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We develop relativistic wave equations in the framework of the new non-Hermitian PT quantum
mechanics. The familiar Hermitian Dirac equation emerges as an exact result of imposing the Dirac algebra,
the criteria of PT -symmetric quantum mechanics, and relativistic invariance. However, relaxing the
constraint that, in particular, the mass matrix be Hermitian also allows for models that have no counterpart
in conventional quantummechanics. For example it is well known that a quartet of Weyl spinors coupled by
a Hermitian mass matrix reduces to two independent Dirac fermions; here, we show that the same quartet of
Weyl spinors, when coupled by a non-Hermitian but PT -symmetric mass matrix, describes a single
relativistic particle that can have massless dispersion relation even though the mass matrix is nonzero. The
PT -generalized Dirac equation is also Lorentz invariant, unitary in time, and CPT respecting, even though
as a noninteracting theory it violates P and T individually. The relativistic wave equations are reformulated
as canonical fermionic field theories to facilitate the study of interactions and are shown to maintain many
of the canonical structures from Hermitian field theory, but with new and interesting possibilities permitted
by the non-Hermiticity parameter m2.
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In his seminal 1928 paper [1], Dirac proposed that the
Hamiltonian for a massive relativistic particle be given by

HD ¼ −iα ·∇þ β; ð1Þ

where α and β are matrices that satisfy the “Dirac algebra,”

fαi; αjg ¼ 2δij; fαi; βg ¼ 0; ð2Þ

curly brackets denote the anticommutator. To ensure the
energy eigenvalues ofHD were real, Dirac assumed α and β
were Hermitian. If we take α to generate boosts K and
rotations J via Ki ¼ iαi=2, Ji ¼ −iϵijkαjαk=2, then by
virtue of the Dirac algebra, J and K obey the Lorentz
algebra, and HD is Lorentz invariant. Thus Dirac was led
to his eponymous equation, which describes relativistic
electrons and quarks. Should it turn out to describe
neutrinos as well, the Dirac equation would govern all
known fermionic matter.
In this work we consider whether the recently developed

formalism of non-Hermitian quantum mechanics can be
used to construct HD with matrices that are non-Hermitian
but that meet the physically motivated criteria of PT
quantum mechanics, which guarantee real eigenvalues,
unitary time evolution, etc. [2,3]. For fermions time-
reversal symmetry is odd, T 2 ¼ −1 [4], so as a prelude
to constructing the non-Hermitian Dirac Hamiltonian we
have generalized the formalism of PT quantum mechanics
to include the case of odd time reversal symmetry[5].
Fermionic field theories have been considered in the
context of PT quantum mechanics by Bender et al.
[6–8]; the present manuscript adds to this interesting body

of work by explicitly incorporating the Todd character of
Dirac fields.
There have been several important developments in the

area of non-Hermitian quantum mechanics in recent years,
perhaps most notably in the area of experimental nonlinear
optics, where an optical analog to the ‘PT phase transition’
has been observed in novel metamaterial structures [9,10].
These and other developments may advance photonic
technology and are of great intrinsic interest [3,11–19].
But it is worth asking whether non-Hermitian quantum
mechanics remains viable as a fundamental construct,
as an alternate to the conventional Hermitian framework
which underlies equations like the Dirac equation, or
whether there is in fact some crucial role played by
Hermitian operators in relativistic quantum mechanics.
In a similar spirit, [20] and [21] have sought to formulate
nonlinear quantummechanics and experimentally constrain
departures of quantum mechanics from the canonical
presumption of linearity.
Recall the two familiar representations of Eq. (2) from

Hermitian quantum mechanics, corresponding to Weyl and
Dirac fermions. The Weyl representations αi → �σi are the
simplest nontrivial representations of Eq. (2) and require
the mass matrix β be zero, as no 2 × 2matrix anticommutes
with all three Pauli matrices σi. The Weyl representations
describe a left-handed ðþÞ or right-handed ð−Þ massless
fermion; the simultaneous eigenfunctions of HD and
the momentum operator p ¼ −i∇ have the dispersion
E ¼ �p, as is appropriate for a massless relativistic particle
(in units where c ¼ ℏ ¼ 1). Any other 2 × 2 Hermitian
representation of Eq. (2) is unitarily equivalent to one
of these.

PHYSICAL REVIEW D 89, 125014 (2014)

1550-7998=2014=89(12)=125014(5) 125014-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.89.125014
http://dx.doi.org/10.1103/PhysRevD.89.125014
http://dx.doi.org/10.1103/PhysRevD.89.125014
http://dx.doi.org/10.1103/PhysRevD.89.125014


The Dirac representation allows for a nonzero mass:
choosing the direct sum of a left- and right-handed Weyl
spinor and the most general form of β,

αi →

�
σi 0

0 −σi

�
; β ¼ m

�
0 1

1 0

�
; ð3Þ

we obtain the celebrated Dirac equation.The energy and
momentum eigenstates have dispersion appropriate for a
relativistic particle with mass m, E ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
, the

negative solution having famously led Dirac to propose the
existence of antimatter.
We refer to this choice of α and β as the “fundamental”

representation of the Dirac algebra Eq. (2), because it
describes the basic Dirac fermion, i.e., a pair of left- and
right-handed Weyl spinors coupled by a mass matrix. Also,
the fundamental representation of the massive Dirac
fermion is the only representation within the conven-
tional Hermtian theory: any other choice of β can be
unitarily transformed into this one, and all higher dimen-
sional representations of Eq. (2) can be decoupled into
independent 4 × 4 representations by suitable unitary
transformation.
For example, suppose we construct an 8 × 8 representa-

tion of the Dirac algebra, a quartet of Weyl spinors:

αi →

2
6664
σi 0 0 0

0 σi 0 0

0 0 −σi 0

0 0 0 −σi

3
7775: ð4Þ

In this case the most general choice of mass matrix is

β ¼
�

0 M
M† 0

�
with M ¼

�
m1σ0 m2σ0
m3σ0 m4σ0

�
; ð5Þ

where the m’s are arbitrary complex numbers and σ0 is the
2 × 2 identity matrix. But the eigenfunctions of this quartet
model have the dispersion E ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ μ21

p
and

E ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ μ22

p
, where μ1 and μ2 are the singular values

of the matrix M. So a suitable unitary transformation
decouples this 8 × 8 representation into independent,
4 × 4 fundamental Dirac fermions of mass μ1 and μ2,
respectively. (See [22] for details.)
We turn now to the variations on the Dirac theory

permitted by PT quantum mechanics. Our approach is
simple: we want to keep the same form of HD as in Eq. (1)
but relax the constraint that α and β be Hermitian. To
ensure real eigenvalues though, we must impose three
criteria from PT quantum mechanics; these criteria are
discussed in detail in [2,5,22] and elsewhere so we just
summarize them here. The criteria concern the P and T
operators, which we represent with matrices S and Z,
respectively, PψðrÞ ¼ Sψð−rÞ and T ψðrÞ ¼ Zψ�ðrÞ. In
PT quantum mechanics the P and T operators are used to

define the inner product; recall there are infinitely many
ways to define a valid inner product on a Hilbert space, and
matrix operators in that space can be self-adjoint with
respect to a given inner product though not necessarily
equal to their complex conjugate transpose. The most
natural way to use P and T to define the inner product
of two wave functions ðψ ;ϕÞPT ¼ R

dr½ðPT ψÞðrÞ�TZϕðrÞ
can generally leave some states with negative norm so
another operator C is invoked to flip the sign of those states.
The CPT inner product replaces the standard Hermitian
one; operators are self-adjoint and probability is conserved
with respect to this inner product.
Bender et al. [2] have found that a Hamiltonian H will

have real eigenvalues provided it meets the following
criteria: ½H;PT � ¼ 0, H has “unbroken" PT symmetry,
and H is self-adjoint under the PT inner product. So in
constructing the PT -Dirac equation, we assume only that
the Dirac algebra and the above criteria are satisfied; α and
β are not required to be Hermitian and in fact we leave
the form of α, β, S, and Z undetermined at first, and
allow the principles of special relativity and the criteria of
PT quantum mechanics to determine the exact form these
matrices take. It turns out this is enough to ensure the
theory is relativistically invariant, and yet departs in marked
ways from the Hermitian theory. In order for P and T
to be compatible with boosts and rotations we require
Zα�i ¼ −αiZ and fS; αig ¼ 0. Imposing ½P; T � ¼ 0
requires SZ ¼ ZS�; since T is odd, ZZ� ¼ −1. For
½HD;PT � ¼ 0 we need αiSZ ¼ SZα�i and βSZ ¼ SZβ�.
Finally, the self-adjointness of HD requires αi ¼ ZTαTi Z

†

and β ¼ −ZTβTZ†.
Now we are equipped to construct representations of the

PT -Dirac equation. Naturally we first examine the algebra
satisfied by the α matrices since these are no longer
explicitly required to be Hermitian. It is easy to show that
all 2 × 2 representations of the algebra fαi; αjg ¼ 0 are of
the left-handed type αi → VσiV−1 or the right-handed type
αi → −VσiV−1, where V is an invertible matrix; note that
for Hermitian representations, which form a subset, V must
be unitary. This is not a new type of Weyl fermion,
however, because it is related to the Hermitian representa-
tion by a similarity transformation.
Next we build the non-Hermitian, PT analog of the

4 × 4 fundamental representation of Dirac fermion. We call
this Model 4. We choose α to be a direct sum of the left-
and right-handed representations,

αi ¼
�
VσiV−1 0

0 −WσiW−1

�
; ð6Þ

where V andW are invertible matrices. This is technically a
more general α than in the fundamental Dirac representa-
tion. But after enforcing the criteria enumerated above, we
are left with precisely the same form for both α and β as in
the fundamental Dirac representation, i.e., Eq. (3). In fact,
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Model 4 is equivalent to the fundamental representation in
every regard, right down to the inner product. It is
interesting that these cornerstones of Hermitian relativistic
quantum mechanics, the Dirac equation and Dirac fermion,
do not require a Hermitian Hamiltonian: provided the Dirac
algebra is satisfied, we arrive at exactly the same theory just
by imposing constraints from special relativity, parity, and
time-reversal symmetry.
But in the 8 × 8 representation we find distinctly

new physics. For Model 8 we construct αi via the direct
sum of left-handed and right-handed non-Hermitian 2 × 2
representations:

αi →

2
6664
VσiV−1 0 0 0

0 VσiV−1 0 0

0 0 −WσiW−1 0

0 0 0 −WσiW−1

3
7775; ð7Þ

and we apply the same conditions discussed above for
Model 4. This results in α identical to that of the Weyl
quartet, Eq. (4), but in this case the mass matrix β has the
more general form

β ¼
�

0 M

M� 0

�

with M ¼
� ðm0 þm3Þσ0 ðm1 − im2Þσ0
ðm1 þ im2Þσ0 ðm0 −m3Þσ0

�
; ð8Þ

where now the m0s are real numbers. For nonzero m2, β ≠
β† and the mass matrix is non-Hermitian. This is a new type
of mass matrix and is of course not allowed within the
Hermitian theory. Even the simplest nontrivial case has
interesting features: consider the restricted case where
m1 ¼ m3 ¼ 0. For the eigenvalues to be real we require
m2

0 ≥ m2
2; for a given momentum p, there are four eigen-

vectors with positive energy and four with negative energy
(just as there are for the Weyl quartet). The dispersion
relation for all eight eigenvectors is

E ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

eff

q
; ð9Þ

where

meff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 −m2
2

q
; ð10Þ

corresponding to a relativistic particle of mass meff .
However this is no ordinary relativistic particle. If

m0 ¼ m2 the restricted Model 8 is the Hamiltonian of an
eight-component non-Hermitian fermion with two distinct
helicity states, and a nonzero mass matrix but a zero
effective mass in the dispersion relation. It is worth pointing
out that this is an entirely new type of fermion, distinct from
the familiar Dirac and Majorana fermions.

It is interesting to consider these characteristics of Model
8 in the context of the Standard Model. In the Standard
Model we regard quarks and leptons as massless Weyl
fermions that are coupled in a gauge invariant way to the
Higgs field. Effectively this leads to the Weyl fermions
being coupled to one another by a Hermitian mass matrix.
With quarks it is convenient to work with a representation
wherein the mass matrices are diagonal and hence the
quarks may be regarded as independent Dirac fermions
with well-defined masses. The price one pays for this is that
different generations of quarks are coupled to the W-boson
via the CKM matrix. With leptons the situation is rather
different. It is preferable to adopt a representation wherein
the electron, muon and tau are each Dirac fermions with a
well- defined mass, and there is no direct coupling between
different generations of leptons, but the mass matrix of the
three generations of neutrinos is not diagonal. Within the
Standard Model this is the explanation of the observed
phenomenon of flavor oscillation [23]. It is evident that a
mass matrix of the non-Hermitian form allowed by PT
quantum mechanics might lead to a different phenomenol-
ogy of neutrino oscillations and hence the PT fermion has
potential relevance to neutrino physics. But we note that it
also may have relevance to quark physics since the CKM
matrix is merely a different way of representing a non-
diagonal mass matrix and PT quantum mechanics allows
forms of the mass matrix forbidden by conventional
quantum mechanics. In this connection it is worth noting
that recent observations from cosmology actually give
conflicting values for the sum of the neutrino masses
[24,25]. In future work we plan to explore whether a
non-Hermitian mass matrix like Eq (8) could describe a
neutrino that flavor oscillates but propagates masslessly.
Now we would like to dispatch any concern that

perhaps Model 8 is merely an elaborate rewriting of a
trivial Hermitian model, namely, a pair of 4 × 4
Dirac Hamiltonians, each of mass meff , assembled into
an 8 × 8 block: such a “Dirac pair" model also has a E ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm2
eff

p
with four positive and four negative energy

eigenfunctions for a given momentum. From the eigen-
functions of the Dirac pair and Model 8, we can simply
construct a transformation to map the Model 8 Hamiltonian
to the Dirac pair Hamiltonian, and Model 8 wave functions
ψ8ðrÞ to Dirac pair wave functions ψDiracðrÞ, via the
convolution

ψDiracðrÞ ¼
Z

dr0Lðr − r0Þψ8ðr0Þ: ð11Þ

The kernel L has a range set by the non-Hermiticity
parameter m2. That the transformation eq (11) is nonlocal
shows clearly that Model 8 and the Dirac pair model have
different physics: if coupled to the same gauge or scalar
field they would yield different outcomes (indeed, it is most
relevant to consider L in the context of an interacting
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theory). However Model 8 also breaks P and T individu-
ally (but respects PT by design); see [22] for details.
We now construct Lorentz covariant bilinears to facilitate

the study of interactions, although we do not take up any
interactions here. We write the eight-component wave
function as a column of four two-component spinors ξ1,
ξ2, η1, and η2. From the form of α for Model 8 we see that
the upper two components ξ1 and ξ2 transform like left-
handed spinors under boosts and rotations and η1 and η2
like right-handed. Furthermore, parity exchanges ξ1 with
η1 and ξ2 with η2. Thus, just as in Dirac theory, ξ†i ηj and
η†i ξj are all scalars under boosts and rotations. Further-
more the symmetric combination ξ†1η1 þ η†1ξ1 is a true
scalar being invariant under parity, whereas the antis-
ymmetric combination −iðξ†1η1 − η†1ξ1Þ is a pseudoscalar
as it changes sign under parity. Similarly the currents
ðξ†i ξj; ξ†i σξjÞ and ðη†i ηj;−η†i σηjÞ are four-vectors under
boosts and rotations. By making appropriate symmetric
and antisymmetric combinations, we can construct currents
that are true vectors or axial vectors under parity; here again
we note the similarity to Hermitian field theory. Interactions
can now be studied by Yukawa coupling the scalar bilinears
to a scalar field or the vector currents to a gauge field.
Finally, we reformulate Model 8 as a quantum

field theory and define the particle and antiparticle
creation and annihilation operators as ciðpÞ; c⋆i ðpÞ; diðpÞ,
and d⋆i ðpÞ, where i ¼ 1…4. These operators obey the
fermionic anticommutation relations fciðpÞ; c⋆j ðkÞg ¼
fdiðpÞ; d⋆j ðkÞg ¼ δðk − pÞδij, and all other pairs of oper-
ators anticommute. In terms of these creation operators we
may write the Model 8 Hamiltonian as

H ¼
Z

dp
X4
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

eff

q
½c⋆i ðpÞciðpÞ þ d⋆i ðpÞdiðpÞ�:

ð12Þ
Similar expressions can be written for the momentum,
parity and other operators. Next we introduce local field
operators,

ψ̂ðrÞ ¼
X4
i¼1

Z
dp½ciðpÞuiðpÞeip·r þ d⋆i ðpÞviðpÞe−ip·r�

ψ̂⋆ðrÞ ¼
X4
i¼1

Z
dp½c⋆i ðpÞ ~u†i ðpÞe−ip·r þ diðpÞ~v†i ðpÞeip·r�;

ð13Þ

where we have written the positive energy eigenfunctions
of Model 8 as uiðpÞeðiprÞ and the negative energy eigen-
functions as við−pÞeipr where i ¼ 1;…; 4. ~u and ~v
represent the eigenfunctions of H†

D. The novel twist here
is the appearance of ~u and ~v in the definition of ψ⋆. These
operators obey the canonical anticommutation relation
fψaðrÞ;ψ⋆

bðr0Þg ¼ δabδðr − r0Þ. Thus far we have simply
rewritten the noninteracting Model 8 in the language of
canonical field theory. But we may now consistently treat
interactions by coupling appropriate bilinears of the field
operators to external scalar and gauge fields. A subtlety that
arises in the perturbative analysis of interactions is that the
dynamically determined inner product could also need to
be recomputed perturbatively. (For earlier attempts in this
direction, see for example [26].)
Non-Hermitian quantum mechanics opens up new

possibilities for physics beyond the Standard Model. In
this Letter we show that PT quantum mechanics allows for
the existence of fermions of a fundamentally new kind.
Among the numerous other directions that deserve further
study, we note that the Dirac equation can emerge as the
continuum limit of lattice models in solids such as graphene
and topological insulators; whether the non-Hermitian
Dirac equation might emerge as the low-energy limit in
a solid state context is also worth exploration.
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