Vector Models in $\mathcal{P} \mathcal{T}$ Quantum Mechanics

Katherine Jones-Smith • Rudolph Kalveks

Received: 30 May 2012 / Accepted: 14 January 2013 / Published online: 25 January 2013
© Springer Science+Business Media New York 2013

Abstract

We present two examples of non-Hermitian Hamiltonians which consist of an unperturbed part plus a perturbation that behaves like a vector, in the framework of $\mathcal{P} \mathcal{T}$ quantum mechanics. The first example is a generalization of the recent work by Bender and Kalveks, wherein the E2 algebra was examined; here we consider the E3 algebra representing a particle on a sphere, and identify the critical value of coupling constant which marks the transition from real to imaginary eigenvalues. Next we analyze a model with $\mathrm{SO}(3)$ symmetry, and in the process extend the application of the Wigner-Eckart theorem to a non-Hermitian setting.

Keywords Non-Hermitian quantum mechanics • PT quantum mechanics • Wigner-Eckhart theorem

1 Introduction

There are many situations in quantum mechanics wherein the Hamiltonian under consideration can be written as

$$
\begin{equation*}
H=H_{0}+H_{1} \tag{1}
\end{equation*}
$$

where H_{0} is the unperturbed part and commutes with the generators T_{i} of symmetry group G :

$$
\begin{equation*}
\left[H_{0}, T_{i}\right]=0 \tag{2}
\end{equation*}
$$

[^0]and H_{1} can be treated like a perturbation and behaves like a vector under G. We wish to generalize this situation in the context of $\mathcal{P} \mathcal{T}$ quantum mechanics [1,2], where the assumption that operators such as the Hamiltonian are Hermitian is relaxed, and replaced by other requirements, notably that the Hamiltonian commutes with the parity (\mathcal{P}) and time-reversal (\mathcal{T}) operators.

Interest in non-Hermitian quantum mechanics continues to grow [3], and recently a number of experiments have observed the so-called $\mathcal{P} \mathcal{T}$ phase transition, where the eigenvalues of a $\mathcal{P T}$ Hamiltonian make a transition from being complex to real once a critical value of a coupling constant is reached [4-6]. Thus it is relevant to seek new $\mathcal{P} \mathcal{T}$-counterparts to conventional Hamiltonians.

In this work we present two simple cases that can be described as non-Hermitian vector perturbation models where the Hamiltonian can be written as in Eq. (1); first we consider a particle confined to the surface of a sphere, where the Hamiltonian acts within an infinite dimensional Hilbert space, and next we consider a generic vector perturbation within a finite dimensional Hilbert space and determine the spectrum of eigenvalues using the WignerEckart theorem. We find that for a range of parameters each of these models has a pure real spectrum. At critical values of the coupling the model undergoes $\mathcal{P} \mathcal{T}$ transitions wherein the eigenvalues become complex.

2 E3 Algebra: Particle on a Sphere

We begin by generalizing the analysis presented in [7]. They considered the E2 algebra which consists of elements J, u, v such that

$$
\begin{equation*}
[J, u]=-i v, \quad[J, v]=i u, \quad[u, v]=0 . \tag{3}
\end{equation*}
$$

The Hamiltonian

$$
\begin{equation*}
h=J^{2}+i g u, \tag{4}
\end{equation*}
$$

where $J=-i \partial / \partial \theta, u=\sin \theta, v=\cos \theta$ and g is a constant, represents a 2-dimensional quantum particle restricted to radius $r=1$.

A generalization of this is the E3 algebra and restricting the particle to the surface of a sphere ($r=1$). This is described by the Hamiltonian

$$
\begin{equation*}
h=L^{2}+i g u_{z}, \tag{5}
\end{equation*}
$$

where L obeys

$$
\begin{equation*}
\left[L_{i}, L_{j}\right]=i \epsilon_{i j k} L_{k} \tag{6}
\end{equation*}
$$

u is a vector operator whose components are given by

$$
\begin{align*}
& u_{x}=\sin \theta \cos \phi, \tag{7}\\
& u_{y}=\sin \theta \sin \phi, \tag{8}\\
& u_{z}=\cos \theta \tag{9}
\end{align*}
$$

and g is a constant. The remaining commutators are straightforward to calculate;

$$
\begin{equation*}
\left[L_{i}, u_{j}\right]=i \epsilon_{i j k} u_{k}, \quad\left[u_{i}, u_{j}\right]=0 . \tag{10}
\end{equation*}
$$

Following Bender and Kalveks we consider the case of even time reversal: for a wave function $\psi(\theta, \phi)$ the time reversal operator \mathcal{T} is manifested as complex conjugation:

$$
\begin{equation*}
T \psi(\theta, \phi)=\psi^{*}(\theta, \phi) \tag{11}
\end{equation*}
$$

hence $\mathcal{T}^{2}=1$. It is easy to verify the action of \mathcal{T} on the elements of the algebra: $\mathcal{T} L_{i} \mathcal{T}=$ $-L_{i}$ and $\mathcal{T} u_{i} \mathcal{T}=u_{i}$. The parity operator \mathcal{P} takes ψ into the antipodal point:

$$
\begin{equation*}
P \psi(\theta, \phi)=\psi(\pi-\theta, \phi+\pi) \tag{12}
\end{equation*}
$$

so $\mathcal{P}^{2}=1$; elements transform under parity as $\mathcal{P} L_{i} \mathcal{P}=L_{i}$ and $\mathcal{P} u_{i} \mathcal{P}=-u_{i}$. Note that the Hamiltonian h in Eq. (5) commutes with the combined operation $\mathcal{P} \mathcal{T}$ but not with \mathcal{P} or \mathcal{T} individually. Now let us determine the eigenvalue spectrum of this Hamiltonian. We wish to solve

$$
\begin{equation*}
h \psi(\theta, \phi)=\lambda \psi(\theta, \phi) \tag{13}
\end{equation*}
$$

and we try the general solution:

$$
\begin{equation*}
\psi(\theta, \phi)=f(\theta) e^{i m \phi} \tag{14}
\end{equation*}
$$

For convenience we define $\eta=\cos \theta$; this simplifies the eigenvalue equation for f :

$$
\begin{equation*}
-\left(1-\eta^{2}\right) \frac{\partial^{2} f}{\partial \eta^{2}}+2 \eta \frac{\partial f}{\partial \eta}+\frac{m^{2}}{1-\eta^{2}} f+i g \eta f=\lambda f \tag{15}
\end{equation*}
$$

where m is a fixed integer. If we let

$$
\begin{equation*}
h_{0}=-\left(1-\eta^{2}\right) \frac{\partial^{2} f}{\partial \eta^{2}}+2 \eta \frac{\partial f}{\partial \eta}+\frac{m^{2}}{1-\eta^{2}} f \tag{16}
\end{equation*}
$$

then the Hamiltonian we wish to solve is

$$
\begin{equation*}
h_{0} f+i g \eta f=\lambda f . \tag{17}
\end{equation*}
$$

We impose the boundary condition that the solution must be regular at $\eta= \pm 1$.
Let us choose basis elements

$$
\begin{equation*}
|l\rangle \rightarrow N_{l} P_{l,|m|}(\eta), \tag{18}
\end{equation*}
$$

where $l=|m|,|m|+1, \ldots, P_{l,|m|}$ are the associated Legendre polynomials, with conventional normalization factor

$$
\begin{equation*}
N_{l}=\sqrt{\frac{(2 l+1)}{2}} \sqrt{\frac{(l-|m|)!}{(l+|m|)!}} \tag{19}
\end{equation*}
$$

The $P_{l, m}$'s satisfy

$$
\begin{equation*}
h_{0} P_{l,|m|}(\eta)=l(l+1) P_{l,|m|}(\eta) \tag{20}
\end{equation*}
$$

so the matrix of h_{0} in this basis is diagonal. The matrix elements of the potential term, $i g \eta$, can easily be determined from the normalization and recursion relations of the $P_{l, m}$'s. By diagonalizing the truncated Hamiltonian matrix we can numerically obtain the eigenvalues of Eq. (17); see Fig. 1.

Fig. 1 Real and imaginary components of eigenvalues E for the Hamiltonian given by Eq. (17). The first six eigenvalues for $m=0$ (blue) and $m=1$ (green) are shown. Intercepts on the E axis are given by $\ell(\ell+1)$ for $\ell=0$ to 6 . For the case of $m=0$, we find that the spectrum is entirely real for $0 \leq g<1.899$ at which point there is a transition to one pair of complex conjugate eigenvalues in the spectrum. At $g=11.45$ there is a second transition, to two pairs of complex conjugate eigenvalues. Similarly for the case of $m=1$, we find one complex conjugate eigenvalue pair at $g=5.41$, and two pairs at $g=19.04$. In these computations the Hamiltonian is truncated to a 100×100 matrix; we have verified that the relevant part of the spectrum is insensitive to the truncation

$3 \mathcal{P} \mathcal{T}$ Vector Model in Finite-Dimensional Hilbert Space

$E 3$ may also be regarded as a realization of the $\mathcal{P} \mathcal{T}$ vector model with symmetry group $S O$ (3) and for which the Hilbert space is infinite dimensional. Now we wish to turn out attention to realizations of the $\mathcal{P} \mathcal{T}$ vector model with finite dimensional Hilbert spaces. Let us write a simple, generic Hamiltonian $H=H_{0}+H_{I}$ where

$$
\begin{align*}
& H_{0}=L_{x}^{2}+L_{y}^{2}+L_{z}^{2}, \tag{21}\\
& H_{I}=V_{z} \tag{22}
\end{align*}
$$

and V_{z} is the z component of a vector operator.
Our task is to obtain a matrix representation of the total Hamiltonian, solve for its eigenvalues and determine what value of the non-Hermitian perturbation cause the eigenvalues to become complex.

Naturally we choose to work with the angular momentum eigenstates $|\ell, m\rangle$; the action of H_{0} on these states is well known, and we can utilize the Wigner-Eckart theorem to determine the action of $H_{I}=V_{z}$.

Note that the dimensionality of the relevant vector space depends on the angular momenta of the multiplets but clearly it is finite. Suppose we consider the two multiplets $|\ell, m\rangle$ and $|\ell+1, m\rangle ; m$ takes on values from $-\ell$ to $+\ell$ in the first multiplet and from $-\ell-1$ to $\ell+1$ in the second multiplet, so there are $(2 \ell+1)+(2 \ell+3)=4 \ell+4$ of these states.

The action of H_{0} on these states is simply

$$
\begin{align*}
& L^{2}|\ell, m\rangle=\ell(\ell+1)|\ell, m\rangle \tag{23}\\
& L^{2}|\ell+1, m\rangle=(\ell+1)(\ell+2)|\ell+1, m\rangle \tag{24}
\end{align*}
$$

So all that remains is to determine how V_{z} acts on these states; here we employ the WignerEckart theorem, which we have extended to the non-Hermitian case as detailed in Appendix. We find $\left\langle\ell^{\prime}, m^{\prime}\right| V_{z}|\ell, m\rangle=0$ unless $m=m^{\prime}$. Thus we need only to determine

$$
\begin{aligned}
& \langle\ell, m| V_{z}|\ell, m\rangle, \\
& \langle\ell+1, m| V_{z}|\ell+1, m\rangle, \\
& \langle\ell, m| V_{z}|\ell+1, m\rangle, \text { and } \\
& \langle\ell+1, m| V_{z}|\ell, m\rangle
\end{aligned}
$$

in order to completely specify V_{z} in this space. The first two in this list can be expressed in terms of the reduced matrix element α defined in Appendix; in general we find

$$
\begin{aligned}
\langle\ell, m| V_{z}|\ell, m\rangle & =m \alpha_{1}, \\
\langle\ell+1, m| V_{z}|\ell+1, m\rangle & =m \alpha_{2} ;
\end{aligned}
$$

however we also wish to enforce $\mathcal{P} V_{z} \mathcal{P}=-V_{z}$ and $\mathcal{T} V_{z} \mathcal{T}=-V_{z}$, which restricts $\alpha_{1}=\alpha_{2}=$ 0 . (Determination of \mathcal{P} and \mathcal{T} within this space follows straightforwardly from their action on the spherical harmonics $P Y_{\ell m}(\theta, \phi)=(-1)^{\ell} Y_{\ell m}(\theta, \phi)$ and $T Y_{\ell m}(\theta, \phi)=Y_{\ell m}^{*}(\theta, \phi)=$ $(-1)^{m} Y_{\ell,-m}(\theta, \phi)$.)

For the other two types of matrix elements, $\langle\ell, m| V_{z}|\ell+1, m\rangle$ and $\langle\ell+1, m| V_{z}|\ell, m\rangle$, we find these are proportional to other reduced matrix elements β and γ;

$$
\begin{aligned}
& \langle\ell+1, m| V_{z}|\ell, m\rangle=f_{\ell m} \beta, \\
& \langle\ell, m| V_{z}|\ell+1, m\rangle=f_{\ell m} \gamma,
\end{aligned}
$$

where

$$
\begin{equation*}
f_{l m}=\left[\frac{(\ell+1)^{2}-m^{2}}{(2 \ell+1)(2 \ell+2)}\right]^{1 / 2} \tag{25}
\end{equation*}
$$

Note that $f_{\ell m}$ is even in m. When we enforce $P V_{z} P=-V_{z}$ and $T V_{z} T=-V_{z}$, we find this requires β and γ to be pure imaginary, so we define $\beta=i b, \gamma=i c$ for some real numbers
b, c. Note that in determining these matrix elements we do not assume V is Hermitian; we rely only on the commutators of V with the angular momentum operators. (See Appendix for details.)

Now let us write down the matrix corresponding to the Hamiltonian $H=H_{0}+H_{I}$. Consider the two-dimensional subspace spanned by the states $|\ell, m\rangle$ and $|\ell+1, m\rangle$ for a fixed value of m that lies in the range $-\ell, \ldots, \ell$. Within this subspace

$$
H_{0}=\left(\begin{array}{cc}
\ell(\ell+1) & 0 \tag{26}\\
0 & (\ell+1)(\ell+2)
\end{array}\right)
$$

and

$$
V_{z}=\left(\begin{array}{cc}
0 & -i c f_{\ell m} \tag{27}\\
-i b f_{\ell m} & 0
\end{array}\right)
$$

In addition consider the two dimensional subspace spanned by the states $|\ell+1, \ell+1\rangle$ and $|\ell+1,-\ell-1\rangle$. These states are not coupled by the perturbation V_{z} to any other state and hence $V_{z}=0$ within this subspace. On the other hand the unperturbed Hamiltonian in this subspace is given by

$$
H_{0}=\left(\begin{array}{cc}
(\ell+1)(\ell+2) & 0 \tag{28}\\
0 & (\ell+1)(\ell+2)
\end{array}\right)
$$

It is convenient to define

$$
h_{\ell+1}=\left(\begin{array}{cc}
(\ell+1)(\ell+2) & 0 \tag{29}\\
0 & (\ell+1)(\ell+2)
\end{array}\right)
$$

and

$$
h_{m}=\left(\begin{array}{cc}
\ell(\ell+1) & -i c f_{l m} \tag{30}\\
-i b f_{l m} & (\ell+1)(\ell+2)
\end{array}\right)
$$

where $m=-\ell, \ldots, \ell$. The Hamiltonian can now be written as a block-diagonal matrix

$$
\left(\begin{array}{ccccc}
h_{\ell+1} & & & & \tag{31}\\
& h_{\ell} & & & \\
& & h_{\ell-1} & & \\
& & & \ddots & \\
& & & & h_{-\ell}
\end{array}\right) \text {. }
$$

The individual 2×2 matrices that constitute the Hamiltonian are simple enough that we can obtain analytic expressions for the eigenvalues. The eigenvalues of $h_{\ell+1}$ are two-fold degenerate and are simply $(\ell+1)(\ell+2)$. The eigenvalues of h_{m} are

$$
\begin{equation*}
\lambda_{\ell m}^{ \pm}=(\ell+1)^{2} \pm \sqrt{(\ell+1)^{2}-b c f_{\ell m}^{2}} \tag{32}
\end{equation*}
$$

Fig. 2 Real and imaginary parts of the eigenvalues $\lambda_{1, m}$ assuming $b=c$. The blue line at $\lambda=6$ corresponds to the 2×2 matrix denoted $h_{\ell+1}$ in the text, with eigenvalues $(\ell+1)(\ell+2)$. The other eigenvalues are m-dependent and correspond to the 2×2 matrices denoted h_{m} in the text, with eigenvalues given by Eq. (32). As noted
$\lambda_{\ell, m}=\lambda_{\ell,-m}$, so there are only two distinct m-dependent curves for $\ell=1$. In each figure, $|m|=1$ is plotted in red and $m=0$ is plotted in green. Note that the transition to complex eigenvalues occurs at $b=4$ for $\lambda_{1,1}^{ \pm}$and $b=\sqrt{12} \approx 3.47$ for $\lambda_{1,0}^{ \pm}$

Note that $\lambda_{\ell, m}=\lambda_{\ell,-m}$ so for all $m \neq 0$ the eigenvalues of h_{m} are also two-fold degenerate. Clearly, the eigenvalues are real provided

$$
\begin{equation*}
b c<\frac{(\ell+1)^{2}}{f_{l m}^{2}} . \tag{33}
\end{equation*}
$$

We can make the following observations about the behavior of the eigenvalues. Once $\mathcal{P} \mathcal{T}$ symmetry is broken, λ^{+}and λ^{-}form a complex conjugate pair. Since $f_{\ell m}$ has its maximum value for $m=0, \lambda^{ \pm}$becomes complex for $m=0$ first. Similarly, $f_{\ell m}$ is minimal for $|m|=\ell$, so $\lambda^{ \pm}$so these are the last eigenvalues to go complex. For example we consider the case $\ell=1$ and choose $b=c$ for simplicity. We plot the eigenvalues in Fig. 2.

It is worth noting that in the Hermitian case $b=-c$. Hence the condition in Eq. (33) that ensures the eigenvalues are real is always met.

4 Conclusion

We conclude by noting two natural generalizations of our results that deserve further investigation. First the model of a particle on an ordinary 2 -sphere considered in section II may be generalized to a particle on a sphere in n dimensions. The $\mathcal{P} \mathcal{T}$ transition for this model may be amenable to analytic study in the large n limit and may shed some light on $\mathcal{P} \mathcal{T}$ symmetric
non-linear sigma models of which it would represent a $0+1$ dimensional case [8]. Second the vector model constructed in Sect. 3 may be easily generalized from the symmetry group $\mathrm{SO}(3)$ to any Lie group and therefore represents only one member of a large class of such models.

Acknowledgements The authors would like to thank Harsh Mathur and Carl Bender for useful conversations.

Appendix: Wigner-Eckart Theorem

Suppose we have an angular momentum operator \mathbf{L} and a vector operator \mathbf{V} satisfying the commutation relations

$$
\begin{equation*}
\left[L_{i}, V_{j}\right]=i \epsilon_{i j k} V_{k} . \tag{34}
\end{equation*}
$$

Let $|\ell, m\rangle$ denote an angular momentum multiplet of total angular momentum ℓ and z component m. Then according to the Wigner-Eckart theorem the matrix elements of V_{z} and $V_{ \pm}=V_{x} \pm i V_{y}$ between multiplet states are determined by the commutation relations Eq. (34). In the usual Wigner-Eckart theorem the Cartesian components of the operator \mathbf{V} are assumed to be hermitian. Here we present a non-Hermitian generalization of the theorem.

Following the usual arguments we find the selection rules

$$
\begin{array}{ll}
\left\langle\ell^{\prime}, m^{\prime}\right| V_{z}|\ell, m\rangle=0 & \text { unless } m^{\prime}=m, \\
\left\langle\ell^{\prime}, m^{\prime}\right| V_{+}|\ell, m\rangle=0 & \text { unless } m^{\prime}=m+1, \\
\left\langle\ell^{\prime}, m^{\prime}\right| V_{-}|\ell, m\rangle=0 & \text { unless } m^{\prime}=m-1 . \tag{37}
\end{array}
$$

Furthermore the matrix elements vanish unless $\ell^{\prime}=\ell-1$ or $\ell^{\prime}=\ell$ or $\ell^{\prime}=\ell+1$.
Consider the case $\ell^{\prime}=\ell$. Generalization of the usual arguments shows that

$$
\begin{array}{rlrl}
\langle\ell, m+1| V_{+}|\ell, m\rangle & =A(\ell-m)^{1 / 2}(\ell+m+1)^{1 / 2} & m=-\ell, \ldots, \ell-1, \\
\langle\ell, m| V_{z}|\ell, m\rangle & =A m \quad m=-\ell, \ldots, \ell, & & \tag{38}\\
\langle\ell, m-1| V_{-}|\ell, m\rangle & =A(\ell-m+1)^{1 / 2}(\ell+m)^{1 / 2} & m=-\ell+1, \ldots, \ell,
\end{array}
$$

where the proportionality constant A is a complex number called the "reduced matrix element". Note that for \mathbf{V} hermitian, A would have to be real, but there is no such restriction in the non-hermitian case.

Similarly in the case $\ell^{\prime}=\ell+1$ we find

$$
\begin{align*}
\langle\ell+1, m+1| V_{+}|\ell, m\rangle & =B\left[\frac{(\ell+m+2)(\ell+m+1)}{(2 \ell+2)(2 \ell+1)}\right]^{1 / 2}, \\
\langle\ell+1, m| V_{z}|\ell, m\rangle & =-B\left[\frac{(\ell-m+1)(\ell+m+1)}{(2 \ell+2)(2 \ell+1)}\right]^{1 / 2}, \tag{39}\\
\langle\ell+1, m-1| V_{-}|\ell, m\rangle & =-B\left[\frac{(\ell-m+1)(\ell-m+2)}{(2 \ell+2)(2 \ell+1)}\right]^{1 / 2},
\end{align*}
$$

where $m=-\ell, \ldots, \ell$ and B is another complex reduced matrix element.

Finally in the case that $\ell^{\prime}=\ell-1$ we find

$$
\begin{align*}
\langle\ell-1, m+1| V_{+}|\ell, m\rangle & =-C\left[\frac{(\ell-m-1)(\ell-m)}{(2 \ell)(2 \ell-1)}\right]^{1 / 2}, \\
\langle\ell-1, m| V_{z}|\ell, m\rangle & =-C\left[\frac{(\ell-m)(\ell+m)}{(2 \ell)(2 \ell-1)}\right]^{1 / 2}, \tag{40}\\
\langle\ell-1, m-1| V_{-}|\ell, m\rangle & =C\left[\frac{(\ell+m)(\ell+m-1)}{(2 \ell)(2 \ell-1)}\right]^{1 / 2},
\end{align*}
$$

where C is a complex reduced matrix element and $m=-\ell, \ldots, \ell-2$ in the first line of Eq. (40), $m=-\ell+1, \ldots, \ell-1$ in the second line of Eq. (40), and $m=-\ell+2, \ldots, \ell$ in the last line of Eq. (40).

In the hermitian case the reduced matrix elements satisfy $B=C^{*}$ but in the nonhermitian case there is no such restriction on the complex elements B and C.

References

1. Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243-5246 (1998)
2. Bender, C.M., Boettcher, S., Meisinger, P.: PT symmetric quantum mechanics. J. Math. Phys. 40, 22012229 (1999)
3. Bender, C.M.: Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947 (2007)
4. Guo, A., Salamo, G.J., Duchesne, D., Morandotti, R., Volatier-Ravat, M., Aimez, V., Siviloglou, G.A., Christodoulides, D.N.: Observation of $\mathcal{P} \mathcal{T}$-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009)
5. Ruter, C.E., Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Segev, M., Kip, D.: Observation of parity-time symmetry in optics. Nat. Phys. 6, 1515 (2010)
6. Zhao, K.F., Schaden, M., Wu, Z.: Enhanced magnetic resonance signal of spin-polarized Rb atoms near surfaces of coated cells. Phys. Rev. A 81, 042903 (2010)
7. Bender, C., Kalveks, R.: $\mathcal{P} \mathcal{T}$ symmetry from Heisenberg algebra to E2 algebra. Int. J. Theor. Phys. 50, 955-962 (2011)
8. Coleman, S., Jackiw, R., Politzer, H.D.: Phys. Rev. D 10, 2491 (1974)

[^0]: K. Jones-Smith (\boxtimes)

 Physics Department, Washington University in Saint Louis, 1 Brookings Drive, Saint Louis, MO 63130, USA
 e-mail: kas59@physics.wustl.edu
 R. Kalveks

 Theoretical Physics, Imperial College London, London SW7 2AZ, UK

