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MOller-Plesset perturbation energies, up to as much as 48th order, have been 
calculated for H20 (RHF and UHF framework) and NH2 (UHF framework) 
at C2o geometries (re, 1.5re and 2re). At re, the RHF and U H F  series rapidly 
converge, but at 2re, the RHF series converges erratically with an energy at 
43rd order within 10 -7 hartree of the exact value whereas the UHF series 
converges smoothly, but very slowly, and for H20 has an error in excess of  
10 -5 hartree at 48th order. The significance of these results is discussed. 
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1. Introduction 

Elsewhere [1], we have briefly reported our investigations into the convergence 
of the MOller-Plesset [2] perturbation series for the energy of  a molecule. In this 
paper we shall report our most detailed calculations. In the most common 
applications of  this perturbation theory, the zeroth order hamiltonian H0 is the 
sum of one electron Fock operators, derived from Restricted Hartree-Fock (RHF) 
theory for closed shell systems and Unrestricted Hartree-Fock (UHF) theory for 
open shell systems. The results we have obtained are given in detail so that other 
workers may have the opportunity of observing the convergence of the series for 
these examples. 

The reason for these investigations is the wide use of the Mr (MP) 
series for the inclusion of  electron correlation effects into energy calculations. 
Pople and his co-workers [3, 4] especially have made much use of this approach 
because of  the significant percentage (typically 75%) of the correlation energy 
which can be achieved using third order perturbation (MP3) theory. The calcula- 
tion of MP2 and MP3 energies is straightforward and fast, and has been made 
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generally available to chemists through the distribution of GAUSSIAN 80 [3]. 
For higher accuracy, it has been claimed that the calculation of MP4 energies 
(including single, double, triple, and quadruple substitutions) makes a substantial 
improvement on the calculations of structural properties, and this has been 
supported by many investigations. MP4 energies are also fairly easy to calculate 
for small and medium sized basis set at least, and this has been made available 
through GAUSSIAN 82 [4]. However it seems clear that the routine calculation 
of higher order perturbation energies for large basis sets will be impossible. 
Although we have concentrated on the M011er-Plesset series in this paper, the 
results will be of  interest to those who are concerned with Many Body perturbation 
theory in its more general forms [5]. 

Our purpose here is not to enter into the discussion of the predictive properties 
of MP3 or MP4 except to observe that these series have the important property 
of size-consistency, but instead to address the problem of the convergence of the 
MP series in general. The relevant questions would appear to be: 

(a) Is the MP series convergent? 

(b) If the MP series is convergent, is it rapidly convergent? 

(c) Are there formulae, such as Pade approximants, based on the first four or 
five terms in the series, which accurately predict the series limit, if it exists? 

It appears that it is not possible to answer these questions in a general theoretical 
manner, and so we have attempted to do the next best, which is to take some 
special examples, and calculate the higher order terms in the series. That we are 
in a unique position to do this follows because we have recently developed a 
vectorised full-CI algorithm [6], and, as shown in the next section, this means 
it is a straightforward matter to calculate the perturbation series, term by term, 
for those systems for which it is possible to perform full-CI calculations. 

The size of  the calculation which we can consider is therefore restricted by the 
number of expansion functions (in our case single determinants) in the full-CI. 
However it is desirable to have more than four active electrons (because all 
possible excitations are met in MP4 for four electron systems), and also an 
adequately large basis set. It is also desirable to examine cases where the leading 
determinant has various degrees of dominance. For all these reasons, the examples 
selected were H20, with a 6-21G basis set, and NH2, with a 6-31G basis set, in 
C2~ symmetry. On each, calculations were performed at re (an equilibrium bond 
length), 1.5re and 2re. In common with the usual procedure in MP calculations, 
the core orbital was frozen. Energies up to as much as 48th order are calculated. 

In section 3 the results of the calculations are given in detail, and in section 4 
they are discussed. 

2. Method 

The elementary Rayleigh-Schrodinger perturbation theory to determine the terms 
in the MP series has been given in our earlier publication [1], and will not be 
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reproduced here. The result was that if intermediate normalisation is used, 
(~bkl ~o) = 0, k > 0, then the kth order energies Ek and wave functions ~k are given 
by 

Ek = (~boltYk) (1) 

tPk = (Ho - Eo) -1 ErOk-r q- Ho0k-1 - -  Ork (2) 
I 

with 

O'k = H0k-1 (3) 

(Of course the standard Wigner formulae may be used to obtain E2k, E2k+l from 
Ok, but we did not do so here.) The vectors O'k are calculated by the full-CI 
program. If Ho = F, the sum of one electron Fock operators, then/40 is diagonal 
in the basis of  single determinants, and so it is a straightforward matter to calculate 

through Eq. (2). 

There are two distinct cases to consider (i) singlets for which RHF orbitals are 
usually used and (ii) open-shell systems, for which UHF orbitals (i.e. different 
orbitals for different spins) are used. Thus far the full-CI algorithm has always 
been used in the framework of RHF orbitals, and a slight adjustment is necessary 
to consider the UHF case. This is demonstrated by considering the evaluation 
of the two electron integral contribution to the vector ~r. In the algorithm it is 
evaluated through Siegbahn's [7] formula for the Ith component of the vector, 
the difficult part of which is: 

o. =�89 E y ~ , E  (ijlkl) E .fK Y0 cj, (4) 
K k l  ij J 

with 

IJ  
yij = (IlEolJ), (5) 

where [I) refer to determinants and Eq is a unitary group one particle generator 
[8]. This generator can be written 

E,j = E~ + E~, (6) 

where E~j excites one electron from a spin orbi tal j  and a spin orbital i. Attaching 
spin labels to the orbitals, the formula for crl becomes 

Z Z KL Yk.,. E E (i,~j,[k~,l,,) E y,.j, cj. (7) 
K v = o q f l  k l  /x=2,(3 • J 

For the RHF formalism, the spin orbitals can be omitted from the integrals, and 
these molecular orbital integrals can be obtained from an ordinary 4-index 
transformation. In the UHF formalism, the spin labels have to be retained. 
Therefore a special 4-index transformation program was written to generate the 
sets of  two electron integrals labelled by spins as (aa laa) ,  (aalfl f l)  , ( f l f l laa) 
and (flfll~fl). This was the only significant change to the full-CI algorithm which 
was necessary. 
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Table 1. Mr perturbation energies for H20 (C2~, re =0.967/~,  

0 = 107.6 ~ 6-21G basis, frozen core), using RHF orbitals 

re 1.5r e 2r 3 

Eo+ E 1 -75.888430 -75.707206 -75.491406 

E 2 -0.120865 -0.166896 -0.241643 

E 3 -0.003303 -0.002015 +0.006123 

E 4 -0.004849 -0.016925 -0.046465 

E 5 -0.000488 -0.001352 -0.004219 

E 6 -0.000435 -0.003416 -0.012369 

E 7 -0.000076 -0.000338 -0.001032 

E 8 -0.000048 -0.000827 -0.004065 

E 9 -0.000012 -0.000032 +0.002319 

Elo -0.000006 -0.000189 -0.001417 

E11 -0.000002 +0.000010 +0.002191 
E12 --10 -6 --0.000032 --0.000277 

Ea3 -10  -7 +0.000007 +0.000959 
El4 --10 -7 --10 -6 +0.000023 

El5 - 1 0  -7 +10 -6 +0.000146 

E16 - 10 -s  + 10 -6  +0.000025 

El7 - 1 0  -8 +10 -6 -0.000140 

Els - 1 0  -9 +10 -6 +0.000043 

E19 - 10 -9 + 10 -7 -0.000159 

E2o - 10 -9 + 10 -6 +0.000087 

E21 - 1 0  -20 +10 -7 -0.000095 

E22 - 1 0  - t~  +10 -7 +0.000095 
E23 - 10 -20 + 10 -s -0.000037 

E24 - 10-11 + 10 -8 +0.000064 
E2s -0.000010 

E26 +0.000022 

E27 -0.000003 

E28 -0.000006 

E29 -0.000001 
E3o -0.000016 

E31 +0.000002 

E32 -0.000014 

E33 +0.000005 

E34 -0.000007 
E3s +0.000005 

E36 - -0 .000002  

E37 +0.000004 
E3s +10 -7 

E39 +10 -6 
E4o +10 -6 
E41 - 1 0  -7 

E42 +10 -6 

E43 --10 -6 
4 
)~ E~ -0.129017 -0.185835 -0.281986 
2 
43 

E~ -0.130085 -0.191996 -0.299864 
2 

"Exact"  
correlation 
energy -0.130085 -0.191996 -0.299864 
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3. Calculations and results 

As stated in the introduction, calculations have been performed o n  H 2 0  (1A1) 

and NH2 (2B1) in C2v geometry at bond lengths re, 1.5re, and 2re. For H20, 
re = 0.967 ~ and 0 = 107.6 ~ (6-2iG basis set was used) ; for NH2 re = 1.013 A and 
0 = 103.2 ~ (6-31G basis set was used) [8]. In the calculations the core orbital was 
frozen. This meant the numbers of expansion determinants ]I) and intermediate 
determinants [K) (see Eq. (4)) for H20 were 61 441 and 245 025, and for NH2 
27 126 and 108 900. On the CRAY-1S, the calculation of 48 energies used 13 
minutes cpu time, for H20 at one geometry. 

In Tables 1, 2 and 3 the results are given for H20 and NH2. For H20 results at 
re, 1.5re and 2re are given for RHF orbitals in Table 1. It is also possible to 
consider U H F  calculations for H20, even though this is not usually considered 
in MP calculations. At re, U H F =  RHF, but at 1,5re and 2re they are different, 
and results are given for these geometries in Table 2. For NH2 results at re, 1.5re 
and 2re are given for UHF orbitals. 

Table 2. M~ller-Plesset perturbation energies for H20 (C2v , re=0.967A, 0= 107.6 ~ 6-21G basis, 
frozen core), using UHF orbitals 

1.5r e 2r e 1.5r e 2re 

Eo+E 1 -75.735012 -75.699298 E29 -0.000167 
E 2 -0.094376 -0.055371 E3o -0.000126 
E 3 -0.007435 -0.005550 E31 -0.000090 
E 4 -0.011388 -0.002203 E32 -0.000059 
E 5 -0.005684 -0.000948 E33 -0.000033 
E 6 -0.006457 -0.000847 E34 -0.000011 
E 7 -0.004832 -0.000659 E35 +0.000007 
E 8 -0.004687 -0.000636 E36 +0.000022 
E 9 -0.003920 -0.000578 E37 -0.000035 
Ex0 -0.003577 -0.000562 E38 +0.000044 
Et 1 -0.003099 -0.000534 E39 +0.000052 
E12 -0.002761 -0.000519 E4o +0.000057 
E13 -0.002415 -0.000501 E41 +0.000061 
El4 -0.002128 -0.000488 E42 +0.000063 
E15 -0.001861 -0.000474 E43 +0.000064 
E16 -0.001629 -0.000461 E44 +0.000063 
E17 -0.001419 -0.000449 E45 +0.000062 
E~s -0.001234 -0.000438 E46 +0.000060 
E19 -0.001068 -0.000428 E47 +0.000057 
E2o -0.000922 -0.000417 E4s +0.000054 
E21 -0.000791 -0.000408 4 
E22 -0.000675 -0.000398 ~ El -0.113199 2 
E23 -0.000573 -0.000389 48 
E24 -0.000482 -0.000380 ~ Ei -0.164416 

2 
E25 -0.000402 -0.000372 "Exact" 
E26 -0.000331 -0.000364 correlation 
E27 -0.000269 -0.000356 energy -0.164168 
E28 -0.000215 -0.000348 

-0.000341 
-0.000334 
-0.000327 
-0.000320 
-0.000313 
-0.000307 
-0.000301 
-0.000295 
-0.000289 
-0.000283 
-0.000278 
-0.000272 
-0.000267 
-0.000262 
-0.000257 
-0.000252 
-0.000248 
-0.000243 
-0.000238 
-0.000234 

-0.063124 

-0.080743 

-0.091882 



92 N.C.  Handy, P. J. Knowles and K. Somasundram 

It is possible to obtain the "exact" eigenvalue of  H within these basis sets and 
with the frozen core orbitals, either using the full-CI program (in the RHF case) 
or variation perturbation theory. These exact eigenvalues are given in the tables 
to the number of significant figures to which they have converged. 

It is constructive to look at the convergence of  the series graphically, and therefore 
Fig. 1-7 show this convergence for higher terms in the series. 

The question may arise as to whether the results are numerically stable. The 
answer to this is indicated from the results for H20 (RHF) at 2re, which clearly 
show ultimate convergence to the full-CI value only at a very high order, despite 
earlier erratic behaviour. In addition, in order to avoid problems arising from 
the strong linear dependencies amongst the successive ~k, our program employed 
a set of carefully orthogonalised functions 

) vk = a tPk-- ~ (V,I~bk)V, ; (VkJVk) = 1, (8) 
1=0 

with the actual ~k then represented as a linear combination 

k 

t~k = E C,kVk. (9) 
l = l  

Table 3. M011er-Plesset perturbation energies for NH 2 (C2~ , r e = 1.013/~, 
O = 103.2 ~ 6-31G basis, frozen core), using UHF orbitals 

r~ 1.5r e 2 r  e 

Eo+E~ -55.532248 -55.405143 -55.381931 
E 2 -0.085512 -0.062116 -0.031539 
E3 -0.009815 -0.011394 -0.006208 
E4 -0.003613 -0.008695 -0.002508 
E5 -0.001192 -0.005776 -0.001234 
E 6 -0.000463 -0.004887 -0.000846 
E 7 -0.000200 -0.004067 -0.000662 
E 8 -0.000100 -0.003505 -0.000568 
E 9 -0.000053 -0.003016 -0.000507 
Elo -0.000030 -0.002608 -0.000464 
Eti -0.000018 -0.002254 -0.000432 
E12 -0.000011 -0.001949 -0.000406 
E13 -0,000007 -0.001684 -0.000384 
El4 -0.000005 -0.001454 -0.000364 
E15 -0.000003 -0.001254 -0.000347 
El6 -0.000002 -0.001080 -0.000332 
El7 --0.000001 --0.000929 --0.000318 
E18 -10-6 -0.000798 -0.000305 
El9 --10 -6 --0.000684 --0.000293 
E2o -10  -7 -0.000584 -0.000282 
E21 --10 -7  -0.000499 -0.000272 
E22 --10 -7 --0.000424 --0.000262 
E23 -10  -7 -0.000360 -0.000253 
E24 -10  -7 -0.000304 -0.000245 
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r~ 1.5r e 2r e 

E2s -10  -7 -0.000256 -0.000237 
E26 -10  -8 -0.000214 -0.000229 
E27 -10  -8 -0.000178 -0.000222 
E28 -10  -8 -0.000148 -0.000216 
E29 -10  -8 -0.000122 -0.000209 
E30 -10  -8 -0.000099 -0.000203 
E31 -10  8 -0.000080 -0.000198 
E32 -10 -9 -0.000064 -0.000192 
E33 -10  -9 -0.000050 -0.000187 
E34 --10 -9 -0.000039 -0.000182 
E35 -10  -9 -0.000029 -0.000178 
E36 --10 9 --0.000021 --0.000173 
E37 -10  9 -0.000014 -0.000169 
E38 -10  9 -0.000009 -0.000165 
E39 --10 -10 -0.000004 -0.000161 
E4o -10  -1~ -0.000001 -0.000157 
Enl -10  -1~ +0.000002 -0.000153 
E42 -10  -1~ +0.000004 -0.000150 
E43 -10 - t~ +0.000005 -0.000147 
E44 +0.000007 -0.000143 
U45 +0.000007 -0.000140 
4 

~ E  i -0.098939 -0.082204 -0.040255 
2 

~ E  i -0.101028 -0.121622 -0.052847 
2 

"Exact" 
correlation 

energy -0.101028 -0.121515 -0.059 

As a further check, the arithmetic involving the c~k arising from equation (2) was 
performed in double precision (128 bits); the results were identical to those 
obtained in single precision. Our conclusion is that the quoted results are numeri- 
cally stable. 

4. Discussion 

In the Tables there are eight sets of  results, and first we will discuss these 
individually. 

(i) H20, re, RHF 

This MP series is rapidly convergent, and the numbers of terms after Eo needed 
so that the energy within 10 -4, 10 -5, 10 -6,  10 -7 hartree of the exact value are 7, 
8, 10, 13. However the very rapid early convergence is not maintained: E J E 4  = 

24.9,  E 4 / E  6 = 11.15, E6/E8 = 9.1, Es/Elo = 8.0. Figure 1 shows a smooth conver- 
gence to the exact value. 
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(ii) H20, 1.5re, RHF 

This MP series is also strongly convergent, but Fig. 2 shows some disturbance 
between E6 and Eg. The numbers of terms after Eo needed so that the energy is 
within 10 -4, 10 -5, 10 -6 hartree of the exact value are 8, 10, 17. Again the early 
rapid convergence is not maintained: E2/E4 = 9.86, E4/E6 = 4.95, 17.6/E8 = 4.13, 
E8/El0 = 4,37. 

(iii) H 2 0  , 2re, RHF 

This MP series ultimately converges, as is clear from Fig. 3, but the numbers of 
terms after Eo needed so that the accuracy is 10 -3, 10 -4, 10 -5 hartree are 7, 13, 
24. It is noted that ~SE~ is 0.0037 hartree below the exact eigenvalue. The 
convergence is highly erratic, but the fact that the MP series converges at all is 
significant, especially when it is realised that the correlation energy at 2re (0.30) 
is 2.3 times that at re (0.13). In a full-CI calculation the coefficient of fro in the 
CI vector is 0.76, and so this is a good example where qJo cannot  be considered 
dominant. 

(iv) H20, 1.5r~, UHF 

The MP series in the UHF framework do not show the irregularities in behaviour 
of the RHF results. Figures 4-8 all appear smooth. It is significant that although 
the correlation energy (Exact-SCF) is smaller in the UHF formalism than in the 
RHF formalism, the convergence is very much slower, as is indicated by the fact 
that 23 terms are required so that the accuracy is within 10 -3 hartree. It is also 
noted from Fig. 4 that the graph passes through a minimum at E4o, which is 
0.00095 hartree below the exact value. Notice also that the convergence rate gets 
slower and slower: E2/E4 = 8.29, E4/E6 = 1.76, E6/E 8 = 1.38, Eft~El4 = 1.30. 

(V) H20 , 2re, UHF 

It is not certain that the MP series will converge; it appears that it will and to 
achieve 10 -4 hartree convergence it will need probably more than 200 terms! This 
is in spite of  the fact the correlation energy (0.092) is one third the RHF value 
(0.299). The convergence rate is obviously terribly slow; 17.2/17.4 = 25.13, E4/E6 = 
2.60, Elo/Elz = 1.08, E2o/E2z = 1.05, E3o/E32 = 1.04, E4o/E42 = 1.04. 

(vi) NH2, re, 1.5re and 2re, UHF 

The NH2 results are very similar to the H 2 0  (UHF) results, except that the 
numbers involved are smaller; for example the UHF correlation energy at 2re is 
0.059 compared to 0.091 for H20. On hindsight it is probably reasonable to argue 
that the similarity between the H 2 0  and N H  2 results is to be expected because 
the lb2 and 3al orbitals are doubly occupied in 0o for both of  these molecules. 

A principal curiosity of  these results is the poor convergence of the UHF MP 
series at 1.5re and 2r~. To understand further what is happening, it is interesting 
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to look at the values of the overlap 

Sk, -- (~kl 0k)1/2(6,16~) a/2" (10) 

In Table 4, the selected values of these overlaps are given for NH2 (r,, UHF) 
and NH2 (2re, UHF). The significant point is that the majority of Skt (k, l > 4 )  
are close to unity, for 2re indicating the successive Sk are only slowly changing. 
It does not appear to be generally known that this happens in perturbation theory 
at higher orders. For re the earlier Ok are sufficiently different to give convergence. 

Given the overall pattern of the convergence, one might ask whether there are 
any rational approximations involving the early terms in the series which approxi- 
mate to the infinite series. Some information on this aspect is given in Table 5. 
In the first row of the table the correlation energies are given, defined by the 
(exact eigenvalue - -  SCF value). In the second row, the approximation suggested 
by Pople et al. [11] for the series, 

Ecorr ~ -  (E2-~- E3)/(1 - E4/E2), (11) 

is given. This approximation is useful at re, according to these results, but at 
distorted geometries, especially for the UHF method, it is poor. At 1.5re for NH2, 
the error is 0.036 hartree. This i~ particularly disturbing for those who use this 
extrapolation. 

There then follows in the table four Pade approximants Ira, n], defined by 

ao+a lh  +" �9 "+anA n 
[m, n] = (12) 

l + b l h + "  �9 "+b,nh rn' 

Table 4. Selected values of Ski (Eq. 10) for NH2(re) and NH2(2re) 

NH2(re) NH2(2re) NH2(re) NH2(2re) 
l k =  16 k =  16 k =  10 k =  10 

2 0.1817 0.5690 0.0848 0.1843 

3 0.3481 0.7648 0.2698 0.6198 
4 0.5120 0.8541 0.4902 0.8331 

5 0.6460 0.9031 0.6855 0.9185 

6 0.7416 0.9317 0.8290 0.9599 

7 0.8080 0.9506 0.9144 0.9803 

8 0.8561 0.9641 0.9615 0.9909 

9 0.8931 0.9744 0.9857 0.9965 
10 0.9227 0.9822 0.9969 0.9992 

11 0.9469 0.9883 1.0000 1.0000 
12 0.9663 0.9929 - -  - -  

13 0.9813 0.9962 - -  - -  
14 0.9918 0.9984 - -  - -  

15 0.9980 0.9996 - -  - -  
16 1.0000 1.0000 - -  - -  
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the coefficients determined by fitting Eo, El, E2,..., Em+n to the h expansion of 
this. [m, n]* is the shifted approximant obtained by fitting E2, E3,..., Era+n+2 [12]. 

The [2, 2] (and [1, 1]*) are inferior to MP4, whereas the [3, 2] (and [2, 1]*) are 
much superior. However the approximation (11) is as good as the [3, 2], in general 
terms, and is of course much easier to calculate, because it does not rely on Es. 
However it must be said that the figures demonstrate why rational approximations 
will not give chemical accuracy (0.001 hartree) in these energies - -  the erratic 
behaviour of the RHF series and the extremly slow convergence of the UHF 
series away from equilibrium precludes high accuracy rational approximations. 

Bartlett and Shavitt [12] have also examined in some detail the Pade approximants 
to MP series. However in their case they only considered the contributions to Ek 
from double excitation diagrams, at equilibrium geometry, but with a considerably 
better basis set. The fact that their series is similar to our Fig. 1 indicates that 
the convergence patterns presented in this paper would probably be maintained 
if substantially larger basis sets were used. 

That the U H F  series is so slowly convergent away from equilibrium is a matter 
for serious concern. It must be linked to the fact that <S 2> for ~0o (for NH2) at re, 
1.5re and 2re is 0.752, 1.661, 2.51 respectively. 

There have also been other systems for which higher order terms in the MP series 
have been determined. In our earlier publication, we also considered BH, 
CH2(1A~), Be2 and Be. The CH2 and BH calculations, performed at equilibrium 
geometry, showed the same features as H20 at re, whereas the Be2 and Be showed 
a similarity to the UHF NH2 at re, being very smooth, but dipping below the 
exact value before the ultimate convergence. Laidig et al. [10] also treated Be2 
BH, HF and H20, going only as far as E5 for the last two molecules. Laidig et 
al. argue that [2, 1]* may be a useful approximation if E5 is known, but our 
results on NH2 and H20 in the UHF approximation show that it can also be 
poor. We also observe that all higher perturbation energies Ek can be positive 
or negative. 

In summary we may try to answer the questions posed in the introduction. 

(a) Evidence from these results is that the MP series will converge for most 
molecular calculations. Even at our distorted geometries, the series appear ulti- 
mately to converge. 

(b) At equilibrium geometries of the well behaved molecules we have considered, 
the MP series is rapidly convergent. Away from equilibrium, the RHF series are 
erratic and the UHF series are smooth but very slowly convergent. 

(c) At equilibrium, the formula (11) appears to be better than the corresponding 
Pade approximant,  and, in our limited experience, will be useful. However away 
from equilibrium, the value of such approximations must become limited, as is 
demonstrated for the U H F  calculations at 1.5re. 
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