,  and E~, both of which become 
E ~  when g = g,~. We immediately see that  g~ is a singularity of both solutions; 
:it is the branch point in which the i and j sheets of the Riemann surface corre- 
sponding to the solution of eq. (2.1) meet. Starting with E,  and going round the 
point g,~ we would end with E~ and vice versa. In each sheet corresponding to 
any level E~ there are n--1  such branch points corresponding to all other 
levels E~ to which one can pass by  going around the branch point. Together 
with each branch point g,j in the upper half plane there exists a branch point 
at g,* in the lower half plane. This situation is described in fig. 1. Going around 
both  branch points one returns to the same value. 
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It  is of course possible that  three levels would coincide at some point in the 
complex plane which would be a double branch point. We shall not consider 
this possibility which may  be viewed as the coincidence of two simple branch 
points. 

Let us now consider the situation, shown in the left hand part  of fig. 1, 
when go  it close to the real axis and therefore g~j and g~ are close together. 
An approximate form of E i and E~ in this neighbourhood, taking both branch 
points into account, is 

g - - R e  g~ Im E,t+A V'(g~g,~)(g--g~). (2.7) 
E = R e E i ~ +  I m g o  

0 

o 

o 

o 

complex 
g plone 

[ 

Re gq. 

R,% 

Fig.  1. B r a n c h  po in t s  be tween  the  d i f ferent  ener-  
gy  levels occur  in pa i rs  a t  con juga t e  po in t s  of  

complex  g p lane ,  off t he  real  axis .  

Fig. 2. An  " a l m o s t  c ross ing"  of t he  i and  j levels 
~or real g. 

Let us now plot the values of E~ and Ej  for real g with the aid of (2.7). The 
result is shown in fig. 2. In the neighborhood of Re go ,  E~ and Ej  form the two 
branches of a hyperbola. They are two levels which "almost cross" but  at the 
last moment change names instead. We see that the well known phenomenon of 
levels "almost crossing" corresponds to a pair of branch points which are very 
close to the real axis. The distance between the branch points can serve as a 
measure of the sharpness of the "almost crossing". In the limiting case in which 
the two branch points coincide on the real axis the levels actually cross. 

In the next section we deal with the physical aspects of this "almost crossing" 
of levels. 

3. N o r m a l  State, Cooper Pairs  and Ground State 

It  has been shown by  Cooper 6) that  in the presence of an interaction and of 
a filled Fermi sphere, there exist pair states which coherently make use of the 
interaction and the free phase space outside the Fermi sphere in order to have 
an energy and momentum distributions very different from the unperturbed 
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ones. A many-fermion system may have any number of pairs in Cooper type 
states. We shall refer to the state of the system with no Cooper pairs as the 
normal state. The ground state on the other hand may have a number of Cooper 
pairs depending on the strength of the interaction. For strong attractive inter- 
actions the ground state is of the "superconducting" type which means that  all 
particles form Cooper pairs ~). Fig. 3(a) describes schematically the energies 
of levels having different numbers of Cooper pairs as a function of the coupling 
constant g. In fig. 3(b) we make the refinement of noting that  the different 
levels do not actually cross. 

The normal state is the ground state around g ---- 0 and there it is calculable 
by means of the Goldstone perturbation method. Alittle more will be said about 

E" E 

nolmol slate / / J normal stale normal s t a t e / / /  

(a)  

Fig. 3. (a) As the interact ion becomes a t t rac t ive  the normal  s tate  is crossed by  a s ta te  in which 
a pair  is bound  which becomes the ground state.  This s tate  is in t u rn  crossed by  a s tate  with two 

bound  pairs and so on. (b) The crossings of fig. 3 (a) are replaced by  a lmost  crossings. 

nor real slot 

(b 

this method in the next section. Here it is enough to note that  the perturbation 
series ceases to converge before the first almost crossing to the left of g -~ 0. 
This is because a power series in g describing the energy function can converge 
only as far as the nearest singularity. The "almost crossing" is accompanied as 
we have noticed in the previous section by two branch points on both sides of 
the real axis near the point of the almost crossing. The power series cannot 
converge beyond these singularities. Therefore any at tempt to calculate any 
energy level of the system to the left of the first crossing based on perturbation 
theory is an at tempt at analytic continuation. The actual level which such a 
method would describe depends on the path along which the continuation is 
performed. 

We now define the paths along which the continuation should be performed 
in order to end up with the ground state or with the normal state. In order to 
obtain the ground state energy one should perform the analytic continuation 
along the real axis. Starting with the lowest level for g = 0 one would always 
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be describing the lowest level because for real g levels never cross. In order to 
obtain the normal state one must go around the branch point corresponding to 
each "almost crossing". A possible prescription for doing this would be to go 
up along the imaginary axis a distance corresponding to the distance between 
the branch points and the real axis, then to continue parallel to the real axis 
and finally to return to it at the desired point. The distance from the real 
axis which we choose defines the sharpness of the "almost crossings" at which 
we want to cross and in fact defines what we mean by the normal state. The 
paths are shown in fig. 4. 

to the normal state 

• . ( " ; • 
.q=g¢ • • • 

to  the e ground state 

l complex g plane 

t 
1 

Fig. 4. The Fa ths  for a n a l y t i c  c on t i nua t i on  which  lead to  the  ene rgy  of the  g round  s t a t e  and  the  
n o r m a l  s t a t e  for g = g~. 

4. The  Goldstone  Perturbat ion  Ser ies  

The Goldstone perturbation theorem 1) states that  the energy of the lowest 
state of the system which is not orthogonal to the unperturbed ground state -- 
which in general is the true ground state - -  is given by the expression 

, 

as long as this series converges. Here E, is the true energy, U the unperturbed 
energy, H 0 the unperturbed Hamiltonian and v the interaction. The notation 
( )c means that  only contributions of connected vacuum-vacuum diagrams 
should be taken into account. 

It should be noted that  the right hand side of eq. (4.1) is actually a double 
series since in every order of perturbation theory there appear a number of 
diagrams. The name "perturbation theory" suggests the following order of 
summation: first sum together the contributions in each order in the coupling 
constant g, thus obtaining a power series in g; then sum this power series. In 
this order of summation the first summation is a trivial one since it is a finite 
summation in every order and no convergence problems arise. The second 
summation, however, is very complicated and there is no practical possibility 
of carrying it out to all orders. All we can do is approximate the infinite sum 
by the sum of the first few terms. This approximation is valid only within the 
radius of convergence of the power series in g which is, following the consider- 
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ations of  the previous section, very small. There is no hope of obtaining any 
results for large values of g by this method. 

Let us now consider another order of summation of the double series which 
will prove more fruitful. Following Brueckner a) let us arrange the diagrams 
according to the number of interactions involving holes. Let us first sum 
together all diagrams with a given number of such interactions. The momentum 
of holes must be integrated over the Fermi sphere, the volume of which is 
proportional to the density of particles in the system. The new series obtained 
by summing together all diagrams with the same number of hole interactions 
is therefore roughly an expansion of the energy of the system in powers of its 

CO 
first order 

i 

i 

I 

0 
@ 

s e c o n d  Order 

! 

s 

@ 
third order 

I 

I 

I 

I 

I 

f ou r t h  order 

Fig. 5. The grouping together of diagrams according to the orders of the terms of the second 
summat ion .  Because of the great  variety already in fourth order only one diagram of this order out  

of the m a n y  types possible is shown. 

density. This grouping of diagrams is indicated in fig. 5. I t  is seen that  in the 
first stage we are summing over repeated scatterings along the particle lines, 
i.e. summing ladders. In this order of summation both the first summation and 
the second one are infinite sums. But the summation of ladders is an infinite 
sum of a particularly simple form. In essence it is a geometric progression or 
rather a sum of a great number of geometric progressions in the general case. 
The summation of ladders can be performed to all orders and the result can be 
obtained in closed form. This closed form has no other singularities than a 
number of poles on the real axis and it is valid for all values of g. The second 
summation, that  of the power series in the density, is of a far more complicated 
nature and we cannot hope to perform it to all orders. All we can do for the 
second summation is to approximate the infinite sum by the sum of the first 
few terms. This again is valid only within the region of convergence of the 
second summation. But the region of convergence of the second summation in 
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this order of summation differs from that  of the second summation in the 
previous perturbation theory. Having "absorbed" some of the convergence 
difficulties into the first sum - -  the sum of ladders - -  we may hope that  the 
region of convergence of the second summation might become larger than in 
simple perturbation theory. We shall check this hope for a simple model in the 
next section and later return to the general case. 

5. Model  Calculat ion 

Let us consider a system consisting of two dingle particle states and populat- 
ed by one particle. Let the unperturbed hamiltonian be 

.o--Io :1..>o. (o.. 
and let the perturbation be a single particle force of the form 

This model has been considered in detail elsewhere s) and the summation of 
diagrams has been explicitly carried out to all orders. The result for the ground 
state energy has been as expected 

(5.3) 

Let us now turn the two states into two groups of degenerate states, the upper 
one being K-fold degenerate and the lower one M-fold degenerate. We consider 
the system populated by M fermions. (The identity of the number of particles 
with the degeneracy of the lower state is essential since one of the necessary 
conditions for the Goldstone theorem to hold is the non-degeneracy of the 
unperturbed ground state of the system). As for the perturbation we shall choose 
it again of the form (5.2), i.e. it can take the particle from any of the lower 
states to any of the upper states with a matrix element v. The energy in our 
new many-particle system is 

?3 2 

(5.4) 

The possible diagrams in our system display only creation and annihilation 
of pairs at the interaction points. There is no ascattering. These diagrams are 
shown in fig. 6. We shall now introduce particle scattering by considering a 
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V 

' V .  . . V  V .  . .?)" 

V . . . V  V . . . V  

v . . . v  0 . . . 0  I 

J , v . . . V  0 . . . 0 ,  

K M 

K 

M 
(5.5) 

Here the perturbation can take a particle not only from the lower states to 
the upper states and back, but also from any of the upper states into any 

00 (3 
Fig. 6. Grouping of diagrams to form terms of the perturbation expansion in the model (no 

scattering). 

i 
a - - - 

I o 

I 

e u 

o f 

i i 

Fig. 7. Grouping of diagrams to form terms of the second summation in the model (scattering 
included). 



M A N Y - B O D Y  P E R T U R B A T I O N  THEORY" 363 

other (including itself). This change gives rise to many new diagrams. The 
diagrams which should now be considered are indicated in fig. 7. The diagrams 
in fig. 7 are grouped together according to the number of hole interactions 
in the Brueckner fashion. They differ from the diagrams in fig. 6 by the addition 
of any number of scatterings along the particle lines. Let us sum over these 
scatterings (ladders) first. 

The propagator for a particle line, which had been 1/(0--~) = --1/~, now 
becomes (including any number of scatterings) 

1 1 (5.6) 

The new expression for the energy can therefore be obtained from (4.4) by 
the substitution 

-+ e + K v ,  (5.7) 

which yields 

4KMvZ ~ . (5.8) 

By this substitution we have implicitly performed the "second summation",  
having performed the sum of ladders explicitly in (5.6). Let us now consider the 
convergence problems of both summations. The left hand side of eq. (5.6) is a 
geometric progression whose sum has a pole at v = --elK. It  is seen that  for 
large K the region of convergence of (5.6) is very limited. On the other hand the 
closed expression (5.6) is the analytic continuation of the sum for all values of v 
and is valid everywhere. Let us now consider the second summation. An 
expansion of (5.8) in terms of interactions involving holes is its expansion in 
powers of those v that  do not appear in the expression , + K v .  Equivalently, it is 
the expansion of (5.8) in terms of 4KMv2/(~+Kv)  2. The region of convergence 
of this expansion may be readily determined. However, we shall first deduce 
the form of this region by an approximate argument which applies also in the 
general case. 

We shall first note that  at v = - -e /K the second summation certainly fails 
to converge since each term contains the "new particle propagator" (5.6) to the 
power of the number of hole lines, and the new propagator is infinite there. 
We then notice that  each term of the second summation depends on v through 
the "new propagator" and also directly. As the new propagator is singular at 
v = - - , / K  we shall assume that  in the neighbourhood of this point in the v plane 
the dependence on v through the new propagator is the most important one. 
We shall neglect the direct dependence of the terms of the series on v. This turns 
the series into a power series in the new propagator which converges when 
e + K v  is large enough. The boundary of the region of convergence is decided 
by the singularities of the function (5.8). 
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The function (5.8) is a two-valued function and has branch points where the 
square root vanishes. This occurs at 

v - -  K i 2 i ~ / K 3  I . (5.9) 

Let us consider the case K >> M which corresponds to the case of low density 
(since M represents the volume of the Fermi sphere). In this case the branch 
points lie very close to the point v = --e/K at which the new propagator has its 
pole. I t  is 'therefore reasonable to assume that  up to the branch points the 
dependence of the terms of the second summation on v through the propagator 
is the dominant one, and that  the series is an expansion in powers of the 
propagator. I t  would follow from this that  the second summation would 
converge everywhere outside a circle the centre of which is at v = - - e l K  and 
which passes through the branch points (5.9). If the direct dependence on v is 
taken into account as well, one still expects the second summation to converge 
outside a region which contains the pole of the propagator and on the boundary 
of which the branch points lie. 

We can now go back to (5.8) and check what the region of convergence of the 
expansion of the root in powers of 4 K M  v ~ / ( , + K v )  2 is. I t  turns out that  this 
expansion converges everywhere outside a circle which contains the pole 
v = - - , ] K  (although not at the centre) and which passes through the branch 
points. The region of convergence is shown in fig. 8. The pole is at P, the 

I 
I 
I 

J/  ,, 

c ~ - - 2 ~ p , .  - 
v p l o n e  

/ i  
I 
I 

Fig. 8. The analytic propert ies  of the model 
in the complex v plane. P is the pole of the 
new propagator .  The branch  points  are a t  B 
and 13". The per tu rba t ion  expansion conver- 
ges inside C'. The second summat ion  conver- 

ges outside C. 

/ 

L/ 

Fig. 9. The curves o f  the energy levels of the  
sys tem versus v are shown. The dotted lines cor- 
respond to the ladders which approx imate  the 

normal  s tate  except near  P. 
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branch points at B and B* and the second summation converges outside the 
circle C. 

Let us now return to the usual perturbation expansion in which diagrams are 
grouped together according to the number of interactions. This is just the expan- 
sion of (5.8) in powers of v. I t  converges for small v up to the first singularities 
which are just the branch points at B, B*. The region of convergence of the 
perturbation expansion is therefore the inside of the circle C'. I t  can be checked 
that the tangents to the circle C' through P touch it at B and B*.In the case of 
low density, M << K, the pole P lies very close to the circle C', the branch points 
are close together and the circle C is very  small. Perturbation theory converges 
only within C'. The second summation in the Brueckner order, however, conver- 
ges almost everywhere. I t  fails to converge only in a very small region around P. 
Wherever the secolid summation converges we may replace it by  the sum of the 
first few terms or even by  the first term alone which is the sum of ladders. 
This term is 

g M v 2 / ( e + g v ) ,  (5.10) 

and it approximates (5.8) well provided we keep away from the pole where 
e + K v  : O. 

We have thus obtained a good approximation for the energy of a level of the 
system. I t  remains to  be established which level it is. The two branch points at 
B, B* which lie close together indicate an "almost crossing" of two levels of the 
system. This is shown in fig. 9. The analytic continuation which the sum of 
ladders approximates could have been performed along any path within the 
region of convergence of the second summation. The real axis is excluded as 
the path of continuation to the left. In fact one must keep away from the real 
axis just  far enough to go around one of the branch points B or B* and when 
one comes back to the  real axis (for negative v) one is on the Riemann sheet 
corresponding to the normal state. 

The ladder approximation should be viewed as an approximation to a certain 
expansion of the energy function. This expansion (which is in powers of the 
density) converges in a region in which the energy function is single-valued. 
To remain in this region one may  pass any branch point only on one side and not 
on the other. As the path along the real axis is blocked by  the pole one must go 
parallel to the real axis but  far enough from it to avoid entering the region of 
non-convergence. As the branch points lie on the boundary of this region one 
must go parallel to the real axis but  far enough from it to go around the branch 
points. This is precisely the path which yields everywhere the normal state. 

The formal expression (5.8) which has been obtained by  summing in the 
Brueckner order yields the normal branch of the energy function. The ladders 
(5.10) illustrated by  the dashed line in fig. 9 approximate this branch well ex- 
cept in the vicinity of the pole. 
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6. The General Case 

A general many-fermion system is of course far more complicated than the 
model of the last section. We shall a t tempt  to show that the main featz~-es 
which have led us to conclude that the ladders describe the normal state of the 
system are the same. We limit ourselves to the low density limit (this is necessa- 
ry  in any case in order to retain only the first term of the second expansion) 
and use the Bethe-Goldstone equation 4). This consists of assuming that 
particles interact only two at a time. Instead of a system of N particles one 
considers ]N(N--l) systems of two particles to which the outside of the Fermi 
sphere is available as well as two single particle states inside the sphere (fig. 10). 
The other states of the Fermi sphere are considered occupied by  other particles. 

Fig.  10. T h e  phase  space  avai lable  for t h e  p , , / ~ s  pa r t i a l  Be the-Golds tone  p rob lem consis ts  of  t h e  
ou ts ide  of the  F e rmi  sphere  and  of t he  s t a t e s /~ ,  and  Ps.  

The energy of the system is considered to be the sum of the energies of the 
two-particle systems: 

E = ½ (6.1} 
P* ~ Pl 

where the states P,, P~ are inside the Fermi sphere. 
This procedure implies the assumption that  the wave function of the system 

never deviates considerably from the Fermi sphere. This assumption is justified 
for the normal state (while it may  be quite wrong for the ground state). We 
defer the justification until the end of the section. 

The E~t ,, are the energy functions of two-body problems restricted to Hilbert 
spaces and partial hamiltonians which are parts of the original ones. The 
following decomposition of the hamiltonian of the system is useful: 

H=]~eaataa+~ w v a t ' t  " " 

.~ A.xAsAsA,j. As "Ax ~'As ",~t 
A Az~t~taA a 

C6.2) 
= i s ~ (Ho~,/+vl, F)+H'o+V'+V"+v'", 

p 4. p" 
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t ,a  t,  • (6.3) 

V/,/,' ½ ~  t t V , ,a  t a t a  a ,, (6.4) 
(v,.:m,'ax'a,~a~,aJ,'-F m, ,.~-/,'-J, ,~ ,~ ,' 

K IC p 

H'o = Y. (6.5) 
I¢ 

v' y,, t , (6.6) 
v x l x s x s x t a x t a x x a x s a x t  , 

/fIK2K3K4 

t t (6.7) v"  = { ~, vpl~,,1,~, a~, ap a~aj, ,, 

V - , = ~  x t t t t (v + v , . , , w . a , a , . a , . a , . )  
ata,a,~ (6.7a) 

+ ¼  • t t v a t t a a  
f l f S f S #  

The Greek indices denote the unpertv.rbed single particle states (each index 
standing for the momentum, the spin is supressed). The summation on indices 
denoted by/~ and K are restricted to the inside and the outside of the Fermi 
sphere respectively. The summations on indices A is unrestricted. The quant i ty  
e~ is the unperturbed single particle energy of the state A (kinetic energy) and 
vx~a,a~A~ are the matrix elements of the interaction between properly anti- 
symmetrized two-particle states: 

(Ola .a :al al, lO). (6.8) 

We shall also define 

H m ,  = Hom,+vl ,~.  , (6.9) 

H'  = H ' o + V ' ,  (6.10) 
where H '  is the hamiltonian of particles restricted to the outside of the Ferm_ 
sphere. The relevant h~miltonian for determining E ~ ,  is H m , , + H ' .  The  part  
v" of the interaction which corresponds to scattering within the Fermi sphere 
is not taken into account at all in the Bethe-Goldstone approximation. I t  is 
possible to generalize the procedure so as toinclude v" in a w a y  similar to v' but  
we are not concerned with this here. The part  v'" also has no effect on the partial 
Bethe-Goldstone problems. 

Let us now note that  all the ½ N ( N - - 1 )  two-body problems have in common 
the unperturbed spectrum outside the Fermi sphere and the part  of the 
hamiltonian H'.  If any bound states arise as a result of the interaction they  
must be superpositions of large number of unperturbed states with amplitudes 
of the same order of magnitude. The contribution of any one unperturbed state 
to the formation of a bound state is thus not important. The bound states of the 
/~#' system will not be appreciably changed if we omit the/~ and/~' states and 
consider only the states outside the Fermi sphere and the hamiltonian H' .  
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It  follows that the bound states occurring in the different pp'  problems depend 
only on the total  momentum #+ / , ' .  These bound states can be calculated con- 
sidering a two-body problem in which the particles are restricted to the 
outside of the Fermi sphere and the hamiltonian is H'.  

Not every attractive interaction gives rise to binding in the usual two-body 
problem. The nature of the ground state of a two-particle system is the result 
of a delicate balance between the kinetic and potential energy. While the 
potential energy is lowest if the particles s tay close together within the range of 
attraction, this requires the use of a large number of unperturbed states. The 

0 

i 

"0  

2~ F E 

I f 
2c F E 

unperturbed pair energy 

Fig. 11. The density of pai r  s ta tes  of to ta l  m o m e n t u m  P (for P :fi: 0 and P = 0) which lie outside 
the Fermi sphere. 

kinetic energy is lowest if we use only those unperturbed states whose 
kinetic energy is low. The choice of such states is very limited in the usual two- 
body problem since the density of states is proportionalto ~/e, e being the kinet- 
ic energy. The density of states of lowest energy (e = 0) is zero. This scarcity of 
low lying unperturbed states prevents the formation of a bound state in many 
cases. Our problem is different. The low lying unperturbed states are not avail- 
able anyway. The lowest kinetic energy in our considerations is the Fermi 
energy e F. States of this energy are available in finite density proportional to 
~/e F. A more detailed examination of the situation shows that  for pair states 
having total momentum different from zero the density of available unperturb- 
ed states starts from zero at 2e F (fig. 11), but  it rises more rapidly the smaller 
the total momentum of the pair. For pairs of zero total momentum this rise is 
vertical and a finite density of states is available even a t  the lowest energy 
2~ F. In this case (as has been shown by  Cooper 2) and more rigorously by  Van 
Hove 9)) binding occurs for any attractive interaction. 

Most of the explicit calculations on this subject have made use of separable 
interactions which, because of their special nature, give rise to a single bound 
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state. For a general interaction, however, there is no reason why several bound 
states cannot occur. The number of bound states will make no difference in 
principle in the following considerations. For the sake of simplicity we consider 
the case of a single bound state. 

We therefore assume that  for some total  momenta, certainly for total mo- 
mentum zero, there exists a bound state in the spectrum of H'.  We denote its 
energy by  Ec~+J"(g) (Cooper energy). As a consequence of the binding Ec(g ) 
is volume independent and E c (g) --~ -- oo as g --~ -- oo. This spectrum of H '  is 
shown in fig. 12(a) for a certain total  momentum of p-[-p'. Fig. 12(b) shows the 
spectrum of the pp'  partial problem. This spectrum has been obtained from 

E~. i + E ~  

(o) (b) 

Fig. 12. (a) The spectrum of the two body problem making use only of the outside of the Fermi 
sphere, corresponding to total  momentum/~1+~1. (b) The spectrum of the partial/al ,  Pl Bethe- 

Goldstone problem. 

fig. 12(a) by  the addition of the level corresponding to the particles occupying 
the states p and p'. This level, which at g = 0 is lower than all the levels of H',  
is crossed or more exactly almost crossed b y  E~c P~ (g) for some value of g(~'~. 
The energy function E ~ ,  of the p/~' problem has two branch points on both 
sides of the real axis close to g~'~.  We define g(~,~ by  

EcV(g '~K~) = ~t,+~', P =/~+/~ ' .  (6.11) 

This equation has a solution at least when ~+/~'  ---- 0. It  is interesting to note 
that  the smallest of the gc~'~ gives the limit of the region of convergence of the 
perturbation expansion of E which is the sum of all the E~,~,,. The smallest g~t,~,'~ 
corresponds to the problem in which % + % ,  is closest to 2~v, since for g ~ 0 
Ec(g ) becomes 2e v. _The smallest %--~v is volume dependent (tending to zero 
as the volume tends to infinity), while E c depends only on the density. It  
follows that  the region of convergence of the perturbation expansion for a 
system of given density can be made as small as we wish by  making the volume 
large enough. 
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Let us now turn to the diagram expansion. Summing these diagrams in the 
Brueckner order we first sum the particle-particle interactions to all orders and 
then proceed to sum hole-hole, creation and annihilation processes. This amounts 
to replacing the unperturbed propagator 1/(U--Ho) (U being the unperturbed 
energy) by  

1 1 1 1 
7)  t "71- • . . - -  

U _ H o  + U _ H o  U- -H  o U--Ho--V' 

1 1 
t t U_Xe,,a,,,a, _ H Xe,,,a,,aL_H , . (6.12) 

The new propagator (6.12) includes implicitly all particle-particle inter- 
actions. I t  is immediately seen that when used in ladder diagrams the function 
(6.12) has a pole at each of the almost crossings g~aa'~. This follows from the 
fact that  E~c+J"(g) is an eigenvalue of H '  while % + % ,  is an eigenvalue of 
~,%a~,a~ for the case of two particles and two holes. These poles persist also in 
diagrams other than ladders, but  in such diagrams other poles may  appear 
as well. In the case of four particles and four holes a pole appears when 

em+e~,,+e~,,+%,+E~'(g)+E~(g ) = 0, (6.13) 

where/~x+#2+/*8+#4 = P ' + P  and E~'(g) is a free state of two particles with 
total momentum P' .  Such poles appear at much larger values of g than the 
poles predicted by  (6.11) because the binding of one pair has to compensate for 
the excitation of the other, Such poles, however, cancel when the different 
diagrams of the same order in explicit interactions are summed together. This 
must be so because each pole corresponds to a resonance in the scattering of two 
particles and therefore occurs when a bound state coincides in energy with one 
of the free pairs. The energies of the free pairs in question are always %+%, .  

Let us see how this cancellation is expressed in diagrams. Let us consider the 
creation of two pairs of particles and holes, then two other  pairs. Among the  
contributions to this process the following energy denominators will appear:  

1 1 

em+e~'*-- E~'+~'* era+%' +et"+e~"-- E~F'+~'*-- Ec~'+~' ' (6.14), 

1 1 

The corresponding creation and annihilation matrix elements are the same. 
Summing the two contributions in (6.14) together we have 

1 1 (6. 1 5 ), 
e~, 1 + %, - -  E~FI+I', e~, s + %,--- E~+~', ' 
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and the spurious pole has disappeared. This proof is exact in diagrams corre- 
sponding to partial Bethe-Goldstone problems. We hope to be able to give a 
general proof in another publication. 

We therefore conclude that  each term in the second summation has poles at 
the points g~ra'~. 

Fig. 13 summarizes the analytic properties of the energy function E of the 
system and of the summation of ladders. The quanti ty E is the sum of the 
Err, ,  and therefore has branch points close to the points g~a') of the real axis. 
The new propagator (6.12) has poles at all the points gU, a'~. The points gCa~'~ are 
denoted by P,  in the drawing and the branch points by B~, B~*. The situation 
shown in fig. 13 is completely analogous to the one shown in fig. 8 for the case 

complex 9 plone I 
| 

! 
Fig. 13. The analytic properties of the energy function in the complex g plane. The perturbation 

expansion converges inside C' and the second summation outside C. 

of the model of sect. 5. The usual perturbation expansion converges only 
within a circle around the origin which passes through B1 and BI*, the nearest 
singularities. The second summation in the Brueckner case is a summation of the 
contributions of diagrams in which there is no explicit particle-particle scatter- 
ing and making use of the propagator (6.12). This propagator is infinite at 
the points PI--Pn of the real axis and therefore the second summation certainly 
fails to converge there. The terms of the second summation depend on g 
explicitly and also implicitly through the propagator. We shall again assume 
that  the implicit dependence is the most important one in the neighbourhood 
of the points where the propagator is infinite. This assumption again turns the 
second summation into an expansion in powers of the propagator. Such an 
expansion converges far away from the segment P I - -P , ,  the singularities 
Bi, B~* lying soutside the region of convergence or on its boundaries. The 
boundary of the region of convergence is indicated by the curve C in fig. 13. 
The second summation converges everywhere outside C, and there it may be 
approximated by the sum of the first few terms or even of the ladders alone. 
The second summation represents an analytic continuation of the energy 
function along any path within its region of convergence. All these paths corre- 
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spond to the normal state since they lie off the real axis and farther away 
from it than the branch points. 

It  should be noted that the argument we have used does not imply that the 
second summation actually converges everywhere outside the curve C. Singu- 
larities arising from the explicit dependence on g of the terms of the second 
summation and corresponding to branch points connecting the different un- 
bound states may limit the region of convergence in the far away parts of the g 
plane. We only claim that in the neighbourhood of the segment P1--Pn and 
the curve C our description is correct. The Brueckner procedure therefore 
corresponds to analytic continuation along a path lying off the real axis, but 
just far enough from it to go around all the branch points corresponding to 
binding of pairs and to lead to the normal state. 

It  still remains for us to justify the Bethe-Goldstone assumption that the 
distribution of particles over states in the normal state of the system deviates 
only little from the Fermi sphere. This we shall do by induction. Suppose the 
assumption is true for the normal state at a value of the coupling constant g 
just before the nth almost crossing. Analytic continuation along the real axis 
would lead to a state in which the corresponding pair is bound and therefore 
stays outside the Fermi sphere. But we do the continuation around the branch 
point and come back to the state of the system where this pair, as all others, is 
unbound and the assumption is thus satisfied also a]tcr the ~tth almost crossing. 
Since the assumption is satisfied for thenormalstateg ~- 0, i.e. before the first 
almost crossing, it is satisfied after any number of almost crossings. Therefore 
there occurs no binding in the normal state for any value of g. This establishes 
the physical meaning of the normal state as the lowest state of the system in 
which no binding occurs. 

I wish to thank Professor Harry J. Lipkin for many fruitful discussions. 
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