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An analysis of the ‘linear combination of atomic orbitals’ approximation using the accurate 
molecular orbital equations shows that it does not lead to equations of the form usually 
assumed in the semi-empirical molecular orbital method. A new semi-empirical method is 
proposed, therefore, in terms of equivalent orbitals. The equations obtaiiied, which do have 
the usual form, are applicable to a large class of molecules and do not involve the approxima­
tions that were thought necessary. In this method the ionization potentials are calculated by 
treating certain integrals as semi-empirical parameters. The value of these parameters is 
discussed in terms of the localization of equivalent orbitals and some approximate rules are 
suggested. As an illustration the ionization potentials of the paraffin series are considered and 
good agreement between the observed and calculated values is found.

1 . I n t r o d u c t io n

Both the electron pair and the molecular orbital theories of valency lead to equations 
whose solutions, even for simple molecules, involve heavy numerical computation. 
To avoid this, semi-empirical theories have been developed in which the integrals are 
not ealculated directly, but determined by comparison with experiment. Molecules 
containing the same atoms, or groups of atoms, can usually be described in terms of 
the same integrals, so that the values of the integral parameters can be extensively 
checked. Such methods may be regarded as linking together a large number of 
experimental results by means of a small number of empirical parameters and the 
theoretically derived equations.

The particular theory that uses molecular orbitals has been very fruitful. I t  has 
been used by Hiickel (1931) and others to discuss the mobile electrons of conjugated 
molecules. The symmetry of the orbitals of these electrons, which enables them to 
be considered apart from the rest of the molecule, and the fact that orbitals of carbon 
atoms only are needed, mean that two parameters, usually called a  and ft, are 
sufficient for the description of a large number of these molecules. Despite its 
undoubted success in predicting and correlating various properties of molecules, 
there are a number of features of the theory which cannot be considered satisfactory. 
The scheme of calculation that is used was based originally on arguments partly 
mathematical and partly physical, and so could only be justified by its agreement 
with experiment. Attempts have been made, particularly by Mulliken (1949), to lay 
a more rigorous foundation using the ‘linear combination of atomic orbitals’ 
approximation but, as yet, the precise definition of the integrals and the reasons for 
the limitations of the theory have not been given. This means that any attempt to 
extend the theory to other molecules or to other types of bond is difficult. Some of the 
difficulties have been discussed in a recent paper by Moffitt (1949) and have led him 
to propose a method of calculation for heteronuclear molecules using equations of 
a rather different form.
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The explicit molecular orbital equations which have been obtained by Lennard- 
Jones (1949) open up the possibility of examining the foundations of the semi- 
empirical method rigorously. In this paper it will be shown that this examination 
leads to a new semi-empirical method founded on ionization potentials rather than 
total energies and applicable to any saturated molecule.

2. The ‘linear  combination of atomic o rbitals’ approxim ation

The ‘linear combination of atomic orbitals’ approximation, developed by 
Lennard-Jones (1929, 1937), Mulliken (1935 a) and others, has been considered the 
best foundation for the semi-empirical method. I t  seeks to find the molecular 
orbitals by expanding them in terms of a number of atomic orbitals centred on each 
atom in the molecule. Ideally, this set of orbitals should include a complete ortho­
normal set, but in practice it is assumed that a linear combination of a finite number 
of atomic orbitals will be a close approximation to a molecular orbital.

The molecular orbital equations (Lennard-Jones 1949) for a molecule in a singlet 
ground state may be written in the variational form*

S  [# < { (# +  r  + A ) f {- E M d x  =  0, (2-01)

where = 1, ...,N )  are the doubly-occupied molecular orbitals, H  is the Hamil­
tonian for an electron in the field of the bare nuclei,
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V = 2 £  f e n{llr12) ftndx2,
n J

(2-02)

A fti •=* -  2  a)
n J

(2-03)

and Eu = J friiH + V  + A) fcdx. (2-04)

Let us now assume, in accordance with the linear combination of atomic orbitals 
method, that each molecular orbital can be expressed approximately as a series of
atomic orbitals m

f i i  =  Z  (* =  —»JV) (2-05)
j= 1

where M, the number of the atomic orbitals o)j, is in general larger than N. Although
it might be possible to decide, for a given value of , which atomic orbitals gave the
most accurate approximation, it is usual to consider the o)j as a set of known ortho-
normal functions. The problem, therefore, is to determine the coefficients which
yield the most accurate approximation to the molecular orbitals. I t  can be solved
by varying these coefficients and using the calculus of variations. The variation takes
the form M

=  (2-06)
1

and the functions V and A  become
M

V  — 22  2  (2*07)
n jk

* All summations, unless otherwise indicated, are over the occupied orbitals i  =  1, 2, ..., A7.



where
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M

A l j f i  —  2  2  t2,no^'nqa i p <̂ o p (i*q>
n ojpq

^ j k  =  j 0)j ( ^ l r l2 )  Mk ^ X 2-
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(2-08)

(2-09)

This leads to equations determining the coefficients
M l M \

2  Otr \̂ir+ 2  2  anjank [2 (Ij| | ( \ & | - Eu au = 0
r { jk  n )

where <^r — I TolH(i>rdx,

( 2 -10)

( 2- 11)

(l, \ $ \  rk) =  f<S,(l)Sj(2)(l/ri2)wr( l ) « t (2)<te1d r !!. (2-12)

The form of these equations is of particular interest. They are cubic in the coefficients 
and there ar &NMof them.

Equations (2-10) do not have the form that the semi-empirical theory has always 
assumed. Instead, this theory has used linear equations leading to a single secular 
equation for all the molecular orbitals. This failure of the atomic orbital approxim­
ation to lead to equations of the expected form is due to the fact that the matrix a{i is 
rectangular. This means that it does not have a left inverse and, consequently,
that the factor „  _ ,0 , 0,^ n j^ n k  (2*13)

in equations (2-10) does not simplify. This can be avoided by using only N  atomic 
orbitals and making square, for then equations (2*10) become

(2-14) 

(2-15)

2  airier  + 2  [2 (Ij| & | rj) -  (Ij I | jr)]} -  = 0
r j

2 a ir $ir — E  ft  =  0,

where $ir — j(t)i(H + V o)rdx. (2*16)

Equations (2-15) are linear and homogeneous and, therefore, can be solved only if
the consistency equation

$lr ~ I^ii $lr (2-17)

is satisfied. Since Eu has not yet been determined, the roots of this equation are the 
values of ^  corresponding to the approximate molecular orbitals For each of 
these Eu ,equations (2-15) can be solved and the matrix found.

These equations are undoubtedly of the form that was expected, but the sacrifice 
of all but N  of the atomic orbitals means that the approximation is very poor. The 
expansion (2*05) with M  = N  suggests adopting a rather different approach. I t  has 
the form of the transformations already discussed (Hall & Lennard-Jones 1950)

— 2 1'nXi’ (2*18)

where the i]riare now the accurate molecular orbitals determined by (2*01). These 
transformations leave invariant the determinantal wave function, from which
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equations (2-01) were derived, and express, therefore, the degrees of freedom of the 
orbitals among themselves. The Xi cannot be chosen arbitrarily but must satisfy the

equation (f? + F + A )Xl- S e ^ X m = 0, (2-19)
m

where eml = + V (2*20)

Under such a transformation it is not possible to transform the molecular orbitals 
into orbitals strictly localized around one atom, but it is possible to transform them 
into equivalent orbitals approximately localized around one or two atoms according 
as they correspond to inner shells or lone pairs or bonds. A description of the properties 
of these equivalent orbitals has been given in part VII (Hall & Lennard-Jones 1951).

This leads to the conclusion that, although the ‘linear combination of atomic 
orbitals’ approximation is of very great value for the qualitative description of 
molecules and may lead to a useful semi-empirical method (Moffitt 1949), it is not 
closely related to the existing semi-empirical method. On the other hand, the form 
of the equations suggests the formulation of an equivalent orbital semi-empirical 
method.

3. T h e  e q u iv a l e n t  o r b it a l  m e t h o d

The equivalent orbital method is based on the properties of the matrix emn, as 
discussed by Hall & Lennard-Jones (1950). In the molecular orbital description of 
a molecule this matrix is diagonal and, indeed, it is this property which defines 
a molecular orbital. The diagonal elements then have the physical significance 
of being nearly equal to thq negative of the vertical ionization potentials of electrons 
in the corresponding molecular orbitals. The matrix elements in an equivalent 
orbital description do not have the same physical significance. They‘are defined as 
the matrix elements, with respect to two equivalent orbitals Xm an<̂  Xn> ° f  the self- 
consistent Hamiltonian, which is the same for all occupied orbitals and invariant 
under transformations of these orbitals,

emn = j x m(H + v  + A )x ndx. (3-01)

Consequently, if two equivalent orbitals xm and Xn bear the same relation to each 
other as do another pair Xxand then their matrix elements will be identical,

(>'xy • (3*02)

For a molecule composed of a small number of sets of equivalent orbitals this reduces 
the number of independent matrix elements very considerably.

Let us now consider the problem of finding the ionization potentials and the 
molecular orbitals from known equivalent orbitals and their matrix elements 
Since the transformation matrix Tu, for which

— .2 (3*03) 1
also transforms the matrix emn

Eii~ 2  T m } T jn ,
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the problem is to find the matrix Tit for which Etj is in diagonal form. This can be 
done by solving the eigenvalue equations

2 e lmxm = Ezt. (3-05)
m

For these homogeneous linear equations to be consistent they must satisfy the 
condition -I I =  0. (3-06)
The roots of the equation are the required molecular orbital quantities Enn. The 
corresponding eigenvectors otffl are found by solving equation (3*05). These eigen­
vectors determine the required matrix Tit according to the relation

Til = x(?\(3-07)
so that the molecular orbitals can be found. These equations are similar to those 
obtained in the previous section for the specially simple case M  despite the 
fact that this is an accurate method whereas any ‘linear combination of atomic 
orbitals’ method involves approximation.

Equation (3-06) enables us to calculate ionization potentials knowing only the 
equivalent orbitals quantities elm. This can be made the basis of a semi-empirical 
method by treating these matrix elements as parameters to be found from the 
observed ionization potentials. Since the character of the representation spanned by 
the equivalent orbitals is easily found from the corresponding inner shells, lone pairs 
or bonds, it is often possible to simplify these calculations by using group theory.

Although this semi-empirical method is of a familiar form it differs in many respects 
from that used hitherto. In the first place, it has been rigorously deduced from the 
quantum mechanical equations. Apart from the assumption that the electrons can 
be assigned to orbitals, there are no approximations made. In particular, since the 
determinantal wave function, from which the orbital equations were deduced, 
satisfies the Pauli principle, all the exchange effects are included. This also means 
that the quantities involved are precisely defined and can be calculated theoretically 
once the molecular orbital equations are solved. Furthermore, the method can be 
applied to the ground state of any molecule, provided that this state is a singlet and 
that the molecular orbitals are doubly occupied and can be transformed into a number 
of sets of equivalent orbitals. The latter condition has been discussed in part VI 
(Hall 1950) and it is probable that all saturated molecules having a singlet ground 
state will satisfy it. I t  is intended in a further paper to propose an extension of the 
method applicable to conjugated molecules. Thus the scope of this method is very 
much greater than that of the previous method. Another difference is in the 
connecting link between theory and experiment. Hitherto it has been customary 
to use thermo-chemical quantities such as resonance energies for this purpose but, 
in this theory, the total energy of a molecule is equal to

^{H nn + Enn),(3-08)
n

and so is not simply related to the quantities in the secular equation. Instead, the 
vertical ionization potentials are used, because a calculation of these quantities 
(Hall & Lennard-Jones 1950) shows that they are approximately equal to the 
negative of the molecular orbitals quantities Enn.

Molecular orbital theory of chemical valency. 545
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4. E x p e r im e n t a l  io n iz a t io n  p o t e n t ia l s

Ionization potentials are obtained experimentally from two sources, electron 
impact experiments and spectra in the vacuum ultra-violet. Results from these 
sources do not quite agree, for the electron impact potentials are always a little higher 
than those derived from spectra. This has been explained (Honig 1948) by saying 
that the electron impact potential is a vertical potential, whereas the spectral 
transitions are not quite vertical. Since the theoretical quantities are vertical 
ionization potentials, we must, therefore, prefer the electron impact values. This is 
unfortunate, since these experiments are not of an accuracy comparable with the 
measurements on spectra. In  identifying the observed and theoretical ionization 
potentials the assumption is made that the vibrational energy is the same in the 
neutral and the ionized states of the molecule. This is a good approximation for many 
molecules, but corrections may have to be applied for some smaller molecules.

A further difficulty is that, except for one or two special cases, we have no 
experimental information about any ionization potential other than tha t of the most 
loosely bound electron in each molecule. This leads to complications when we wish 
to determine the semi-empirical parameters, but once these are known, the remaining 
ionization potentials can be deduced from them and used to interpret experimental 
results.

5. M e t h a n e  a n d  e t h a n e

To illustrate the method we shall now discuss the ionization potentials of the 
methane and ethane molecules. The ten electrons of the methane molecule can be 
assigned to five doubly occupied orbitals. In  a molecular orbital description of the 
molecule these occupied orbitals are the carbon Is orbital, a molecular orbital of 
symmetry A x and three molecular orbitals spanning the triply degenerate Tx 
representation. This carbon inner shell may also, without loss of generality, be taken 
as a single equivalent orbital. The remaining four molecular orbitals can be trans­
formed into four equivalent orbitals corresponding to the CH bonds. The various 
matrix elements elm for these equivalent orbitals can have only two distinct values. 
I f  a is the matrix element for a OH bond, and 6 for the interaction between two bonds, 
the matrix is of the form

b b 
a b 
6 a 
b b

(5 -01)

From this matrix the values of the molecular orbital quantities may be obtained
using equation (3-06), which now becomes

a — E  b b
b a — E  b 
b b a — E
6 6 6

6
6
6

a — E

= 0. (5-02)
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Since the Is shell is already a molecular orbital, it factorizes out of the equation and 
so may be omitted. The triple root of this equation ( b) corresponds to the three 
Tx orbitals, and the single root (a + 36) to the A 1 molecular orbital. Thus the molecular 
orbital matrix, into which elm can be transformed, is

fa + 36
a — b

Jlm a — b
(5-03)

Of the two ionization potentials
Ix — — {a — 6), 36), (5-04)

the triply degenerate / x will be the smaller.
The experimental ionization potential is 13*04 ±0-02 (Honig 1948) but there is 

no experimental value available for the other potential. Mulliken (1935 6) estimated 
this second potential at 22*0 on the basis of a first potential of 14*4. With our present 
more accurate value for the first potential, a second potential of 20*0 would be 
a better estimate. Thus we have

a — b = —13, a + 36 = —20, (5*05)
so that a = -14*75, 6 = -1*75. (5*06)
Because of the uncertainty in the second potential, these values for a and 6 can only 
be taken as showing their order of magnitude.

Table 1. Matrix  elements for the equivalent orbitals of ethane

CxC2 CiHW CXH<2> c2h «
C1C2 c d d d
CiHM d a b f
CjH*2) d b a 9
CaH « d f 9 a

The ethane molecule can be treated in much the same way. The Is orbitals 
factorize out leaving six equivalent CH bond orbitals and a CC bond orbital. I f  we 
assume the Dzd model of the molecule, six parameters are required tq set up the 
equation for the ionization potential. These are most conveniently defined in the 
form of table 1. In  this table, the equivalent orbital corresponding to CjH(1) trans­
forms into the one corresponding to C2H(1) under the inversion operation. Using 
these parameters we can set up the matrix elm and hence the equation for the molecular 
orbital Enn

c — E d d d d d d
d a —E 6 6 f 9 9
d 6 a — E 6 9 f 9
d 6 6 a — E 9 9 f
d / 9 9 a — E 6 6
d 9 f 9 6 a — E 6
d 9 9 f 6 6 a - E

0. (5*07)
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The solution of (5-.07) is simplified by the symmetry of the molecule. These seven 
orbitals span a reducible representation of the group which splits up according to 
the reduction 2 A lg + A  2m + Eg + (5- 08)

Now, if we transform the orbitals according to a transformation

^ n = ^ T nlXh (5’6 * * 09)l
the elements of the secular equations transform to
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2  e i j  T nj

= W nietl. (6-10)
a

The matrix Tnl, which transforms equivalent orbitals to symmetry orbitals, is easily 
written down from the irreducible representations (5*08)

Vi Vi Vi Vi Vi Vi
Vi Vi Vi — Vi ‘“ Vi -  Vi
Vi '~ VtV -VA Vi -VtV -  VtV

i - i . i - i
Vi '~ VtV — VlV ~ Vi VtV ViV

• i - i . - i i

(5-11)

By means of this matrix and equation (5*10), the secular equation can be factorized 
and the result written down immediately

c — E  
V6 d

*j6d
ci 4- 26 %g — E \ = (2A lg),

|
(5-12)

E = a + 2b—/ — 2 (5-13)

E  = a - h + f - g , (5-14)

E = a — b —f  +g, {K (5-15)

Since /  and g are probably small, this means that there are two doubly degenerate 
potentials, one on each side of ( — « + &), two singly degenerate potentials in the 
neighbourhood of (— a — 2b)and one potential near — c. From our knowledge of the 
relative strength of these bonds we expert the lowest ionization potential to be that 
of an electron concentrated around the carbon atoms, so that the smaller root of the 
equation (5-12) will give the observed ionization potential. The observed potential 
is 11*76 (Honig 1948) but, since no others are known, we cannot solve the equations 
without further simplification.

6. A THEORY OF THE PARAMETERS

Since there are not enough experimental data available to determine all the
parameters necessary in the exact theory, we must reduce the number of independent
parameters by introducing various approximations. Theoretical considerations
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suggest particular approximations, but these can only be justified if they give 
agreement with experiment. As the empirical theory of the values of the parameters 
develops it should be possible to test these approximations and suggest better ones.

In parts IV and VI (Lennard-Jones & Pople 1950; Hall 1950) the nature of 
equivalent orbitals has been discussed, and arguments have been given for regarding 
them as almost localized. This has several implications for the values of the para­
meters. In the first place, the interaction parameters between two almost localized 
orbitals will decrease rapidly as the orbitals become further apart. This means, for 
a saturated molecule in which there are no strong polar groups, that the interactions 
between orbitals which are not immediate neighbours are small compared with the 
interactions of neighbours.

Localization implies also that an equivalent orbital is determined by the nature 
of the atom or atoms around which it is concentrated. This means that the matrix 
elements between two orbitals will be invariant if the atoms concerned are the same 
chemically. Since the localization is not strict, neighbouring atoms influence the 
parameters and the invariance is only an approximation. The largest effect on an 
orbital is that due to other orbitals on the same atom or atoms. These may, for 
example, change the effective field around the nucleus and so alter the parameters. 
A change in the value of a parameter due to an alteration of a neighbouring orbital 
may be called an inductive effect. To avoid these complications we shall adopt the 
more accurate approximation that chemically equivalent orbitals give rise to the 
same equalities of parameters as if they were mathematically equivalent. Orbitals, 
in the same or in different molecules, are called chemically equivalent if they are 
concentrated around similar atoms and have the same immediate neighbours.

Thus, in the ethane molecule, we should expect the param eters/ and g to be small 
and the parameters a and b to be nearly equal to the corresponding parameters 
a and b for methane. The latter is probably not a good approximation, for there may 
be an inductive effect due to the difference in neighbouring orbitals.

Molecular orbital theory of chemical valency.

7. T h e  p a r a f f in  s e r ie s

As a further illustration of the method and as an empirical justification for some of 
the approximations suggested above, we shall now consider the series of saturated 
hydrocarbons. I t  is necessary first to discuss an infinite chain of CH2 groups staggered 
about a line but having all the carbon atoms in one plane. We shall include all the 
first and second neighbour interactions and neglect all others. The parameters 
required are defined in table 2. In this table the CnH(1) equivalent orbital inverts into 
the Cn+1H(2) orbital. The equation for the molecular orbital quantities is infinite but 
has a periodic form consisting of blocks along the diagonal such as

. f  g d b a — E  d f  
h Jc k e d d c — E d
. . . . d f  d a —E
. . . . /  g d

h 1c Jc

g k ........................
d e . .  
b d g . .

d f  . .
c —E d

. . (7*01)

Vol. 205. A.

e
b a — E 
d d

36
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Table 2. Matrix  elem ents for the equivalent  orbitals of a pa r a ffin

c„_1c„ CnH « C„H® c„cn+1 Cn+1H « C„+1H<2>

Cn_xCn
CnH«

c
d

d
a

d
b

e
d 9 f

h
k

CnH<2> d b a d f 9 k
cncn+1
C„+1HW

e d
9

d
f

c
d

d
a

d
b

e
d

Cn+1H<2> . f 9 d b a d

A secular equation of this kind is most easily solved by substituting in the linear 
equations from which it arises. I f  we denote by and rn the coefficients of the
CC equivalent orbital and the two CH equivalent orbitals respectively of the 
nth  CH2 group, then the substitution is

pn = p e in0,qn = qein0, rn rein6, (7 -02 )

where p, q and r remain to be determined and 6 is arbitrary. This reduces the infinite 
set of equations to the finite set

(c + 2ecos6 + 2hcos26— E ) p  + (d +2k cos = 0, (7-03)

(d + 2kcos6)p + (a+2gcos6 — = 0, (7*04)

(d + 2kcos6)p + (b + 2 + cos6)q+(a + 2gcos6 = 0, (7*05)

and hence to the secular equation

c + 2e cos 6 + 2h cos 26 — Ed + 2k cos 6 d + 2k cos 6
d +2k cos 6 a + 2 6+ 2 /cos# 

d +2k cos 6 6+  2 /cos# a + 2g cos 0 — E
= 0. (7-06)

The substitution is equivalent to using the irreducible representations of the 
translation subgroup of the symmetry group of the molecule. Equation (7*06) can be 
simplified by using the symmetry plane of the molecule. This is equivalent to using 
the transformation matrix .x

• Vi Vi
• Vi -Vi

(7-07)

to give
c + 2e cos 6 + 2hcos 

^2(d + 2k cos
*J2 (d + 2k cos 6) 

a + b + 2g cos 6 + 2 /cos
(7-08)

E — a — 6 + 2gcos 6 — 2fcos 6.(7-09)

From these equations the general distribution of the potentials is easily deduced. 
There is a band of potentials around the value (a — b) and two interacting bands 
around c and (a + b).The observed potential, as before, is expected to be the smallest 
appearing in (7-08).

The ionization potentials for a finite molecule containing s CC bonds can be 
deduced from these results if we impose the condition that the zeroth and the
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(5 + l)th equivalent orbitals have zero coefficients. This condition means that, instead 
of (7-02), we use the transformations

Pn = psinnd, qn = qsix rn — rsinnd, (^'lO)

where 6 satisfies the equation sin ($+ 1 = 0,

and hence 6 = m7Tj(s+l) 1,

(7-11)

(7-12)

This leads to the equations (7*08) and (7*09) as before. For a finite molecule this 
method is not exact, because the number of CH bond interactions included is always 
four less than the correct number. This inaccuracy arises at the ends and means tha t 
the extreme carbon atoms have not their right number of CH bonds. For large 
molecules this should have little effect, but for a smaller molecule such as ethane the 
equations would not apply. There is also a small approximation involving the second 
neighbour CC-CC interaction only but since we shall be neglecting this interaction, i t  
need not be discussed.

If  we neglect the second neighbour interactions, equation (7*08) becomes

c + 2e cos 
<j2d

Since c and e are negative, the smallest root occurs when 
$ as a function of s by

(7-13)

0 = njs + 1

S7rj(s -f 1). If  we define 

(7-14)

then the observed ionization potentials for the series should be the lower roots of the 
equation c -2 e  cos <f>-E J2d

*j2d a + b — E
(7*15)

8. N umerical results

There are several difficulties in applying equation (7*15) to the experimental 
ionization potentials. The four parameters c, d and a + b must first be determined 
using observed values of E. The equation can be written

c — 2ecos(j> — 2d2/(a + b — E) — E = 0, (8*01)

but, even in this form, it is not linear in all the parameters and would be difficult to 
solve exactly. To avoid this difficulty a fixed value for a + b was taken and the 
equations solved for the variables c, e and d2. This was repeated for several values 
oi a + b and the best agreement with experiment was obtained using

a + b = — 12-0. (8*02)

Since the equations which were obtained were ill-conditioned, it was not possible to 
apply small corrections to this estimate, and it cannot be considered very accurate. 
With this value of a + b, three equations are needed to complete the solution. Since 
the differences between the ionization potentials are not large, it was thought better 
to use a least squares method and fit the parameters to the experimental results as 
a whole. Accordingly, the observed ionization potentials (Honig 1948) for the series
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from propane to decane were used, each being assigned, equal weight. The values 
obtained for the parameters were

c = - 1 3 - 2 4 8 6 ,  e = - 1-4785 , =  ±  0 -4678 . (8 -03)

Of these, the value of dis the least reliable, since it depends sensitively on the value 
of ( a + b) assumed.

T a b l e  3. E x p e r im e n t a l  a n d  c a l c u l a t e d  io n iz a t io n  p o t e n t ia l s

552 G. G. Hall

calculated experimental
propane 11-214 11-21
butane 10-795 10-80
pentane 10-554 10-55
hexane 10-412 10-43
heptane 10-323 10-35
octane 10-265 10-24
nonane 10-224 10-21
decane 10-194 10-19

From these values of the parameters it is not difficult to deduce the ionization 
potentials. These are set out in table 3. Since the quoted experimental error is 
± 0-02, this agreement is as good as can be expected and justifies the approximation 
of neglecting second neighbour interactions.

The author wishes to acknowledge his thanks to Sir John Lennard-Jones for 
many interesting discussions and valuable suggestions.
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