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Non-Hermitian delocalization and eigenfunctions
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Recent literature on delocalization in non-Hermitian systems has stressed criteria based on sensitivity of
eigenvalues to boundary conditions and the existence of a nonzero current. We emphasize here that delocal-
ization also shows up clearly in eigenfunctions, provided one studies the product of left and right eigenfunc-
tions, as required on physical grounds, andnot simply the squared modulii of the eigenfunctions themselves.
We also discuss the right and left eigenfunctions of the ground state in the delocalized regime and suggest that
the behavior of these functions, when considered separately, may be viewed as ‘‘intermediate’’ between
localized and delocalized.@S0163-1829~98!03937-X#
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I. INTRODUCTION

A delocalization phenomenon in a particularly simp
class of non-Hermitian random system has attracted con
erable attention recently.1–19 Among the more recent work i
a report by Silvestrov, based on an analysis of eigenfu
tions, which claims that the phenomenon studied was
actually delocalization, but ‘‘localization of a very unusu
kind.’’ Although Silvestrov subsequently revised his view
he still maintains that ‘‘the transition from real to comple
spectra in one-dimensional~1D! disordered systems with
~an! imaginary vector potential is not a delocalizatio
transition.’’20 In this paper, we review some basic facts
the non-Hermitian delocalization~Sec. II! and then take issue
with Silvestrov’s interpretation. We stress in Sec. III that t
criteria for delocalization used in Refs. 1 and 2 are entir
consistent with a conventional one based on eigenfuncti
provided one studies the correct physical quantity, nam
the product of the left and right eigenfunctions associa
with a given state. In Sec. IV, we comment on the interest
results of Silvestrov for left and right eigenfunctions cons
ered separately for large asymmetry parameter. We show
the ground state that the results are related to earlier re
obtained for charge-density waves3 and population biology.12

From this viewpoint, we argue that the behavior of the l
and the right eigenfunctions is ‘‘intermediate’’ between l
calized and delocalized behavior.

II. NON-HERMITIAN DELOCALIZATION: EIGENVALUES
AND CURRENT

Let us first review some basic facts about non-Hermit
delocalization. A typical example of the systems in quest
is the one-particle Hamiltonian

H5
~p1 ig !2

2m
1V~x!, ~1!

where p is the momentum operator2 i\d/dx, g is a non-
Hermitian field constant in time and space, andV(x) is a
random potential. Its lattice version is given by the matri
PRB 580163-1829/98/58~13!/8384~7!/$15.00
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2
~eḡdx,x8111e2ḡdx,x821!1Vxdx,x8 , ~2!

wherex andx8 here are site indices,Vx is a random poten-
tial, and ḡ5ga/\ with a denoting the lattice spacing. Fo
simplicity, we focus on the one-dimensional case through
this paper. Periodic boundary conditions are imposed exc
where stated otherwise. The above Hamiltonian reduce
the Anderson localization problem forg50; in this case, it is
widely believed that all eigenfunctions are localized in o
and two dimensions.

We showed1,2 that eigenvalues become complex pair
pair onceg is increased beyond a threshold valueg5gc1 and
that the states with complex eigenvalues are delocalized
show the delocalization, we presented two pieces of e
dence. First, we numerically demonstrated that the st
with complex eigenvalues carry a current. The current c
ried by thenth eigenstate is defined byj n5]«n(g)/]( ig),
where«n is the eigenvalue. This is the standard definition
the current, becauseg in Eqs. ~1! and ~2! plays the role of
imaginary vector potential. The current was clearly nonz
for states in the bubble of complex eigenvalues in the b
center@see Fig. 13 of Ref. 2 and Fig. 2~b! below#, indicating
the delocalization of the states.

As a second indication of delocalization, we showed t
the delocalized states have complex eigenvalues for sys
with periodic boundaries, but that all eigenvalues remain r
when the same system has open boundary conditions.
sensitivity to boundary conditions is another indication th
the corresponding wave functions are delocalized. We c
firmed these two signatures of delocalization in a sufficien
strong imaginary vector potential with numerical work a
analytic calculations on localized impurities.

This delocalization phenomenon is equivalent to flux-li
depinning in type-II superconductors with extended defe
Suppose that a superconductor has columnar defects
domly located but mutually parallel and that an extern
magnetic field forces a flux line into the superconductor. T
flux line tends to be pinned by a columnar defect~or a col-
lection of them! when the external field is parallel to th
8384 © 1998 The American Physical Society
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PRB 58 8385NON-HERMITIAN DELOCALIZATION AND EIGENFUNCTIONS
defects. When the field is tilted away from the axis of t
defects, we expect flux-line depinning at a certain tilt an
~Fig. 1!; see Refs. 21–23 for experiments.

The physics of vortex matter can be mapped onto qu
tum systems with one less dimension by the inverse of
Feynman path-integral mapping;24 that is, we regard the
Boltzmann weight of the flux line as an exponentiated act
of the world line of a quantum particle and make the iden
fication\↔T, whereT is the temperature of the vortex sy
tem. This procedure gives Hamiltonians of the above ty
The component of the external magnetic field perpendic
to the columns is proportional to the non-Hermitian fieldg.
Depinning of the flux line by tilting the field beyond a certa
strength ofg leads to a nonzero current in the correspond
quantum state.2

III. NON-HERMITIAN DELOCALIZATION:
WAVE FUNCTIONS

Delocalization of the eigenfunctions themselves was
studied directly in Refs. 1 and 2. The main purpose of
present paper is to address this issue.

Silvestrov computed the right eigenfunctions associa
with the model~2! for a 300-site lattice in the region o
complex eigenvalues and found that their squared mo
have a sparse set of well-separated peaks, quite diffe
from a conventional delocalized state.20 However, as shown
in Ref. 2, and eventually acknowledged by Silvestrov,20 it is
the product of left and right eigenvectors which determin
the probability distribution for a tilted vortex line interactin
with columnar defects deep within the sample. It is this pro
uct which clearly delocalizes in the conventional sense w
the eigenvalues become complex. In the hope of avoid
further confusion, we first summarize in this section the

FIG. 1. Vortex-line system characterized by a one-dimensio
periodic non-Hermitian transfer matrix. A magnetic fieldH i forces
a flux line into a cylindrical shell of type-II superconductor wi
columnar defects. The current threading the cylinder generates
magnetic-field componentH' , which tries to tilt the flux line.
When this flux-line system is mapped onto a ring of the no
Hermitian system,H' becomes proportional to the non-Hermitia
field g. Below a certain strength ofH' ~or g), the flux line is pinned
by a columnar defect and forced to run parallel to the defects@the
transverse Meissner effect~Ref. 24!#, except for its slight deflection
from the pinning center near the top and the bottom of the cylin
~Ref. 2!. For large enoughH' , however, the flux line is depinne
and wraps around the cylinder as is shown here as a helix.
gives rise to a nonzero current that circulates around the ring o
corresponding non-Hermitian system.
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sic relation between left and right eigenvectors. We then
lustrate the delocalization of their product with numeric
examples from our own extensive 1000-site-lattice compu
tions.

A. Left and right eigenfunctions

We work for concreteness with the continuum Ham
tonian~1!, but the results also apply to lattice non-Hermitia
models like Eq. ~2!. Suppose we have computed a s
$fn

R(x;g)% of right eigenfunctions ofH(g) which satisfy

H~g!un;g&5«n~g!un;g&, ~3!

where we adopt the Dirac bra-ket notation,

fn
R~x;g!→un;g&. ~4!

Although left eigenvectors need not be simply related
right eigenvectors in general, there is a particularly sim
relation for the Hamiltonian~1!, which arises due to the
symmetry2

H †~g!5H~2g!, ~5!

where † denotes the usual Hermitian conjugate. Indeed
shown below, left eigenvectors can be obtained from ri
eigenvectors by complex conjugation and lettingg→2g,

fn
L~x;g!5fn

R~x;2g!* , ~6!

or in Dirac notation,

fn
L~x;g!→^n;gu[un;2g&†, ~7!

where † again denotes conventional Hermitian conjugat
Our convention that the left eigenvector^n;gu is defined to
be the Hermitian conjugate ofun;2g&, not of un;g&, allows
manipulations which parallel closely those of convention
quantum mechanics. To see that^n;gu is in fact a left eigen-
function, we calculate

^n;guH~g!5~H~g!†un;2g&!†

5~H~2g!un;2g&)†

5^n;gu«n~2g!* . ~8!

Evidently, ^n;gu will indeed be a left eigenfunction with the
sameeigenvalue asun;g&, provided

«n~2g!* 5«n~g!. ~9!

To prove Eq.~9!, we letH(g) act to the right and the lef
in the matrix element

^m;gu H~g! un;g& ~10!

and obtain

@«m~2g!* 2«n~g!#^m;gun;g&50. ~11!

Equation ~9! follows by setting m5n, provided
^n;g u n;g&Þ0. More generally, Eq.~11! can be used to
show that, with proper normalization, the right and le
eigenfunctions form a biorthogonal set,

^m;gun;g&5dm,n . ~12!
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8386 PRB 58NAOMICHI HATANO AND DAVID R. NELSON
This set has the usual completeness relation

(
n

un;g&^n;gu51. ~13!

Equation~9! reduces to the usual Hermitian constraint of re
eigenvalues wheng50.

Once the eigenvectors are properly normalized,
imaginary-time particle propagator is given by

G~t!5(
n

un;g&^n;gue2«n~g!t/\, ~14!

or, in the coordinate representation,

G~x,x8;t!5(
n

fn
R~x!fn

L~x8!e2«n~g!t/\. ~15!

The density distribution of a particle in the ground sta
~which dominates ast→`) is hence the product of left an
right eigenfunctions,fgs

L (x)fgs
R (x). As was shown in Ref. 2

this product gives the probability distribution of a flux lin
far from the sample boundaries in the imaginary-time dir
tion ~the top and the bottom edges of the cylinder in Fig.!.
The square moduliiufn

R(x)u2 andufn
L(x)u2 are irrelevant for

the bulk properties.

B. Delocalization of fLfR

We now illustrate the different behaviors ofufn
R(x)u2,

ufn
L(x)u2, and fn

L(x)fn
R(x) with numerical results, empha

sizing that the productfn
Lfn

R is clearly delocalized in the
conventional sense when eigenvalues become complex
consider a particular realization of the random Hamilton
~2! on a 1000-site lattice. The parameters are set tot52 and
ḡ50.4 with the value ofVx at each site chosen random
from the range@21.5,1.5#. These values are the same
used in Ref. 20 except that the system size is greater in
calculation.~Note that the definition oft differs by a factor
of 2.! The energy spectrum is shown in Fig. 2~a!. The states
between the two mobility edges«c.62.34 have complex
eigenvalues~and hence we would argue are delocalize!
while the other states are localized. Every delocalized st
carries a complex current as is shown in Fig. 2~b!. The
imaginary part of the current determines the tilt angle o
flux line.1,2

Figure 3~a! shows the functionsfn
L(x)fn

R(x), ufn
R(x)u2,

and ufn
L(x)u2 for the ~localized! ground state. All quantities

are normalized so that the summation overx yields unity.
We stress, however, that the normalization only ma
physical sense forfn

L(x)fn
R(x). Everywhere in the regime o

localized states,

fn
R~x;g!}egx/\fn~x;0!

and

fn
L~x;g!}e2gx/\

„fn~x;0!…* ~16!

for large enough systems, wherefn(x;0) is the wave func-
tion of the Hamiltonian withg50. Note that Eq.~6! is
obeyed.@The specificg dependence in Eq.~16! only holds
for localized states, for which we can always choo
l
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fn(x;0) to be real.# Hence, the productfn
L(x;g)fn

R(x;g)
5ufn(x;0)u2 does not depend ong until the state is delocal-
ized for large enoughg. This is a mathematical expression
the transverse Meissner effect, or the rigidity of the pinn
flux line against the tilt of the applied magnetic field; s
Refs. 2 and 24 for details.

Figure 3~b! shows the functionsufn
L(x)fn

R(x)u, ufn
R(x)u2,

and ufn
L(x)u2 for a state slightly below the lower mobility

edge, while Fig. 3~c! shows those for a state slightly abov
the edge.@We only plot the amplitude of the function
fn

L(x)fn
R(x); the phase oscillates rapidly for delocalize

states away from the band edges.# The function
ufn

L(x)fn
R(x)u changes dramatically across the mobili

edge, while the changes inufn
R(x)u2 and ufn

L(x)u2 are less
noticeable.

The delocalized nature offn
L(x)fn

R(x) appears even more
dramatically deep inside the bubble of complex eigenvalu
Figure 4~a! shows the same functions for an eigenstate w
the eigenvalue«n522.012 391 i 0.200 376. This is the
166th state, which roughly corresponds to the 50th state
the 300-site system studied by Silvestrov.20 In Fig. 4~a!, the
function ufn

L(x)fn
R(x)u is extended and approximately con

stant, whileufn
R(x)u2 and ufn

L(x)u2 exhibit a sparse set o
well-separated maxima. Following Silvestrov, we plot t
logarithm of these functions in Fig. 4~b!. The product of
fR(x) andfL(x) is remarkably constant and is extended
conventional sense. On the other hand, the ragged wande
nature of lnufn

R(x)u and lnufn
L(x)u is consistent with the

conjecture20 that these functions behave like random wa
as a function ofx; this is the subject of the next section.

FIG. 2. The complex energy spectrum and the current distri
tion of the Hamiltonian~2! on a 1000-site lattice. Each eigenvalu
is marked by a tiny cross in~a!. Each pair of complex conjugate
eigenvalues in~a! has the current shown in~b!, with the reals part of
the opposite sign~tiny crosses! and the identical imaginary part

~the dashed line!. The parameters in Eq.~2! are set tot52 andḡ
50.4 with eachVx chosen randomly from the range@21.5,1.5#.
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IV. RANDOM-WALK BEHAVIOR OF EIGENFUNCTIONS

In this section, we turn our attention to the left and rig
eigenfunctions considered separately for largeg. One of the
interesting results of Silvestrov20 is a random-walk-like be-
havior hidden in the logarithms of the modulii of the
eigenfunctions. We first illustrate the random-walk behav
with our more extensive numerical results and then sh
that, at least for the ground state, Silvestrov’s observatio
related to earlier results obtained for charge-density wav3

and population biology.12 As a concluding remark, we argu
that the behavior of sample-to-sample fluctuations of the
and right ground-state eigenfunctions considered separa
for largeg is ‘‘intermediate’’ between that expected for lo
calized and delocalized states.

A. Vortex-line distribution at boundaries

What information is contained in the functionsfn
R(x) and

fn
L(x) ~considered separately! for flux-line systems? For a

FIG. 3. The functions ufL(x)fR(x)u ~thick solid lines!,
ufR(x)u2 ~dashed lines!, andufL(x)u2 ~dotted lines! for the follow-
ing cases:~a! the ground state («522.946 82);~b! an eigenstate
just below the lower mobility edge~the 72nd state with«5
22.352 14);~c! an eigenstate just above the lower mobility ed
~the 80th state with«522.318 281 i 0.010 347 9). The system i
the same as the one used in Fig. 2. The serial number of each
represents the ascending order of the real part of the eigenval
t

r
w
is
s
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single vortex line, only theground statecontributes in the
limit of a very long cylinder. As discussed in Ref. 2 an
exploited in a very recent paper by Silvestrov,25 the ~node-
less! ground-state wave functionsfgs

R (x) and fgs
L (x) ~not

their moduli squared! are proportional to the vortex-line
probability distribution at the boundaries where it enters a
leaves the cylinder~see Fig. 1!.

There are then two cases to consider. For small and in
mediate values ofg, the spectrum is either completely loca
ized or only partially delocalized as in Fig. 2~a!. In this case
the ground state is localized as in Fig. 3~a!, and hence a
single vortex line is pinned close to a preferred column
defect in the bulk of the superconductor cylinder. The rig
and left eigenfunctions are shifted relative to their produ
This reflects the tendency of the localized vortex line to t
away from the pinning center at the top and bottom of
sample wheng is nonzero; see Fig. 15~a! of Ref. 2 for a
demonstration.

The second more interesting case is for largeg.gc2, such
that all states, including the ground state, are delocaliz
Using the WKB approximation, Silvestrov20 argued for
random-walk behavior of the logarithm of the wave fun
tions in this case. For concreteness, we show some of
numerical results for the ground state of a 2000-site latt
~Silvestrov20 did not show numerical results for the groun
state in this regime.! Figure 5~a! shows the ground-stat
quantitiesfgs

L (x), fgs
R (x), andfgs

L (x)fgs
R (x) for g51.5\/a

.gc2; the values of the other parameters are the same a
the earlier figures. The productfgs

L (x)fgs
R (x) is approxi-

mately constant, while the~nodeless! eigenfunctionsfgs
L (x)

andfgs
R (x) are quite different than in Fig. 3~a!: They exhibit

multiple sharp maxima which are rather well separated.
view of these multiple maxima, one might question wheth

ate
.

FIG. 4. The functions ufL(x)fR(x)u ~thick solid lines!,
ufR(x)u2 ~dashed lines!, and ufL(x)u2 ~dotted lines! for the eigen-
state in the delocalized regime~the 166th state with«5
22.012 391 i 0.200 376);~a! a linear plot and~b! a semilogarith-
mic plot. The system is the same as the one used in Fig. 2.
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it is appropriate to call such eigenfunctions ‘‘localized.’’20

Figure 5~b! shows the same ground-state quantities in
semilogarithmic plot. The wandering, ragged shape
lnfgs

R (x) and lnfgs
L (x) again indicates the random-walk b

havior.
The different shapes offgs

L (x)fgs
R (x), fgs

R (x), andfgs
L (x)

reflect the different optimization problems of the vortex-li
configuration in the bulk, at the top and at the bottom of
superconductor cylinder~see Fig. 1!. Since the string tension
of the vortex line~the ‘‘mass’’ of the corresponding quantum
particle! is missing outside the superconductor, the vor
line can take better advantage of the potential energy at
top and bottom of the sample than in the bulk; hence
sharp maxima infgs

L (x) and fgs
R (x). The multiple maxima

indicate that the depinned vortex line can enter and exit
superconductor at a variety of preferred locations.

The optimization problems are also different at the t
versus the bottom of the cylinder in Fig. 1. When the vor
line enters the sample from below, it is the succession
defectscounterclockwiseto the entry point which are mos
important. When exiting the sample, it is the defectsclock-
wise to the exit point that matter most. Hence the peaks
fgs

L (x) and infgs
R (x) appear at very different locations. Nev

ertheless, the entry and exit probability distributions a
strongly correlated with each other, since their produc
approximately constant.

B. Renormalization group for the ground state

In the following, let us reproduce Silvestrov’s WKB re
sult for delocalized states in a more controlled approxim

FIG. 5. The functionsfL(x)fR(x) ~think solid lines!, fR(x)
~dashed lines!, andfL(x) ~dotted lines! for the delocalized ground
state of a 2000-site lattice;~a! a linear plot and~b! a semilogarith-
mic plot. All these functions are positive definite in this case. T
normalization offR(x) and fL(x) is different from the one in
earlier figures; each is normalized so that its sum overx ~not the
sum of the squared modulus! becomes unity. The parameter valu

are the same as the ones used in Fig. 2 except thatḡ51.5.
a
f

e

x
he
e

e

x
f

n

e
s

-

tion. For the ground state, his result is in fact a special c
of numerical, scaling, and renormalization-group calcu
tions applied previously to related problems in on
dimensional charge-density waves3 and population biology
in d dimensions.12

We start with the time-dependent Schro¨dinger equation
for the continuum Hamiltonian~1!,

\
]

]t
cR ~x,t!52HcR~x,t!

5
1

2mS \
]

]x
2gD 2

cR~x,t!2V~x!cR~x,t!.

~17!

We assume uncorrelated finite-width randomness of the
tential,

V~x!V~x8!5D2d~x2x8!, ~18!

where the overbar denotes the random average andD is the
width of the random distribution.

Thed-dimensional generalization of Eq.~17! was studied
in Refs. 3 and 12 via the ‘‘Cole-Hopf transformation,’’

cR~x,t!5expF2
F~x,t!

\
1

g2

2m\
tG . ~19!

The Cole-Hopf transformation is just another name for
WKB method. The second term in the exponent of Eq.~19!
is added in order to offset the ground-state energy~which has
no effect in the physics of flux line!. The equation forF is

]F

]t
52

g

m

]F

]x
1V~x!1

\

2m

]2F

]x2
2

1

2mS ]F

]x D 2

. ~20!

To see the relevance of each term in the long-distance li
we change the scale as part of a renormalization-group
culation, according to

x5sx̃, ~21!

t5szt̃, ~22!

F5saF̃, ~23!

where the exponentsz anda are determined below. Thus w
have

]F̃

]t̃
52sz21

g

m

]F̃

] x̃
1sz2a21/2Ṽ~ x̃!

1sz22
\

2m

]2F̃

] x̃2
2sz1a22

1

2m S ]F̃

] x̃
D 2

. ~24!

The rescaled random potential is defined byṼ( x̃)

[s1/2V(sx̃) so that it satisfiesṼ( x̃)Ṽ( x̃8)5D2d( x̃2 x̃8).
The first term of the right-hand side of Eq.~24! is a drift

term and the second term is the random potential term.
keep these two terms fixed in the long-distance limits→`,
we setz51 anda51/2. The third and the fourth terms ar
then irrelevant variables in a perturbative renormalizat

e
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PRB 58 8389NON-HERMITIAN DELOCALIZATION AND EIGENFUNCTIONS
group like that constructed in Ref. 12. Thus a Gaussian fi
point controls the physics of what turns out to be the regi
g.gc2.

Upon defining renormalized parameters by

m̃5s2z2a12m, ~25!

\̃5s2a\, ~26!

g̃5s12ag, ~27!

and

D̃5sz2a21/2D, ~28!

we arrive at a Langevin-type equation in the long-distan
limit,

S ]

]t
1

g

m

]

]xDF~x,t!5V~x!, ~29!

where we have dropped the ‘‘tilde’’ symbol from all quan
ties. Since the ground-state energy was already offset in
~19!, we can eliminate the time derivative by moving onto
new set of coordinates as (x,t)→@x,t2(m/g)x#. We thus
see that the solution is a random walk evolving into thex
direction:

F~x,t![F~x!5
m

g E
x

V~x8!dx8. ~30!

The stationary right eigenfunction in the long-distance lim
is hence given by

fgs
R ~x!5expF2

m

g\E
x

V~x8!dx8G , ~31!

except a normalization factor. This is equivalent to t
ground-state (k50) solution of Silvestrov’s calculations.20,25

Equations~6! and ~31! then give the left eigenfunction as

fgs
L ~x!5expF m

g\E
x

V~x8!dx8G . ~32!

Note that the random-walk behavior disappears for
productfgs

L fgs
R , which is just a constant in this approxima

tion, consistent with the numerical result in Fig. 5 forg
.gc2.

C. Sample-to-sample fluctuations

Silvestrov20,25 referred to the above behavior offgs
R and

fgs
L as ‘‘stochastic localization’’~or simply as ‘‘localiza-

tion’’ in some sentences!. Although the behavior is quite
different than the smooth delocalized behavior of their pr
uct, it is not clear to us whether such states should be ca
‘‘localized’’ either.

To stress this point further, we follow Refs. 3 and 12 a
consider the sample-to-sample fluctuations of the logari
of the ground-state wave function at a fixed location,

W~Lx![ ln fgs~x!22 ln fgs~x!2, ~33!
d
e

e

q.

t

e

-
ed

m

whereLx is the system size in thex direction andfgs(x) is
either the right or the left eigenfunction of the ground sta
~We choose a normalization such that*fgs

L fgs
Rdx51.! Thex

dependence of this quantity should disappear owing to
statistical translational invariance. As is shown below and
Fig. 6, we would have

~i! W(Lx).O(Lx) for the ground-state wave function
~31! and ~32!;

~ii ! W(Lx).O(Lx
2) for a conventional~Hermitian! local-

ized ground state;
~iii ! W(Lx).O(Lx

0) for a conventional extended groun
state.

From this point of view, the random-walk behavior offR

and fL may be viewed ‘‘intermediate’’ between localize
and delocalized.

The firstLx dependence of the quantityW(Lx) is derived
either from the wave function~31! or ~32! as

W~Lx!}EE dx8dx9V~x8!V~x9!5O~Lx!. ~34!

Next, to calculateW(Lx) for a conventional localized groun
state, we assume its asymptotic form asf(x);exp(2kux
2xcu) and that the value ofk is approximately equal for al
samples but the localization centerxc is different from

FIG. 6. Schematic views of sample-to-sample fluctuationW(Lx)
for various types of ground state:~a! random-walk wave functions
of the form~31!; ~b! a set of wave functions localized in a conve
tional sense;~c! wave functions which are extended in a conve
tional sense. Different curves in each graph indicate wave funct
of different samples.
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sample to sample; see Fig. 6~b!. The random average in Eq
~33! then reduces to the average overxc . Thus we have

W~Lx!;
k2

Lx
E ux2xcu2dxc2F k

Lx
E ux2xcudxcG2

5O~Lx
2!.

~35!

Finally, the logarithm of a conventional extended grou
state should be approximately homogeneous in space fo
samples and hence have little sample-to-sample fluctua
as illustrated in Fig. 6~c!. This is the behavior offgs

L fgs
R

wheng.gc2.

V. SUMMARY

In conclusion, we have argued that, contrary to some
cent statements in the literature, delocalization does ap
in the eigenfunctions of Hamiltonians such as Eqs.~1! and
~2! when the spectrum becomes complex, provided one s
ies the product of left and right eigenfunctions. Delocaliz
tion defined by this criterion is consistent with earlier de
ti,

d,

y

o

all
on

-
ar

d-
-

nitions based on ability of states with complex eigenvalues
carry a nonzero current and the sensitivity to bound
conditions.1,2

The left and right eigenfunctions considered separa
provide interesting information about the physics of an is
lated vortex line at its entry and exit points. Similar concl
sions apply to interacting arrays of vortices. See Sec. VIII
Ref. 2 for a discussion of this non-Hermitian many-bo
problem. An interesting investigation of tilted interactin
vortices at the entry and exit boundaries has been initiated
Silvestrov.25
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