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Abstract. Exceptional points are singularities of the spectrum and wave functions of a Hamiltonian which
occur as functions of a complex interaction parameter. They are accessible in experiments with dissipa-
tive systems. We show that the wave function at an exceptional point is a specific superposition of two
configurations. The phase relation between the configurations is equivalent to a chirality which should be
detectable in an experiment.

PACS. 03.65.Vf Phases: geometric; dynamic or topological – 02.30.-f Function theory, analysis –
05.45.-a Nonlinear dynamics and nonlinear dynamical systems

The topological structure of an exceptional point (EP) has
been explored in a recent experiment [1] for the first time.
The experiment was designed to verify the theoretically
predicted properties [2,3] of wave functions in the vicinity
of an EP. In the present paper, we show that the wave
function at the EP is a superposition that specifies a chi-
rality. We argue that the chirality should be detectable in
a suitable experiment.

We recapitulate the definition of an EP and summarise
the results of the experiment that has verified its predicted
topological structure. The formal result of the present note
is derived for the case of a two-state system and gener-
alised to an N -state system. We conclude proposing an
experiment that would in principle detect the claimed chi-
rality.

An EP is a branch point singularity of both, eigen-
value and eigenvector of a Hamiltonian, as functions of a
complex interaction parameter λ. Suppose that the Hamil-
tonian is written as

H(λ) = H0 + λH1. (1)

Then the eigenvalues Ek = Ek(λ) and the eigenvectors
|ψk〉 = |ψk(λ)〉 are functions of λ. Let H0 and H1 be real,
symmetric matrices and λ a complex number. A coales-
cence of two eigenstates occurs at complex λ = λc when
two eigenvalues (say k = 1, 2) coincide, i.e.

E1(λc) = E2(λc), (2)

and the space of eigenvectors is only one-dimensional [4–
6]. It is well-known that this cannot occur when H is Her-
mitian. In this case, equation (2) implies a degeneracy, i.e.
a space of eigenvectors which is at least two-dimensional.
Hence, an EP does not occur for real λ. In contrast, at
complex values of λ, EP’s do occur generically.
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We emphasize that a coalescence should not be con-
fused with a degeneracy. The latter gives rise to a dia-
bolic point the properties of which have been predicted
by Berry [7] and experimentally confirmed in reference [8].
The EP is a generalisation of a diabolic point (DP) in that
the confluence of two complex conjugate EP at a real value
of λ — i.e. the limiting case of a Hermitian Hamiltonian
— yields a degeneracy. The DP has the conical structure
of the energy surfaces described by Berry.

EPs are always found in the vicinity of a level repul-
sion: suppose that two levels show avoided level crossing
when λ is varied along the real axis; then the analytic
continuation into the complex λ-plane yields a complex
conjugate pair of EPs. The occurrence of EPs is not re-
stricted to repulsions of bound states, a recent paper deals
with the repulsion of resonant states [9].

There are a number of phenomena, where the physi-
cal effect of an EP has been observed or discussed. Laser
induced ionisation states of atoms [10] are a clear manifes-
tation of an EP even though in [10], it has not been anal-
ysed as such. A recent theoretical paper [11] shows that,
for a suitable choice of parameters associated with an EP,
the only acoustic modes in an absorptive medium are cir-
cularly polarised waves with one specific orientation for a
given EP. Similarly in optics, experimental observations in
absorptive media [12] reveal the existence of handedness
since the stable mode of light propagation is either a left
or a right circularly polarised wave for appropriately cho-
sen parameters. This has been interpreted in [13] in terms
of EPs. A particular resonant behaviour of atom waves in
crystals of light [14] has recently been interpreted [3] in
terms of EPs. While absorption is essential in all cases,
some situations clearly point to a chiral behaviour of an
EP.

In the experiment [1], EPs have been investigated in
a flat microwave cavity. The electric field distribution is

R
a
p
id
e
N
o
te

R
a
p
id

N
o
te



150 The European Physical Journal D

analogous to the wave function and the eigenfrequencies
are analogous to the eigenenergies of a quantum system.
In fact, the flat cavity simulates the quantum mechanical
motion of a particle in a billiard [15,16]. The eigenstates of
the system are resonances with decay widths large enough
to make quite a few EPs accessible. The parameter region
surrounding one of the EPs has been explored.

The experiment [1] yielded three major results:

1. if a loop is performed in the λ-plane around the EP,
the eigenenergies E1 and E2 are interchanged;

2. the wave functions |ψ1〉 and |ψ2〉 are interchanged by
the loop and, in addition, one of them changes sign. In
other words, a loop in the λ-plane transforms the pair
{ψ1, ψ2} into {−ψ2, ψ1}. Therefore the two possible
directions of looping yield different phase behaviour.
In fact, encircling the EP a second time in the same
direction, we obtain {−ψ1,−ψ2} while the next loop
yields {ψ2,−ψ1} and only the fourth loop restores the
original pair. It follows that by going in the opposite
direction, one finds after the first loop what is obtained
after three loops in the former direction;

3. the eigenvalues E1, E2 have been studied as functions
of λ for two paths that were not closed. One path was
just above, the other one just below λc. The results
were different. Let us call resonance energy the real
part of an eigenvalue and resonance width its imagi-
nary part. On one of the paths, the widths cross while
the resonance energies avoid each other. On the other
path, the resonance energies cross while the widths
avoid each other.

These results are the consequence of the topological
structure of Riemann sheets at a branch point. The exper-
iment thus showed that this topology is a physical reality.

In the sequel, we carry the theoretical analysis of the
EP one step further and focus upon the eigenfunction at
the EP. Under item (2) above, a distinction is made be-
tween a right and a left turn. In part of the literature
cited above, a handedness was observed [11,12] in connec-
tion with an EP. We show that a chiral structure is indeed
an intrinsic property of every EP.

Since H is not self-adjoint for complex λ, the right
hand eigenvectors |ψk〉 are different from the left hand
eigenvectors |ψ̃k〉. Both together form a biorthogonal ba-
sis, i.e. the completeness relation reads

∑
k

|ψk〉〈ψ̃k|
〈ψ̃k|ψk〉

= 1 (3)

for λ 6= λc. Recall the orthogonality relation

〈ψ̃k|ψk′〉 = 0, k 6= k′. (4)

Due to the symmetric form of H, the left hand eigenvector

|ψ̃k〉 = |ψ∗k〉 (5)

is merely the complex conjugate of its right hand partner.
Hence, the (complex) components of the row vector 〈ψ̃k|
coincide with the components of the column vector |ψk〉 .

For λ 6= λc, one can define eigenvectors that are nor-
malised in the biorthogonal sense. Indeed, the right hand
eigenvectors

|χk(λ)〉 = |ψk〉/
√
〈ψ̃k|ψk〉 (6)

together with the left hand partners

〈χ̃k(λ)| = 〈ψ̃k|/
√
〈ψ̃k|ψk〉 (7)

form a biorthogonal system with the property

〈χ̃k|χk′〉 = δkk′ , λ 6= λc. (8)

However, the χk diverge at the EP. It is not possible to
define the eigenfunctions such that they are normalised for
λ 6= λc and also continuous at λc. This can be verified by
explicitly working out a two-state system as in [2,3]. We
assume that the |ψk〉 have been chosen continuous at λc.

From equation (4) follows that

〈ψ̃EP|ψEP〉 = 0 (9)

since the orthogonality (4) holds identically in λ and |ψEP〉
is proportional to the limit of both eigenvectors, |ψ1〉 and
|ψ2〉 for λ → λc. As a consequence, the inverse of the
biorthogonal norm 〈ψ̃k|ψk〉 that appears in equation (3),
does not exist at λ = λc.

In the case of a two-state system, equations (5, 9) entail

|ψEP〉 ∝
(
±i
1

)
. (10)

Of course, this result can also be obtained from a repre-
sentation of a symmetric 2× 2 matrix in terms of its ele-
ments Hkk′ . One requires that the eigenvalues coincide. If
H12 = 0 one finds a 2-dimensional space of eigenvectors,
i.e. a DP. If H12 6= 0 one finds a 1-dimensional eigenvector
space, i.e. an EP. The eigenvector has the form (10).

Equation (10) is true irrespective of a particular ba-
sis, since the vector (10) is invariant under all orthogo-
nal transformations including complex ones. These are the
transformations that conserve the symmetry of H which
we are considering. Hence, in every basis with respect to
which H is symmetric, |ψEP〉 will have the form (10).

There is no orthogonal transformation that maps
(

i
1

)
onto

(−i
1

)
. Every |ψEP〉 is therefore either ∼

(
i
1

)
or ∼

(−i
1

)
.

This is the basic result of the present paper. It remains to
be shown for an N -state system.

The eigenvector |ψEP〉 is expanded according to

|ψEP〉 =
∑
k

ck(λ)|χk(λ)〉, (11)

where

ck(λ) = 〈χ̃k|ψEP〉. (12)

For λ → λc the two coalescing eigenvectors |χ1(λ)〉 and
|χ2(λ)〉 diverge. All other N − 2 wave functions |χk〉 re-
main regular. Therefore in the vicinity of the EP, only the
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terms with k = 1, 2 make substantial contributions to the
expansion (11). In fact, the ck vanish for k 6= 1, 2 and
λ → λc as follows from the orthogonality (4) of different
eigenvectors. For k = 1, 2 the ck also vanish owing to equa-
tion (9) but this is exactly compensated by the diverging
eigenfunctions |χ1(λ)〉 and |χ2(λ)〉.

Hence, the N -dimensional vector |ψEP〉 becomes a su-
perposition of the two N -dimensional vectors |χ1(λ)〉 and
|χ2(λ)〉 in the limit of λ towards λc. From the result of
the two-state model, we thus expect that

c1/c2 = +i or c1/c2 = −i (13)

holds in the vicinity of λc.
A more explicit analytic consideration shows how this

result comes about. We denote the components of |ψEP〉
by {xk}, k = 1, . . . , N and recall from equation (9) that∑
k x

2
k = 0 . If λ is near to λc, the components of |ψ1(λ)〉

can be chosen as {xk + dk} with dk = ak
√
λ− λc +O(λ−

λc), k = 1, . . . , N and some constants ak. The compo-
nents of 〈ψ̃2(λ)| must therefore, to lowest order in the dk,
have the form {xk − dk}. To lowest order in the dk we
obtain

〈ψ̃1|ψ1〉 = 2
∑
k

xkdk, (14)

〈ψ̃2|ψ2〉 = −2
∑
k

xkdk, (15)

〈ψ̃1|ψEP〉 =
∑
k

xkdk, (16)

〈ψ̃2|ψEP〉 = −
∑
k

xkdk (17)

from which the statement of equation (13) immediately
follows.

Each individual EP is associated with a particular chi-
rality. This does not mean that all EPs of a given system
have the same chirality. In a high dimensional system, one
expects a random occurrence of the two possible chiralities
of the EPs. Note that only those EPs are experimentally
accessible that lead to negative imaginary parts of the
eigenenergies E1, E2.

The prediction of the present paper — only one specific
mode can be excited at or in the immediate vicinity of an
EP — can be tested in principle by a microwave experi-
ment. The nodal pattern of the two wave functions that co-
alesce at the EP must be explored as in reference [1]. The
cavity must not be superconducting. There must rather
be so much resistance in its walls that H becomes suf-
ficiently non-Hermitian to have accessible EP’s — again
as in [1]. Both coalescing modes are separately excited
through appropriately positioned antennae but with con-
trollable phase difference between the antennae. Sweeping
the phase shift should produce a maximal signal detected
by a third antenna coupled to one of the modes, when the
phase difference equals one of the values ±π/2.

Of course, it would be interesting to see the experiment
done on a true quantum system. Two coupled quantum
dots [18] appear to be the closest quantum analogue to
the set-up used in the Darmstadt experiment.

Let us conclude with a justification of the term “chi-
rality” for the phase relation (10). If the waves, fed into
the antennae of the microwave experiment, could be inter-
preted as two independent linear polarisations of a travel-
ling microwave, the wave function (10) of the EP would,
of course, represent a circularly polarised wave with a def-
inite chirality [11,13]. If the antennae are simply coupled
to two independent basis states of the system and if |ψEP〉
is excited, the two basis configurations follow each other
periodically with a time lag of a quarter of a period. The
direction of positive time is defined by the experiment it-
self: in fact, the states are decaying as time goes by. The
configurations |ψ1〉 and ψ2〉 are distinguishable by their
nodal patterns. Hence, it is well defined which configura-
tion leads and which one follows. In this sense, the config-
urations |χ1〉, |χ2〉 — linearly combined according to (10)
— represent a motion on an abstract circle with a well
defined handedness, i.e. a chirality.

WDH greatly enjoyed the warm hospitality of the theory group
at the Max-Planck-Institute for Nuclear Physics at Heidelberg.
Both authors acknowledge stimulating discussions with their
experimental colleagues at the TU Darmstadt.
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