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Abstract
A short résumé is given about the nature of exceptional points (EPs) followed
by discussions about their ubiquitous occurrence in a great variety of physical
problems. EPs feature in classical as well as in quantum mechanical problems.
They are associated with symmetry breaking for PT -symmetric Hamiltonians,
where a great number of experiments has been performed, in particular in optics,
and to an increasing extent in atomic and molecular physics. EPs are involved in
quantum phase transition and quantum chaos; they produce dramatic effects in
multichannel scattering, specific time dependence and more. In nuclear physics,
they are associated with instabilities and continuum problems. Being spectral
singularities they also affect approximation schemes.

This article is part of a special issue of Journal of Physics A: Mathematical and
Theoretical devoted to ‘Quantum physics with non-Hermitian operators’.

PACS numbers: 03.65.Vf, 03.65.Xp, 31.15.−p, 02.30.−f, 02.30.Tb

1. Introduction

Singularities of functions describing analytically observable quantities have always been in the
scrutiny of theoretical investigations. For instance, the structures of measured cross sections
are usually associated with pole terms in the complex energy plane of the scattering amplitudes.
In turn, these pole terms are associated with specific boundary conditions of solutions of, say,
the Schrödinger equation [1]. Another example is the pattern of spectra when plotted versus
an external strength parameter, say, of a magnetic field; it usually shows the phenomenon of
level repulsion, often associated with quantum chaos [2]. When such spectra are continued
into the complex plane of the strength parameter, one encounters a different type of singularity
where two repelling levels are connected by a square root branch point. If for a real strength
parameter the Hamiltonian is Hermitian, the branch points always occur at complex parameter
values, thus rendering the continued Hamiltonian non-Hermitian. As a consequence, the well-
known properties associated with degeneracy of Hermitian operators are no longer valid. These
singularities have been dubbed exceptional points (EPs) by Kato [3].
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A few decades ago these singularities were perceived as a mathematical phenomenon that
would be ‘in the way’ of approximation schemes [4, 5] (see also the discussion in section 4
below). However, their physical significance was recognized in an early paper by Berry [6]
based on an observation by Pancheratnam [7]. The specific algebraic property of the dielectric
tensor (it cannot be diagonalized) brings about particular physical effects. This has been
expounded in great detail in [8] for particular optical systems. As discussed below, optical
systems constitute one major realm where EPs have a major bearing. Yet, originating from a
parameter-dependent eigenvalue problem EPs naturally occur and can give rise to dramatic
effects in a great variety of physical problems: in mechanics, electromagnetism, atomic and
molecular physics, quantum phase transitions, quantum chaos and more.

In section 3, we return to these phenomena in detail. In subsection 3.1, we discuss the
experimental manifestation using microwave cavities where all the mathematical properties
have been confirmed to be a physical reality. The investigation and physical realization of
PT -symmetric Hamiltonians has become a major subject of theoretical and experimental
endeavour. An important role is played by EPs in this research; it is dealt with in
subsection 3.2. Subsection 3.3 is devoted to a short discussion of the role of EPs in atomic and
molecular physics while in 3.4 recent findings in open systems and laser physics are mentioned.
In subsection 3.5, we demonstrate the essential role of EPs in understanding the dramatic effects
associated with a quantum phase transition and quantum chaos, while subsection 3.6 presents
a short discussion of multichannel scattering and subsection 3.7 touches upon EPs of higher
order. Classical mechanics and fluids are briefly dealt with in subsection 3.8. The sometimes
adverse role of EPs in approximation schemes is, for historical reasons, discussed in section 4.

For the sake of completeness, we rehash the essential formal background in section 2.
The last section 5 gives a summary.

2. Exceptional points

EPs occur generically in eigenvalue problems that depend on a parameter. By variation of
such a parameter (usually into the complex plane), one can generically find points where
eigenvalues coincide.

In the immediate vicinity of an EP, the special algebraic behaviour—as discussed below—
allows a reduction of the full problem to the two-dimensional problem associated with the two
coinciding levels [9]. We thus confine our discussion to the eigenvalues of a two-dimensional
matrix where the direct connection of an EP and the phenomenon of level repulsion is easily
demonstrated. Consider the problem

H(λ) = H0 + λV

=
(

ω1 0
0 ω2

)
+ λ

(
ε1 δ1

δ2 ε2

)
, (1)

where the parameters ωk and εk determine the non-interacting resonance energies Ek =
ωk +λεk, k = 1, 2. We may choose all complex parameters and require [H0,V ] �= 0 to ensure
the problem is non-trivial. Owing to the interaction invoked by the matrix elements δk, the two
levels do not cross but repel each other. However, the two levels coalesce at specific values of
λ in the vicinity of the level repulsion, that is, at the two EPs

λ1 = −i(ω1 − ω2)

i(ε1 − ε2) + 2
√

δ1δ2
(2)

λ2 = −i(ω1 − ω2)

i(ε1 − ε2) − 2
√

δ1δ2
. (3)
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For δk �= 0, the energy levels have a square root singularity as a function of λ and read

E1,2(λ) = 1
2

(
ω1 + ω2 + λ(ε1 + ε2) ±

√
(ε1 − ε2)2 + 4δ1δ2

√
(λ − λ1)(λ − λ2)

)
, (4)

and the eigenvalues at the EPs are

E(λ1,2) = ε1ω2 − ε2ω1 ∓ i
√

δ1δ2(ω1 + ω2)

ε1 − ε2 ∓ 2i
√

δ1δ2
. (5)

We use the term coalesce as the pattern is distinctly different from a degeneracy usually
(but not only) encountered for Hermitian operators. Note that H(λ) is Hermitian only when ωk,
εk and λ are real and δ1 = δ∗

2 . At the EP, the difference between a degeneracy and a coalescence
is clearly manifested by the occurrence of only one eigenvector instead of the familiar two in
the case of a genuine degeneracy. Using the bi-orthogonal system for a non-Hermitian matrix,
the (only one) right-hand eigenvector reads at λ = λ1 (up to a factor)

|φ1〉 =
⎛
⎝

+iδ1√
δ1δ2

1

⎞
⎠ (6)

and at λ = λ2:

|φ2〉 =
⎛
⎝

−iδ1√
δ1δ2

1

⎞
⎠ , (7)

while the corresponding left-hand eigenvector is at λ1 and λ2:

〈φ̃1| =
( +iδ2√

δ1δ2
, 1

)
(8)

〈φ̃2| =
( −iδ2√

δ1δ2
, 1

)
, (9)

respectively. Note that the norm—that is, the scalar product 〈φ̃k|φk〉, k = 1, 2—vanishes,
which is often referred to as self-orthogonality [10]. It is this vanishing of the norm that
enables the reduction of a high-dimensional problem to two dimensions in the close vicinity
of an EP [11]. The existence of only one eigenvector with vanishing norm is related to the fact
that for λ = λ1 or λ = λ2, the matrix H(λ) cannot be diagonalized [3]. At these points, the
Jordan decomposition reads

H(λ1) = S

(
E(λ1) 1
0 E(λ1)

)
S−1 (10)

with

S =

⎛
⎜⎝

iδ1√
δ1δ2

2i
√

δ1δ2 − ε1 + ε2

(ω1 − ω2)δ2

1 0

⎞
⎟⎠ . (11)

Similar expressions hold at λ = λ2. We mention that the second column of S is often referred
to as an associate vector obeying (H(λ1) − E(λ1))|ψassoc〉 = |φ1〉.

If one or both δk vanish there is level crossing (λ1 = λ2). If only δ1 or δ2 vanishes, then
V and thus H(λ) cannot be diagonalized at the crossing point; therefore, the Jacobian form is
non-diagonal and only one eigenvector exists at the crossing point; yet it is not an EP as there
is no square root singularity in λ. We do not further pursue such a case as it appears to be of
no physical interest.

3
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Figure 1. Perspective view of the Riemann sheet structure of two coalescing energy levels in the
complex λ-plane. The assignment for the axes assumes all other parameters as real; if some or all
of them are complex the sheet structure remains but is shifted and/or turned.

The square root singularity also affects Green’s function and thus the scattering matrix
in a particular way. At the EPs, Green’s function (and scattering matrix) has a pole of second
order [12] in addition to the familiar pole of first order. For the case considered here the explicit
form of Green’s function reads at λ1 as

(E − H(λ1))
−1 = 1

E − E(λ1)

(
1 0
0 1

)
+ i

√
δ1δ2λ1

(E − E(λ1))2

⎛
⎝1 i

√
δ1
δ2

i
√

δ2
δ1

−1

⎞
⎠ (12)

and similarly at λ2. The first term resembles the conventional expression at a non-singular point
of the spectrum; the second term is a consequence of the singular spectral point. This term can
give rise to dramatic effects near the EP [13], and at the EP special effects are generated from
the interference of the two terms when the square of the modulus of the scattering matrix is
considered.

The square root behaviour as given by equation (4) has further physical consequences as
discussed in the following sections. Here, we list the major mathematical reasons giving rise
to special physical phenomena.

• In the vicinity of an EP, the spectrum is strongly dependent on the interaction parameter;
in fact, the derivative with respect to λ of the eigenvalues and eigenvectors is infinity at
the EP.

• Encircling λ1 or λ2 in the λ-plane will interchange the two energy levels (see figure 1).
• At a finite distance from the EP there are two linearly independent eigenvectors |ψ1〉 and

|ψ2〉 (and the left-hand companions 〈ψ̃1| and 〈ψ̃2|) with the normalization 〈ψ̃k|ψk〉 = 1.
Enforcing the normalization into the EP (where 〈ψ̃k|ψk〉 vanishes), the components
of the eigenvectors tend to infinity as ∼ 1/(λ − λk)

1/4. Repeated encircling—say
counterclockwise—of an EP generates the pattern for the normalized eigenvectors

|ψ1〉 → −|ψ2〉 → −|ψ1〉 → |ψ2〉 → |ψ1〉, (13)

from which the pattern for |ψ2〉 follows accordingly [9, 14]; the fourth root behaviour is
clearly seen as four rounds are needed to reach the initial sheet. Note that these relations
imply a kind of chiral behaviour: going clockwise instead of counterclockwise gives a
different sign. We note that these relations are presented inconsistently in [15].

• When the eigenfunctions |ψ1〉 and |ψ2〉 coalesce as given in (6) and (7) (here, we normalize
the vectors by setting one component equal to unity), they become, for δ1 = δ2, independent
of parameters and assume the form(±i

1

)
.

4
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The phase difference of π/2 between the two components is changed if, for instance, time
reversal symmetry is broken by choosing complex δ1 = δ∗

2 [16, 17]. Note further that λk

must be complex for Hermitian operators H0 and V , in which case the two EPs occur at
complex conjugate values, i.e. λ1 = λ∗

2. In general λ1 or λ2 can be real [18]. Recall that an
EP can be approached in the laboratory only if the corresponding energy has a non-positive
imaginary part.

3. Physical effects

Many cases of particular effects have been reported in the literature during the past ten years.
We here discuss only some major trends and developments. While we focus the discussion upon
quantum mechanical problems and optics, the ubiquitous character of EPs in any parameter-
dependent eigenvalue problem makes them appear also in problems of classical mechanics
and others.

3.1. Microwave cavity

Probably for the first time ever the direct encircling of the square root branch point—that is, the
manifestation of the two Riemann sheets (see figure 1)—was accomplished with a microwave
resonator [19].

The realization of the complex parameter λ was implemented in the laboratory by two
real parameters: (i) the coupling between the two halves of the cavity and (ii) the variation of
the level in one half of the cavity. In one experiment the direct approach to the EP was avoided,
while the encircling was done at a close distance. All properties as listed in the previous section
have been confirmed: encircling an EP swaps the energies and fourfold encirclements yield
relations (13).

The chiral property of the wavefunction at the EP has been confirmed in a second
experiment [20], where the phase difference of π/2 between the two components has been
measured in a direct approach to an EP.

The same results have been established with two coupled electronic circuits [21].
More recent experiments implementing careful time reversal symmetry breaking by using

a magnetized device at the coupling of two cavities [16] are in perfect accordance with the
predictions made in [17].

Other types of experiments and/or theoretical investigations with microwave cavities are
found in [22, 23] where the effects of EPs feature prominently. The study of continuous
variation of the coupling between a cavity and a rubidium atom enabled the direct observation
of an EP in an open quantum system [24].

3.2. PT -symmetric Hamiltonians

It has been suggested to extend the class of traditional Hermitian Hamiltonians by a specific
choice of non-Hermitian operators [25]. Hamiltonians that are symmetric under the combined
operation of parity and time reversal transformation (PT -symmetric operators) can have a
real spectrum even though the operators can be non-Hermitian. If the eigenstates are also
symmetric under PT , that is, if PT |ψE〉 = const|ψE〉, the eigenvalues are real; when the
symmetry is broken, that is, if the above relation does not hold, the eigenvalues are complex
[26]. It turns out that the parameter values where the symmetry breaking occurs are just those
values where an EP of the system appears. Since the Hamiltonians considered in this class
can be non-Hermitian, the EPs can occur for real parameter values. Obviously, this particular
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extension of traditional quantum mechanics has attracted great interest in the literature with
umpteen theoretical and experimental papers.

Before turning to a selection of these we rehash some basic features of the specific
class of operators considered here. While unbounded non-Hermitian operators constitute a
difficult mathematical problem in general, we here deal with a much simpler class that is well
understood: the quasi-Hermitian operators [27]. A non-Hermitian operator H �= H† is called
quasi-Hermitian if there exists a bounded Hermitian positive-definite operator 	 that ensures
the relation

	H = H†	. (14)

The relation implies that H is similarly equivalent to a Hermitian operator, in fact the operator

hS = SHS−1 (15)

is Hermitian when S is the positive root of 	. The operator 	 may be viewed as a metric
characterizing a different Hilbert space by defining the scalar product

〈·|·〉	 := 〈·|	·〉, (16)

where 〈·|·〉 is the usual scalar product, employing the L2-metric being the identity. Two
important observations can be made. (i) The non-Hermitian operator H is in fact Hermitian if
the new metric is used for the underlying Hilbert space; note, however, that then other operators
(like position or momentum) may no longer be necessarily Hermitian. There is freedom though
in the choice of the metric 	 [27, 28]. (ii) In view of (15) the spectrum of H is real.

Of particular interest in our context is the fact that at a parameter value where the symmetry
gets broken—at the EP—the singularity affects the metric as well; in fact, the metric ceases to
exist [29]. While the occurrence of an EP has been shown to cause a great variety of physical
effects, the breakdown of the metric has been associated with a speculative suggestion: that
the transition time between the two states connected at the EP may be much shorter than the
expected time ∼�/
E [30].

Many theoretical papers have been published on the subject dealing with the mathematical
aspects of diagonalizable non-Hermitian operators [31–34]; the list given there can only
be incomplete while the quoted papers contain further pertinent references. More recent
theoretical papers deal with specific subjects such asPT -symmetry in optics [35] and nonlinear
wave equations [36]. In [37] a new class of chaotic systems with dynamical localization is
studied: a gain/loss parameter invokes a spontaneous phase transition from real values of the
spectrum (phase of conserved symmetry) to complex values (phase of broken symmetry).

Perhaps some of the most beautiful demonstrations of PT -symmetry breaking at an EP
have been made in optical systems. Light propagation is used in distributed feedback optical
structures with gain or loss regions. The EPs at the points of PT -symmetry breaking of
the Dirac Hamiltonian give rise to simple observable physical quantities such as resonance
narrowing and laser oscillation [38]. In PT -symmetric optical lattices the transition at the
spectral singularity (EP) has been demonstrated [39] (see also [40–44]). More experimental
work along these lines can be expected. In particular, specific quantum mechanical systems
like the ones discussed in the following subsection are expected to involve aspects of
PT -symmetry.

An interesting twist is the classical analogue to quantum mechanical PT -symmetric
Hamiltonians [45]. It appears that the correspondence principle can be usefully extended
into the complex domain of classical variables. The association between complex quantum
mechanics and complex classical mechanics is subtle and requires a non-perturbative approach
(see also [29, 46]).
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Quite generally and in the spirit of PT -symmetry, its consideration is of course not
restricted to quantum systems. Here, we mention electronic circuits where the connection
of instabilities in PT -symmetric systems and EPs is investigated experimentally [47] and
theoretically [48].

3.3. EPs in atomic/molecular physics, Feshbach resonances

Using Feshbach resonance techniques there are recent proposals for resonant dissociation by
lasers of H+

2 molecules or alkali dimers, where the effects of EPs are expected to feature
prominently [49, 50]. Similar in spirit, a Bose–Einstein condensate of neutral atoms with
induced electromagnetic attractive (1/r) interaction has been discussed recently as another
system allowing a tunable interaction [51]. The critical value—an EP—where the onset of the
collapse of the condensate occurs is interpreted as a transition point from separate atoms to
the formation of molecules or clusters [52]. In this context, we recall that level splitting by
potential barriers (quantum tunneling) is associated with a coalescence of the two levels at an
appropriate (complex) value of the barrier strength.

In a recent investigation, it was found that by transporting an eigenstate around an EP
the final eigenstate may be different from the initial eigenstate. The precise interplay between
gain/loss and non-adiabatic couplings imposes specific limitations on the observability of this
flip or non-flip effect [53].

3.4. EPs in laser physics and open systems

EPs can strongly affect the above-threshold behaviour of laser systems. They are induced
by pumping the laser nonuniformly [54]. In the vicinity of the EPs, where the laser modes
coalesce, the effect of the singularities can explain the turning off of one laser even when the
overall pump power deposited in the system is increased. The relation between EPs in closed
and open gain–loss structures has been expounded recently [55]. The EPs occurring for a
closed-system Hamiltonian are related to those of the scattering matrix for the corresponding
open system. It has been demonstrated in detail how these seemingly different situations share
a very close and elegant connection with each other.

3.5. Quantum phase transitions, chaos

The important role played by EPs in connection with quantum phase transition and also
quantum chaos in many-body systems appears to be less appreciated by the ‘EP community’.
We here report some pertinent results. The Lipkin model [56] is a toy model often used to study
quantum phase transitions of many-body systems. The interaction of the two-level model lifts
or lowers a Fermion pair between the two levels. For N particles, it can be formulated in terms
of the angular momentum operators and reads

H(λ) = Jz + λ

N
(J2

+ + J2
−), (17)

with Jz, J± being the N-dimensional representations of the SU (2) operators. There is a phase
transition at λ > 1 that moves towards λ = 1 in the thermodynamic limit (N → ∞). The
special interaction gives rise to an inherent symmetry: even and odd numbers k of the ordered
levels Ek do not interact. The phase for λ < 1 is the ‘normal’ phase where the symmetry
of the problem is preserved by the levels and wavefunctions. In the ‘deformed’ phase for
λ > 1 the symmetry is broken, in that even and odd k become degenerate. Here, the role of
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Figure 2. Exceptional points (EPs) in the complex λ-plane for the Lipkin model with N = 8 (blue),
N = 16 (red) and N = 32 (black). The symmetry of the model yields EPs in the other quadrants:
with λEP additional EPs occur at λ∗

EP and −λEP.

the EPs is crucial to bring about the phase transition in the spectrum [57, 58]. In figure 2,
the pattern of the EPs is illustrated for low values of N. It is clearly seen how the EPs accumulate
for increasing N on the real axis with the tendency to move towards the point λ = 1. The
spectrum remains unaffected by singularities in the region of the normal phase while it is
strongly affected around the critical point. For finite temperature, these singularities feature
in the partition function as is discussed explicitly in [59]. If the model is perturbed the regular
pattern of the EPs is destroyed and so is the spectrum accordingly. The onset of chaos [60] is
clearly discernible in the region of the phase transition associated with a high density of EPs,
while the model remains robust outside the critical region for sufficiently mild perturbation.

3.6. Special effects in multichannel scattering

Depending on a judicious choice of parameters the proximity of EPs can invoke dramatic effects
in multichannel scattering such as a sudden increase of the cross section in one channel, even
by orders of magnitude. In turn, the second channel is suppressed and can show a resonance
curve that deviates substantially from the usual Lorentz shape [13]. Related to this behaviour
is the pattern in the time domain [61]. Depending on the initial conditions, the wavefunction
displays characteristic features such as very fast decay or the opposite, i.e. very long lifetime.
At the EP, the time-dependent wavefunction typically has a linear term in time besides the
usual exponential behaviour.

3.7. EPs of higher order

The coalescence of three levels [62] (or more) is of course possible if sufficiently many
parameters are at one’s disposal. For an EPN (N-levels coalescing) an N-dimensional matrix
must be considered. For complex symmetric matrices (N2 +N−2)/2 parameters are needed to
enforce the coalescence of N levels [63]. An interesting aspect is the behaviour of, say, an EP3
where two EP2 sprout from the EP3 under variation of one of the parameters; in this way, we
can view an EP3 as the coalescence of two EP2 being linked by their position on one common
Riemann sheet. This can be generalized allowing many combinations for larger N: the block
structure of the Jordan form of the Hamiltonian gives an indication of the connectedness of the
N levels. In a recent paper [64], this is investigated for EP3; a physical example for possible
implementation in the laboratory is suggested. Topological properties and their group structure
of higher order EPs are investigated in [65].
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3.8. Classical systems

Although some of the experiments with microwave cavities as well as some of the optical
systems are classical in nature, we here note in particular effects of EPs in classical [66] and
fluid mechanics. Instabilities and particular behaviour of the Reynold number for a Poiseuille
flow have been associated with near crossings of eigenvalues and—as is now identified—with
EPs [67, 68] (see also [69]).

4. The role of EPs in approximation schemes

The well-known random phase approximation used in many-body problems yields an effective
Hamiltonian that is non-Hermitian [70]. As a result, eigenvalues are not necessarily real.
Depending on the strength of the, say, particle–hole interaction two real eigenvalues � and
−� coalesce at � = 0 and then move into the complex plane when the interaction is increased.
Often this instability point is associated with one or more phase transitions of the underlying
mean field [71]. It is an EP with all its characteristics: square root branch point in the interaction
strength and the vanishing norm of the wavefunction.

A perturbative approach in shell model calculations can be hampered by singularities
associated with intruder states [72]. These singularities are EPs where two levels coalesce
thus limiting the radius of convergence of the perturbation series. In a similar vein, branch
point singularities (EPs) have been identified as affecting the convergence of perturbation
series in a field theoretical model [73] and for the anharmonic oscillar [74]; in these infinite
dimensional cases accumulation points of EPs are encountered.

Recent approaches to model nuclei near the drip line [75] use resonance states to describe
the continuum. The coalescence of two resonances can invoke specific physical effects owing
to the strong increase of the associated spectroscopic factors being caused by the vanishing
norm of the wavefunctions at the EP.

5. Summary

The ubiquitous occurrence of EPs in all eigenvalue problems that depend on a parameter
can have significant and often dramatic effects on observables in a great variety of physical
phenomena. A few decades ago, these singularities appeared as a purely mathematical feature
that could cause problems in approximation schemes. It was only about fifteen years ago that
their physical manifestation was demonstrated in experiments that were basically classical in
nature. At present, definite theoretical and experimental proposals are found in the literature
relating to atomic and molecular physics, using lasers for triggering and measuring specific
transitions. In nuclear physics, where there is now great interest in open systems, that is, in
nuclei on the drip line, the coalescence of resonance states is expected to produce specific
effects such as enhancements of particular reactions. The tremendous upbeat of research in
connection with PT -symmetric Hamiltonians is expected to further proliferate new effects
and applications of EPs also and in particular in genuine quantum mechanical problems.
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