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ABSTRACT: We investigate the Hartree−Fock solutions to H2 in a minimal
basis. We note the properties of the solutions and their disappearance with
geometry and propose a new method, called Holomorphic Hartree−Fock
theory, where we modify the self-consistent field (SCF) equations to avoid
disappearance of the solutions. We use these solutions as a basis for a
nonorthogonal configuration interaction to produce a smooth binding curve
over a complete range of geometries.

1. INTRODUCTION

Self-consistent field (SCF) electronic structure methods, which
include Hartree−Fock (HF) and density functional approx-
imations (DFAs) are presently the bedrock of quantum
chemistry, whether they are used in their own right or as a
foundation for more-accurate correlation treatments. In
essence, applying an SCF method equates to minimizing an
energy functional with respect to varying a set of orbitals within
a given basis. This is often recast as an iterative diagonalization
procedure, but it may also be regarded as a (matrix) polynomial
whose roots are to be found, and this procedure is equivalent to
locating the stationary points of the energy, with respect to
nontrivial changes of the orbitals. It has long been known that,
because of this nonlinear form, the SCF equations admit to
many solutions, and recently we and other researchers have
been interested in both finding the solutions1 as well as in their
physical meaning2−6 and other uses.7,8

It is somewhat surprising to us that, except for some
relatively unknown theoretical studies,9−11 the nature, number,
and existence properties of the SCF solutions are basically
unknown, especially given that they are so fundamental in
quantum chemistry. A typical SCF calculation might involve
constructing a density guess and then iterating the SCF until
convergence. The more fastidious computational chemist will
perform a stability analysis12,13 to ensure that such solutions are
indeed local minima, continuing downward in energy until a
local minimum is found. The range of SCF convergence
methods commonly used14−17 makes no guarantee that a global
minimum is found, and aside from the recent work of
Veeraraghavan and Mazziotti,18 which can provide upper and
lower bounds to solutions, the main effective approach to
testing whether a given solution is the lowest energy is by some
form of random searching,1,19−21 which is very seldom done (or
at least documented in the literature). In response to Thom
and Head-Gordon’s SCF metadynamics work on locating SCF
solutions,1 Li and Paldus produced a careful series of

papers22−24 that investigated the broken symmetry solutions
of homonuclear diatomics and ABA triatomics using Thouless
stability anaylsis,12 and, more recently, there have been many
investigations of broken symmetry solutions25−27 and restora-
tion of symmetry.28 Despite this work, there is little
acknowledgment of the existence of many SCF solutions in
the wider computational community.
Thus, the most common approach to this multitude of

solutions appears to be to mostly ignore them. In transition-
metal compounds, for example, we have certainly found
solutions31 which are lower in energy than the local minima
found from common guesses, and we suspect this to be a
widespread problem. Figure 1 shows, for example, several
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Figure 1. Singlet restricted Hartree-Fock (RHF) solutions for Cr2 in
the STO-3G basis.29 Solutions were located via metadynamics and
curve-following. Curves with small markers are multiply degenerate
and large markers are singly degenerate. There is no guarantee that
this list of states is exhaustive.
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restricted Hartree-Fock (RHF) states of the chromium dimer in
a STO-3G basis that cross at different geometries, with four
different states having the lowest energy at some point along
the binding curve.
While the existence of many SCF solutions might just appear

to be an irksome problem in SCF theory, many authors2−5 have
sought to interpret the higher-energy solutions as correspond-
ing to excited states of the system, and, when present, the SCF
solutions do indeed appear to correspond to physical states of
the system. Motivated by this, one of us has shown that, in
some systems, the SCF solutions can be interpreted as
quasidiabatic states, and used them as a basis for (non-
orthogonal) configuration interaction (CI) calculations,7,25,32

where they reproduce avoided crossing and conical inter-
sections.
However, such calculations are more generally thwarted by

coalescence and disappearance of solutions (for example, at the
Coulson−Fischer point33), causing discontinuities in binding
curves. Figure 2 shows the nonorthogonal configuration

interaction (NOCI) of the restricted Hartree-Fock (RHF)
and unrestricted Hartree-Fock (UHF) solutions for the F2
molecule, which are extremely plausible until the Coulson−
Fischer point. Therefore, understanding the disappearance of
these solutions is crucial if they are to be used as such or
interpreted as anything other than artifacts. [We note, in
passing, that, although the recent Projected Hartree−Fock
(PHF) work of Scuseria et al.,26−28 which develops the
Complex Molecular Orbital method of Hendekovic,́34 follows a
similar style of methodology to nonorthogonal configuration
interaction (NOCI), the two methods are quite distinct. PHF
applies Variation After Projection, where parametrized non-
orthogonal wave functions of broken symmetry are con-
structed. The symmetry is then restored by projection and the
energy evaluated. This energy is a function of initial
parametrized wave functions and is then variationally optimized
by changing these parameters. In NOCI, the determinants are
first variationally optimized (by being stationary points of the
HF energy) and used in a NOCI, which restores the symmetry
(effectively a projection); thus, this is a Projection After
Variation method.]
In this paper, we go back to basics and thoroughly investigate

the solutions to one of the simplest chemical systems, H2, in a
minimal basis. We note the properties of the solutions and their
disappearance with geometry and propose a new method,
called Holomorphic Hartree−Fock theory, where we modify
the SCF equations to avoid disappearance of the solutions.
With a fixed number of solutions across the entire binding

curve, we conclude by showing that these new solutions can be
used as a basis for a NOCI, producing smooth binding curves
over a complete range of geometries.

2. COMPUTATIONAL DETAILS
SCF calculations were performed in a modified version of Q-
Chem 4.035 with additional processing using SymPy36 and
SciPy37 and figures plotted with matplotlib.38

3. SCF EQUATIONS
Beginning with the single-particle basis set in three-dimensional
(3-D) space, denoted χμ(r) and generally constructed from
atom-centered functions, we may construct an orthonormal
basis, χμ̃, which spans the same space, and express other
functions, such as molecular orbitals, as an expansion in this
basis,

∑ϕ χ= ̃
μ

μ ·
μCi i

(1)

where we are using the tensor notation of Head-Gordon et
al.,39 and will use the Einstein summation convention for
repeated indices when no explicit summation is specified. Here,
the coefficients C·i

μ may be complex, and, as the basis χμ
increases toward the complete, any complex-valued function
in the Hilbert space may be expanded in this form.
In this paper, we will primarily be concerned with the

Hartree−Fock Self-Consistent Field Approximation, the
algorithm and equations for which can be formulated as
follows:
(1) Begin with a guess for coefficients C·i

μ.
(2) Form the one-particle density matrix Pμν = ∑i

NC·i
μCi*

μ.
(3) The energy is formed as a functional of density E(Pμν):

= + Πμν
νμ μσ

μνστ
ντE h P P P

1
2 (2)

where the one-electron integrals are defined as hμν = ⟨χμ̃|ĥ|χ ̃ν⟩
for h ̂ containing kinetic energy and external potential operators,
and the two-electron antisymmetrized Coulomb integrals are
Πμνστ = ⟨μν|στ⟩ − ⟨μν|τσ⟩ for

∫ ∫μν στ
χ χ χ χ

⟨ | ⟩ =
̃* ̃* ̃ ̃

| − |
μ ν σ τr r r r

r r
r r

( ) ( ) ( ) ( )
d d

1 2 1 2

1 2

3
1

3
2

(3)

(4) We solve for dE/dPμν = 0 (keeping number of electrons
fixed), commonly leading to an iterative set of diagonalizations.
Although not normally written as such, the equations can be

equally well written as a function of the coefficients C·i
μ by

including orthogonality of the orbitals in a Lagrangian:

∑ λ δΛ = − * −·
μ μ

·
μE C C C[ ] ( )i

ij
ij i j ij

(4)

and solving dΛ/dC·i
μ, resulting in a coupled set of polynomials

in coefficients C. It is this formulation that we would like to
consider.

4. SELF-CONSISTENT FIELD (SCF) EQUATIONS FOR H2

For the very simple case of H2 in a minimal basis (here, we
choose STO-3G40) with a single atomic orbital sited on each
atom, it is well-known that as the bond length increases past the
Coulson−Fischer point, the restricted Hartree−Fock solution
(where both α and β spin molecular orbitals have the same
spatial form) becomes unstable, with respect to a symmetry-

Figure 2. RHF and UHF (doubly degenerate) solutions of F2 in a cc-
pVDZ basis.30 The black line gives the lowest solution when these are
used together as a basis for NOCI. Where only the RHF solution
exists, the NOCI solution will correspond to that.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct5007696 | J. Chem. Theory Comput. 2014, 10, 4795−48004796



broken unrestricted Hartree−Fock solution where the α and β
molecular orbitals move to become localized on separate atoms.
A convenient representation for these solutions is to consider
the two orbitals as consisting of rotations of the symmetry
orbitals, σg and σu:

ϕ σ θ σ θ= +α cos sing u (5)

ϕ σ θ σ θ= −β cos sing u (6)

This is shown in Figure 3. Here, there is a single electronic
degree of freedom, parametrized by θ, and for a given

geometry, we may plot energy against this parameter and find
the solutions to the SCF equations, being the stationary points
of these functions. Two such curves are given in Figure 4.
Given the form of the curves, it is tempting to see these as
quartic polynomials in θ with one and real three roots.
Recalling the Fundamental Theorem of Algebra, which states
that every nonzero, single-variable, degree-n polynomial with
complex coefficients has, counted with multiplicity, exactly n
roots, we speculated that the missing roots might correspond to
orbitals with complex coefficients. To investigate this further, it
is convenient to transform to a different parametrization and we
choose to write the orbitals in terms of a (complex) parameter
z,

ϕ σ σ=
+ | |

+
+ | |

α
z

z

z

1

1 1
g u2 2 (7)

ϕ σ σ=
+ | |

−
+ | |

β
z

z

z

1

1 1
g u2 2 (8)

where z can be equated with tan θ. For this system, taking
advantage of the symmetry of the integrals, the energy becomes
a function of z,

=
+ ̅

+ ̅ +
+ ̅

× ⟨ | ⟩ − + ̅ ⟨ | ⟩ + ̅ ⟨ | ⟩

+ ̅⟨ | ⟩ − ̅⟨ | ⟩

E z
zz

h zzh
zz

gg gg z z gg uu zz uu uu

zz gu gu zz gu ug

( )
2

1
( )

1
(1 )

( ( ) ( )

2 2 )

gg uu 2

2 2 2

where z ̅ is the complex conjugate of z. Since E(z) is purely real,
we might hope that we can locate solutions dE(z)/dz = 0,
where z is complex; since z ̅ is simply a function of z, it is not
independent and does not need to be explicitly considered.
Indeed, since E(z) is a strictly real function, using z = x + iy, it
can be viewed as a surface E(x,y) which has stationary points
that can be located by standard methods.
A plot of the energy surfaces for rHH = 1 Å and rHH = 1.5 Å

are given in Figure 5. While this view is appealing, as can be
seen in the figure, it unfortunately does not lead to finding any
additional complex solutions. To understand why, we must
consider E to be a complex function.

5. HOLOMORPHIC FUNCTIONS

Despite the energy E(z) being a real function of z by
construction, in general, functions of complex variables are
usually complex-valued, and such functions and their derivatives
are the subject of the theory of complex analysis. While a full
exposition of the field is beyond the scope of this paper, there
are many useful results that it can bring to bear. Primarily, it
should be noted that not all functions of complex variables have
well-defined complex derivatives, and only a subset of functions
that obey the Cauchy−Riemann conditions are differentiable.
The most relevant form of these conditions in this case is the

following: a function f(z) of complex variable z is complex-
differentiable if it has no dependence on z ̅ Such a complex-
differentiable function is known as holomorphic. Immediately,
we can see that the energy function E(z) does not satisfy these
conditions. Unfortunately, the Fundamental Theorem of
Algebra, which guarantees that complex solutions will exist, is
only valid for holomorphic polynomials (which do not contain
any explicit z ̅ dependence), and this is why we have not been
able to locate further complex solutions for this energy
function.

Figure 3. Energy surface for H2. UHF rotation indicates the angle θ by
which the α molecular orbital (αMO) has mixed together the σg and σu
orbitals as specified in the text. The red curve shows the RHF solution
as a local minimum against rotation for rHH < 1.2 Å, becoming a
maximum after this; the blue curves are the two degenerate UHF
solutions.

Figure 4. Two slices through the energy surface for H2, before (red,
rHH = 1 Å) and after (blue, rHH = 1.5 Å) the Coulson−Fischer point,
showing the energy (top) and gradient with respect to orbital rotation
(bottom), showing one (red) and three (blue) stationary points.
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This problem immediately presents its own solution;
however, in that if we wish to rely on the Fundamental
Theorem of Algebra, we must convert the energy expression
into one that is not dependent on z.̅ We may do this by creating
Ẽ(z) from E(z) by replacing all instances of z ̅ with z and call
this process holomorphizing. A consequence of this is that Ẽ(z)
is no longer a real-valued function, although we note that (i)
where z is real (i.e., for all stationary points of E), Ẽ will take the
same value as E, and (ii) because of complex conjugation
symmetry, z will still be stationary in the imaginary direction, so
no stationary points of the original E have been lost.
Being complex-valued, the Ẽ surface is extremely difficult to

visualize, so, instead, we plot the square magnitude of the
derivative of the surface in Figure 6. On both sides of the
Coulson−Fischer point, there are the same number of zeroes of
gradient (we denote these as holomorphic UHF (hUHF)
solutions), with the additional ones at rHH = 1 Å having
complex orbitals.
For this system, it is trivial to locate these hUHF solutions

across the entire range of rHH; these are plotted in Figure 7. It
can be seen that the holomorphic energies Ẽ are manifestly not
variational and, at small bond lengths, are lower than the RHF

energies. We note that the hUHF Ẽ do not diverge to negative
infinity, but have a minimum at ∼0.2 Å and then increase. With
the orbitals corresponding to the hUHF solutions, the real
energy E can be calculated, and it is found to vary continuously,
and (as is required) is higher than the RHF energy before the
Coulson−Fischer point. After the Coulson−Fischer point, the
hUHF solutions correspond exactly to the UHF solutions, and
therefore provide a set of solutions that exist at all geometries.
We note that this holomorphization procedure can be

generalized to more-complicated systems and, with a wave
function Φ (with complex conjugate Φ̅), the energy functional
is

Φ = ⟨Φ̅| ̂ |Φ⟩
⟨Φ̅|Φ⟩

E
H

( )hUHF

the stationary points of which give the hUHF solutions.

6. NONORTHOGONAL CONFIGURATION
INTERACTION (NOCI)

The motivation for this study of HF solutions arose from using
them in a nonorthogonal configuration interaction (NOCI)7

Figure 5. Energy surface for complex z = x + iy for (left) rHH = 1 Å and rHH = 1.5 Å. There are no additional minima at complex z. The colored
curves correspond to those described in Figure 4.

Figure 6. Square magnitude of the gradient of the holomorphized energy Ẽ(z) plotted in the complex plane z = x + iy. The left picture shows rHH = 1
Å with a root at z = 0 and two additional roots at z = ±0.361110i; the right shows rHH = 1.5 Å with the conventional solutions, z = 0, ±0.536989.
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and the difficulties caused by such solutions disappearing. By
solving the hUHF equations, we have a modified theory which
(for this system) has a constant number of solutions as
geometry changes, and so these are eminently amenable as a
basis for describing molecular dissociation. Using the three
hUHF solutions as a basis for CI, we can construct the
Hamiltonian and overlap matrices in this basis (being 3 × 3
matrices), and solve the generalized eigenvalue problem to
recover energies. We refer the reader to ref 7 for details
regarding how to perform this calculation.
The results are plotted in the right-hand side of Figure 7, and

compared to the full CI in this basis (with the restriction that
MS = 0). We find that the hUHF-NOCI solutions provide
identical, and most importantly, smooth curves for three of the
FCI states. [We note that, in this small example set, which is
composed of the two hUHF and single RHF solutions, the
curves happen to span the subspace from the two 1Σg

+ and the
MS = 0 3Σu

+ solution which results in this smoothness. However,
this spanning is by no means required of the formalism, and a
simple thought experiment performed with the addition of an

extra determinant (for example, constructed from two p-
orbitals) which couples to the FCI space would change the FCI
energies, but not the hUHF-NOCI energies, and so the
smoothness would be maintained in this larger space.]
Including any of the higher remaining UHF or RHF states in
the NOCI recovers the remaining FCI solution.

7. CONCLUSION
We have demonstrated that the Hartree−Fock self-consistent
field (SCF) equations can be modified to be holomorphic,
which, in this case, with a single degree of freedom, admit to a
constant number of solutions across geometries. Where RHF
and UHF solutions exist, the holomorphic solutions are
identical; however, at geometries when conventional SCF
solutions disappear, complex holomorphic solutions appear.
These solutions are stationary values of the nonvariational
holomorphic energy, but have real energy expectation values
that are above the lowest RHF solution. Crucially, these
solutions can be used as a basis for nonorthogonal
configuration interaction (NOCI) and have been shown to
provide smooth energy curves.
For larger systems, where there are more parameters coupled

together, we know of no guarantee of a constant number of
solutions; nonetheless, we believe that they may share some of
the beneficial properties of the single parameter case, and
generalizations of this holomorphized approach using more
conventional solution techniques are under investigation.
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