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Abstract We present two examples of non-Hermitian Hamiltonians which consist of an
unperturbed part plus a perturbation that behaves like a vector, in the framework of P T
quantum mechanics. The first example is a generalization of the recent work by Bender
and Kalveks, wherein the E2 algebra was examined; here we consider the E3 algebra rep-
resenting a particle on a sphere, and identify the critical value of coupling constant which
marks the transition from real to imaginary eigenvalues. Next we analyze a model with
SO(3) symmetry, and in the process extend the application of the Wigner-Eckart theorem to
a non-Hermitian setting.

Keywords Non-Hermitian quantum mechanics · PT quantum mechanics · Wigner-Eckhart
theorem

1 Introduction

There are many situations in quantum mechanics wherein the Hamiltonian under consider-
ation can be written as

H = H0 + H1 (1)

where H0 is the unperturbed part and commutes with the generators Ti of symmetry
group G:

[H0, Ti] = 0 (2)
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and H1 can be treated like a perturbation and behaves like a vector under G. We wish to
generalize this situation in the context of P T quantum mechanics [1, 2], where the assump-
tion that operators such as the Hamiltonian are Hermitian is relaxed, and replaced by other
requirements, notably that the Hamiltonian commutes with the parity (P ) and time-reversal
(T ) operators.

Interest in non-Hermitian quantum mechanics continues to grow [3], and recently a num-
ber of experiments have observed the so-called P T phase transition, where the eigenvalues
of a P T Hamiltonian make a transition from being complex to real once a critical value
of a coupling constant is reached [4–6]. Thus it is relevant to seek new P T -counterparts to
conventional Hamiltonians.

In this work we present two simple cases that can be described as non-Hermitian vector
perturbation models where the Hamiltonian can be written as in Eq. (1); first we consider
a particle confined to the surface of a sphere, where the Hamiltonian acts within an infinite
dimensional Hilbert space, and next we consider a generic vector perturbation within a finite
dimensional Hilbert space and determine the spectrum of eigenvalues using the Wigner-
Eckart theorem. We find that for a range of parameters each of these models has a pure real
spectrum. At critical values of the coupling the model undergoes P T transitions wherein
the eigenvalues become complex.

2 E3 Algebra: Particle on a Sphere

We begin by generalizing the analysis presented in [7]. They considered the E2 algebra
which consists of elements J,u, v such that

[J,u] = −iv, [J, v] = iu, [u,v] = 0. (3)

The Hamiltonian

h = J 2 + igu, (4)

where J = −i∂/∂θ , u = sin θ , v = cos θ and g is a constant, represents a 2-dimensional
quantum particle restricted to radius r = 1.

A generalization of this is the E3 algebra and restricting the particle to the surface of a
sphere (r = 1). This is described by the Hamiltonian

h = L2 + iguz, (5)

where L obeys

[Li,Lj ] = iεijkLk (6)

u is a vector operator whose components are given by

ux = sin θ cosφ, (7)

uy = sin θ sinφ, (8)

uz = cos θ (9)

and g is a constant. The remaining commutators are straightforward to calculate;

[Li,uj ] = iεijkuk, [ui, uj ] = 0. (10)
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Following Bender and Kalveks we consider the case of even time reversal: for a wave
function ψ(θ,φ) the time reversal operator T is manifested as complex conjugation:

T ψ(θ,φ) = ψ∗(θ,φ) (11)

hence T 2 = 1. It is easy to verify the action of T on the elements of the algebra: T Li T =
−Li and T ui T = ui . The parity operator P takes ψ into the antipodal point:

Pψ(θ,φ) = ψ(π − θ,φ + π) (12)

so P 2 = 1; elements transform under parity as PLi P = Li and Pui P = −ui . Note that the
Hamiltonian h in Eq. (5) commutes with the combined operation P T but not with P or T
individually. Now let us determine the eigenvalue spectrum of this Hamiltonian. We wish to
solve

hψ(θ,φ) = λψ(θ,φ) (13)

and we try the general solution:

ψ(θ,φ) = f (θ)eimφ. (14)

For convenience we define η = cosθ ; this simplifies the eigenvalue equation for f :

−(
1 − η2

)∂2f

∂η2
+ 2η

∂f

∂η
+ m2

1 − η2
f + igηf = λf, (15)

where m is a fixed integer. If we let

h0 = −(
1 − η2

)∂2f

∂η2
+ 2η

∂f

∂η
+ m2

1 − η2
f (16)

then the Hamiltonian we wish to solve is

h0f + igηf = λf. (17)

We impose the boundary condition that the solution must be regular at η = ±1.
Let us choose basis elements

|l〉 → NlPl,|m|(η), (18)

where l = |m|, |m| + 1, . . . , Pl,|m| are the associated Legendre polynomials, with conven-
tional normalization factor

Nl =
√

(2l + 1)

2

√
(l − |m|)!
(l + |m|)! . (19)

The Pl,m’s satisfy

h0Pl,|m|(η) = l(l + 1)Pl,|m|(η) (20)

so the matrix of h0 in this basis is diagonal. The matrix elements of the potential term, igη,
can easily be determined from the normalization and recursion relations of the Pl,m’s. By
diagonalizing the truncated Hamiltonian matrix we can numerically obtain the eigenvalues
of Eq. (17); see Fig. 1.
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Fig. 1 Real and imaginary components of eigenvalues E for the Hamiltonian given by Eq. (17). The first six
eigenvalues for m = 0 (blue) and m = 1 (green) are shown. Intercepts on the E axis are given by 
(
 + 1)

for 
 = 0 to 6. For the case of m = 0, we find that the spectrum is entirely real for 0 ≤ g < 1.899 at which
point there is a transition to one pair of complex conjugate eigenvalues in the spectrum. At g = 11.45 there
is a second transition, to two pairs of complex conjugate eigenvalues. Similarly for the case of m = 1, we
find one complex conjugate eigenvalue pair at g = 5.41, and two pairs at g = 19.04. In these computations
the Hamiltonian is truncated to a 100×100 matrix; we have verified that the relevant part of the spectrum is
insensitive to the truncation

3 PT Vector Model in Finite-Dimensional Hilbert Space

E3 may also be regarded as a realization of the P T vector model with symmetry group
SO(3) and for which the Hilbert space is infinite dimensional. Now we wish to turn out
attention to realizations of the P T vector model with finite dimensional Hilbert spaces. Let
us write a simple, generic Hamiltonian H = H0 + HI where

H0 = L2
x + L2

y + L2
z, (21)

HI = Vz (22)
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and Vz is the z component of a vector operator.
Our task is to obtain a matrix representation of the total Hamiltonian, solve for its eigen-

values and determine what value of the non-Hermitian perturbation cause the eigenvalues to
become complex.

Naturally we choose to work with the angular momentum eigenstates |
,m〉; the action of
H0 on these states is well known, and we can utilize the Wigner-Eckart theorem to determine
the action of HI = Vz.

Note that the dimensionality of the relevant vector space depends on the angular momenta
of the multiplets but clearly it is finite. Suppose we consider the two multiplets |
,m〉 and
|
 + 1,m〉; m takes on values from −
 to +
 in the first multiplet and from −
 − 1 to 
 + 1
in the second multiplet, so there are (2
 + 1) + (2
 + 3) = 4
 + 4 of these states.

The action of H0 on these states is simply

L2|
,m〉 = 
(
 + 1)|
,m〉, (23)

L2|
 + 1,m〉 = (
 + 1)(
 + 2)|
 + 1,m〉. (24)

So all that remains is to determine how Vz acts on these states; here we employ the Wigner-
Eckart theorem, which we have extended to the non-Hermitian case as detailed in Appendix.
We find 〈
′,m′|Vz|
,m〉 = 0 unless m = m′. Thus we need only to determine

〈
,m|Vz|
,m〉,
〈
 + 1,m|Vz|
 + 1,m〉,
〈
,m|Vz|
 + 1,m〉, and

〈
 + 1,m|Vz|
,m〉
in order to completely specify Vz in this space. The first two in this list can be expressed in
terms of the reduced matrix element α defined in Appendix; in general we find

〈
,m|Vz|
,m〉 = mα1,

〈
 + 1,m|Vz|
 + 1,m〉 = mα2;
however we also wish to enforce PVz P = −Vz and T Vz T = −Vz, which restricts α1 = α2 =
0. (Determination of P and T within this space follows straightforwardly from their action
on the spherical harmonics PY
m(θ,φ) = (−1)
Y
m(θ,φ) and T Y
m(θ,φ) = Y ∗


m(θ,φ) =
(−1)mY
,−m(θ,φ).)

For the other two types of matrix elements, 〈
,m|Vz|
+ 1,m〉 and〈
+ 1,m|Vz|
,m〉, we
find these are proportional to other reduced matrix elements β and γ ;

〈
 + 1,m|Vz|
,m〉 = f
mβ,

〈
,m|Vz|
 + 1,m〉 = f
mγ,

where

flm =
[

(
 + 1)2 − m2

(2
 + 1)(2
 + 2)

]1/2

. (25)

Note that f
m is even in m. When we enforce PVzP = −Vz and T VzT = −Vz, we find this
requires β and γ to be pure imaginary, so we define β = ib, γ = ic for some real numbers



2192 Int J Theor Phys (2013) 52:2187–2195

b, c. Note that in determining these matrix elements we do not assume V is Hermitian; we
rely only on the commutators of V with the angular momentum operators. (See Appendix
for details.)

Now let us write down the matrix corresponding to the Hamiltonian H = H0 + HI .
Consider the two-dimensional subspace spanned by the states |
,m〉 and |
 + 1,m〉 for a
fixed value of m that lies in the range −
, . . . , 
. Within this subspace

H0 =
(


(
 + 1) 0

0 (
 + 1)(
 + 2)

)

(26)

and

Vz =
(

0 −icf
m

−ibf
m 0

)

. (27)

In addition consider the two dimensional subspace spanned by the states |
 + 1, 
 + 1〉 and
|
 + 1,−
 − 1〉. These states are not coupled by the perturbation Vz to any other state and
hence Vz = 0 within this subspace. On the other hand the unperturbed Hamiltonian in this
subspace is given by

H0 =
(

(
 + 1)(
 + 2) 0

0 (
 + 1)(
 + 2)

)

. (28)

It is convenient to define

h
+1 =
(

(
 + 1)(
 + 2) 0

0 (
 + 1)(
 + 2)

)

(29)

and

hm =
(


(
 + 1) −icflm

−ibflm (
 + 1)(
 + 2)

)

, (30)

where m = −
, . . . , 
. The Hamiltonian can now be written as a block-diagonal matrix

⎛

⎜⎜
⎜⎜
⎜⎜
⎜
⎝

h
+1

h


h
−1

. . .

h−


⎞

⎟⎟
⎟⎟
⎟⎟
⎟
⎠

. (31)

The individual 2 × 2 matrices that constitute the Hamiltonian are simple enough that we
can obtain analytic expressions for the eigenvalues. The eigenvalues of h
+1 are two-fold
degenerate and are simply (
 + 1)(
 + 2). The eigenvalues of hm are

λ±

m = (
 + 1)2 ±

√
(
 + 1)2 − bcf 2


m. (32)
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Fig. 2 Real and imaginary parts
of the eigenvalues λ1,m assuming
b = c. The blue line at λ = 6
corresponds to the 2 × 2 matrix
denoted h
+1 in the text, with
eigenvalues (
 + 1)(
 + 2). The
other eigenvalues are
m-dependent and correspond to
the 2 × 2 matrices denoted hm in
the text, with eigenvalues given
by Eq. (32). As noted
λ
,m = λ
,−m, so there are only
two distinct m-dependent curves
for 
 = 1. In each figure, |m| = 1
is plotted in red and m = 0 is
plotted in green. Note that the
transition to complex eigenvalues
occurs at b = 4 for λ±

1,1 and

b = √
12 ≈ 3.47 for λ±

1,0

Note that λ
,m = λ
,−m so for all m 
= 0 the eigenvalues of hm are also two-fold degenerate.
Clearly, the eigenvalues are real provided

bc <
(
 + 1)2

f 2
lm

. (33)

We can make the following observations about the behavior of the eigenvalues. Once P T
symmetry is broken, λ+ and λ− form a complex conjugate pair. Since f
m has its maximum
value for m = 0, λ± becomes complex for m = 0 first. Similarly, f
m is minimal for |m| = 
,
so λ± so these are the last eigenvalues to go complex. For example we consider the case

 = 1 and choose b = c for simplicity. We plot the eigenvalues in Fig. 2.

It is worth noting that in the Hermitian case b = −c. Hence the condition in Eq. (33) that
ensures the eigenvalues are real is always met.

4 Conclusion

We conclude by noting two natural generalizations of our results that deserve further investi-
gation. First the model of a particle on an ordinary 2-sphere considered in section II may be
generalized to a particle on a sphere in n dimensions. The P T transition for this model may
be amenable to analytic study in the large n limit and may shed some light on P T symmetric
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non-linear sigma models of which it would represent a 0 + 1 dimensional case [8]. Second
the vector model constructed in Sect. 3 may be easily generalized from the symmetry group
SO(3) to any Lie group and therefore represents only one member of a large class of such
models.

Acknowledgements The authors would like to thank Harsh Mathur and Carl Bender for useful conversa-
tions.

Appendix: Wigner-Eckart Theorem

Suppose we have an angular momentum operator L and a vector operator V satisfying the
commutation relations

[Li,Vj ] = iεijkVk. (34)

Let |
,m〉 denote an angular momentum multiplet of total angular momentum 
 and z-
component m. Then according to the Wigner-Eckart theorem the matrix elements of Vz

and V± = Vx ± iVy between multiplet states are determined by the commutation relations
Eq. (34). In the usual Wigner-Eckart theorem the Cartesian components of the operator V are
assumed to be hermitian. Here we present a non-Hermitian generalization of the theorem.

Following the usual arguments we find the selection rules

〈
′,m′|Vz|
,m〉 = 0 unless m′ = m, (35)

〈
′,m′|V+|
,m〉 = 0 unless m′ = m + 1, (36)

〈
′,m′|V−|
,m〉 = 0 unless m′ = m − 1. (37)

Furthermore the matrix elements vanish unless 
′ = 
 − 1 or 
′ = 
 or 
′ = 
 + 1.
Consider the case 
′ = 
. Generalization of the usual arguments shows that

〈
,m + 1|V+|
,m〉 = A(
 − m)1/2(
 + m + 1)1/2 m = −
, . . . , 
 − 1,

〈
,m|Vz|
,m〉 = Am m = −
, . . . , 
,

〈
,m − 1|V−|
,m〉 = A(
 − m + 1)1/2(
 + m)1/2 m = −
 + 1, . . . , 
,

(38)

where the proportionality constant A is a complex number called the “reduced matrix ele-
ment”. Note that for V hermitian, A would have to be real, but there is no such restriction in
the non-hermitian case.

Similarly in the case 
′ = 
 + 1 we find

〈
 + 1,m + 1|V+|
,m〉 = B

[
(
 + m + 2)(
 + m + 1)

(2
 + 2)(2
 + 1)

]1/2

,

〈
 + 1,m|Vz|
,m〉 = −B

[
(
 − m + 1)(
 + m + 1)

(2
 + 2)(2
 + 1)

]1/2

,

〈
 + 1,m − 1|V−|
,m〉 = −B

[
(
 − m + 1)(
 − m + 2)

(2
 + 2)(2
 + 1)

]1/2

,

(39)

where m = −
, . . . , 
 and B is another complex reduced matrix element.



Int J Theor Phys (2013) 52:2187–2195 2195

Finally in the case that 
′ = 
 − 1 we find

〈
 − 1,m + 1|V+|
,m〉 = −C

[
(
 − m − 1)(
 − m)

(2
)(2
 − 1)

]1/2

,

〈
 − 1,m|Vz|
,m〉 = −C

[
(
 − m)(
 + m)

(2
)(2
 − 1)

]1/2

,

〈
 − 1,m − 1|V−|
,m〉 = C

[
(
 + m)(
 + m − 1)

(2
)(2
 − 1)

]1/2

,

(40)

where C is a complex reduced matrix element and m = −
, . . . , 
 − 2 in the first line of
Eq. (40), m = −
 + 1, . . . , 
 − 1 in the second line of Eq. (40), and m = −
 + 2, . . . , 
 in
the last line of Eq. (40).

In the hermitian case the reduced matrix elements satisfy B = C∗ but in the non-
hermitian case there is no such restriction on the complex elements B and C.
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