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Resummation methods can significantly improve the accuracy of ab initio elec-
tronic structure computations without increasing the computational cost. For
perturbation theories, resummation methods can be designed by constructing
approximants to model the known singularity structure of the theory in the
complex plane of the perturbation parameter. Quadratic approximants for the
fourth-order Møller–Plesset perturbation theory (MP4) greatly improve the ac-
curacy for the ground-state energy and provide information about singularity
positions that can be used to select an optimal summation method. The Cou-
pled cluster theories CCSD (coupled clusters with single and double excita-
tions), CCSDT (with triple excitations), CCSDTQ (with quadruple excitations),
and CCSD(T) (with a triples correction from perturbation theory) can be re-
summed using approximants that model the empirically observed convergence
patterns of the Hartree–Fock (HF), CCSD, CCSD(T) and HF, CCSD, CCSDT,
CCSDTQ sequences. Coupling-constant perturbation theories of molecular vi-
bration and of atoms in external fields, and semiclassical perturbation theories
also benefit from appropriate approximants. C© 2011 John Wiley & Sons Ltd.
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INTRODUCTION

P erturbation theory (PT) offers a systematic tech-
nique for obtaining solutions to eigenvalue equa-

tions. In principle, it constructs a sequence of in-
creasingly accurate approximations to the eigenvalue
starting with the exact solution of a simpler equa-
tion. It would seem an obvious method for quantum
chemical calculations, given that the Hartree–Fock
(HF) approximation yields a qualitatively reasonable
and computationally tractable approximate model.
The most popular of the PTs that use the HF ap-
proximation as the starting point is the Møller–Plesset
perturbation theory (MPPT),1–4 which uses the sum
of Fock operators as the zeroth-order approximation
for the Hamiltonian. This theory and closely related
coupled-cluster (CC) theories are the main subjects of
this review.

PTs typically are formulated by introducing an
expansion parameter as a measure of the strength
of the perturbation. In the Schrödinger equation,

∗Correspondence to: dgoodson@umassd.edu
1Department of Chemistry & Biochemistry, University of Mas-
sachusetts, Dartmouth, North Dartmouth, Massachusetts, USA

DOI: 10.1002/wcms.92

Ĥ� = E�, theHamiltonian can be written as

Ĥ(z) = Ĥ0 + z(Ĥphys − Ĥ0), (1)

whereĤphys is the true Hamiltonian, z is the perturba-
tion parameter, and Ĥ0�0 = E0�0 is a computation-
ally tractable initial approximation. By construction,
the true Schrödinger equation corresponds to z = 1.
The PT algorithm2 gives a solution in the form of an
infinite power series,

E ∼
∞∑
j=0

Ej z j . (2)

It is rarely possible in practice to calculate an infinite
number of terms. Usually, one must truncate the series
at some finite-order n,

E ∼
n∑

j=0

Ej z j . (3)

In the case of MPPT, n = 4 is typically the highest
order computationally tractable. The series can be
computed to higher orders for small molecules, and
these provide important benchmarks for theoretical
understanding.

Note that Eq. (3) is a polynomial. Finite-
order PT yields a polynomial approximation for
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the eigenvalue. The true function E(z) has a much
more complicated functional form than a polynomial.
‘Resummation’ consists transforming Eq. (3) into a
new functional form that more closely resembles the
true E(z). This can give a significantly more accurate
estimate for the physical E at virtually no additional
computational cost.

We begin with a review of relevant background
from complex analysis. The central idea is that failure
of the polynomial approximation is due to singulari-
ties in E(z) at particular values of z in the complex
plane. The singularity structure of E(z) for MPPT
can, to some extent, be predicted in advance from
general principles. This is the topic of the section
Singularity Structure of Møller–Plesset Perturbation
Theory. Modeling the Singularities describes the use
of approximants to model the singularity structure
while Moving the Singularities describes the use of
conformal mappings to shift the positions of singu-
larities in order to mitigate their effect. A mixed ap-
proach that uses an approximant and a conformal
mapping provides a useful technique for improving
fourth-order MPPT. As an added benefit, it gives
estimates of singularity positions that inform the se-
lection of an appropriate computational method. The
section Coupled-Cluster Theories considers CC the-
ories and Other Applications gives a brief overview
of resummation methods for other kinds of perturba-
tion theories. Conclusions presents a recommended
strategy for choosing an appropriate method for an
electronic structure computation.

MATHEMATICAL BACKGROUND

Let Ĥ0 be the zeroth-order approximation for the
Hamiltonian operator Ĥ. The zeroth-order energy E0

is then the sum of filled electron orbital energies. The
‘Hartree–Fock approximation’ for the energy is E ≈
E0 + E1, corresponding to the first-order perturbation
series evaluated at z = 1. The second-order approxi-
mation E0 + E1 + E2 is called MP2 and, in general,∑n

j=0 Ej is called MPn.
Because the physical solution corresponds to z =

1, the perturbation parameter is usually not explic-
itly included in the analysis. However, to understand
MPn convergence, it is important to keep in mind that
what we are doing is expanding a function in a Taylor
series about z = 0 and then evaluating the series at
z = 1. The Taylor series, expressed as a polynomial
in z, can be used to construct a function E(z) where z
is a free variable in the complex plane.

The modern theory of functions of a complex
variable is largely based on the idea of building up

a function from its singular points. A singular point
(also called a singularity) is a point where the func-
tion or its derivative becomes infinite or undefined,
or where the function becomes multiple valued. The
kinds of singular points relevant to the present discus-
sion are poles and branch points. A point zs is a pole if
the singular behavior can be removed by multiplying
the function by (z − zs)m, where m is a positive inte-
ger and limz→zs (z − zs)m f (z) is nonzero. The value of
m is called the order of the pole. A branch point is a
point at which the function becomes multiple valued.
For example, f(z) = (z − 1)1/2 has two branches: the
positive branch, on which 41/2 = +2, and the neg-
ative branch, on which 41/2 = −2. If one continues
f(z) = (z − 1)1/2 on the positive branch from z = 5 for
decreasing real z, the function remains well defined,
and single valued, until the branch point at z = 1
is reached, where the positive and negative branches
give the same value, f = 0. Continuing on a closed path
in the complex plane around a branch point causes a
transition from one branch to another. For example,
continuing along the circular path z = 5eiθ for θ from
0 to 2π , we transform f on the positive branch from
(5e0 − 1)1/2 = 2 to

(5e2π i − 1)1/2 = eπ i (5 − e−2π i )1/2

= (−1)(5 − 1)1/2

= −2.

The central importance of singular points in the
theory of infinite series comes from the following the-
orem:

Theorem 1. The Taylor series about a point z0 of a
function over the complex z plane will converge at
a value z1 if the function is nonsingular at all values
of z in the circular region centered at z0 with radius
|z1 − z0|. If the function has a singular point zs such
that |zs − z0| < |z1 − z0|, then the series will diverge
when evaluated at z1.

The radius of the circle defined by all z such that
|z0 − z| = |z0 − zs| is called the radius of convergence of
the series. A function within its circle of convergence
is said to be analytic. A function that is analytic at all
noninfinite points in the complex plane is said to be
entire. In particular, a polynomial of finite order, such
as Eq. (3), is an entire function. Therein lies the dif-
ficulty with MPPT. The true function E(z) has a rich
singularity structure (described in the next section).
The MP series tries to model this with a function that
is nonsingular.

The following related theorem was proved by
Darboux5,6:
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FIGURE 1 | Typical convergence patterns for Møller–Plesset
perturbation theory, given by the model functions fa and fb of Eq. (4).

Theorem 2. In the limit of large order, the series co-
efficients become equivalent to the Taylor series coef-
ficients of the singularity closest to the origin.

These theorems are important but they are not the
whole story. The convergence or divergence they
predict is guaranteed to happen eventually, in the
limit of large order, but at low orders a divergent
series might seem to converge quite well. Indeed,
there are many examples of MP series that diverge
at large order but for which fourth-order PT (MP4)
gives a very accurate ground-state energy. There are
also molecules for which the series is convergent, but
only at a very slow rate, so that MP4 is not very
accurate.7–15

Consider the following two functions:

fa(z) = 0.850 + (0.425)

×
√

(1.05 + 0.35i − z)(1.05 − 0.35i − z), (4a)

fb(z) = 0.713 + (0.214)
√

z + 0.8. (4b)

At z = 1, we have fa(1) = fb(1) = 1.00. The Taylor
series of fa about z = 0 is convergent at z = 1, with ra-
dius of convergence 1.107, while the Taylor series of
fb is divergent, with radius of convergence 0.8. Nev-
ertheless, at low orders the series for fa is less accurate
than the series for fb. The convergence behaviors of
these two series are compared in Figure 1. The very
slow convergence for fa is due to the fact that the
singular points are close to the point of summation,
z = 1. Some of the more intractable MP series have
a complex–conjugate pair of singularities just beyond
the physical point z = 1. This happens when there is
a low-lying excited state with the same symmetry as
the ground state.

When the HF solution is used as the zeroth-
order approximation, the theory is formulated within
a finite-dimension Hilbert space. The operators Ĥ0

and Ĥ1 can then be expressed as matrices H0, H1.
The following theorem describes the solutions of a
matrix eigenvalue equation:

Theorem 3. The eigenvalues E of an n × n matrix H
are the roots of the polynomial

p(E) = det(H − EI),

where I is the n × n identity matrix.

Here, ‘det’ is the matrix determinant; p(E) is called
the characteristic polynomial.

SINGULARITY STRUCTURE OF
MØLLER–PLESSET PERTURBATION
THEORY

Square-Root Branch Points
Consider a 2 × 2 matrix eigenvalue equation

(H0 + zH1)v = Ev,

H0 =
(

a0 0
0 b0

)
,

H1 =
(

a1 c
c b1

)
, (5)

where v is a two-dimensional column vector and the
unperturbed eigenvalues are given in increasing order,
i.e., a0 < b0. The solutions for the eigenvalues are the
roots of the characteristic polynomial

p(E) = (a0 + za1 − E)(b0 + zb1 − E) − z2c2. (6)

Solving p(E) = 0 for E gives the two solutions:

E(z) = 1
2

[a + b ±
√

(b − a)2 + 4z2c2],

a = a0 + za1,

b = b0 + zb1. (7)

For any z on the real axis, E(z) is nonsingular. How-
ever, there exist two complex values of z at which the
argument of the square root goes to zero and the two
branches cross,

z = b0 − a0

b1 − a1 ± 2ci
. (8)

These are branch-point singularities of E(z).
The nth degree characteristic polynomial of the

n × n matrix eigenvalue problem was analyzed by
Katz,16–18,a,b who proved the following:

Theorem 4. Consider an n × n matrix eigenvalue
problem H(z)v = Ev in which H is an Hermitian
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FIGURE 2 | Avoided crossings in a 5 × 5 matrix eigenvalue
perturbation theory as a function of the perturbation parameter z
along the real axis.

matrix and the elements of H are entire functions
of z. Assume that no two eigenvalues are equal at any
real value of z. Let E0(z), E1(z), E2(z), . . ., En(z) be the
eigenvalues of a given symmetry (e.g., with the same
angular momentum quantum numbers) in order of
increasing value. Then for each pair Ej(z), Ek(z) there
exists a complex–conjugate pair of branch points zjk,
z∗

jk, with nonzero imaginary parts, that connect the
functions Ej(z) and Ek(z). In the neighborhood of zjk

the functions behave as

Ejk ± γ jk
√

z − z jk,

with Ejk = Ej(zjk) = Ek(zjk) and

γ jk = 2
(

∂p
∂z

/
d2 p
dE2

) ∣∣∣∣
z=z jk,E=Ejk

, (9)

where p(E(z)) is the characteristic polynomial.

Thus, each branch Ej(z) of the energy function
will have n complex–conjugate pairs of square-root
branch points somewhere in the complex plane off
the real axis. If one plots the eigenvalues over a do-
main of real z they exhibit avoided crossings, avoided
because there are no branch points on the real axis.
This is illustrated by Figure 2, for a 5 × 5 matrix.
The real z value of closest approach between Ej and
Ek corresponds approximately to the real part of zjk.
The smaller the imaginary part of zjk, the sharper the
crossing.

Critical Point Singularities
Another kind of singularity, for MPPT, was predicted
by Stillinger.19 Suppose z in Eq. (1) is a negative real
number. zHphys contains interelectron potential en-

ergy as

z
∑
j<k

r−1
jk .

If z is negative, electrons no longer repel each other—
they attract each other. The operator Ĥ0 contains the
repulsive mean-field potential energy, a static poten-
tial field distributed according to the ground-state HF
orbitals. Because it is multiplied by (1 − z), this desta-
bilizing potential becomes stronger as z is made in-
creasingly negative. If the magnitude of the negative z
becomes sufficiently large, the system will ionize and,
in principle, rearrange itself into a bound electron
cluster dissociated from the nuclei.

A z value where binding undergoes a sudden
qualitative change is analogous to a critical point in
thermodynamics. This had been studied earlier by
Baker20 in the context of nuclear structure PT and
is a general phenomenon in the quantum mechan-
ics many-fermion systems.21 At the critical value of
z, E(z) switches to a different branch. It will have a
branch point somewhere on the negative real-z axis at
which the two branches have the same energy. Baker
showed that this is formally equivalent to a critical
point in the energy as a function of the volume of the
system.c The perturbation parameter plays the role of
temperature.

Does this contradict Katz’s theorem, which
claims that all the singular points have nonzero imagi-
nary part? No, it does not—the Baker–Stillinger anal-
ysis holds for the full infinite-dimension Hilbert space
but not for the finite-dimensional spaces used in prac-
tice. The perturbation series is asymptotically equal
not to the true ground-state energy eigenvalue but
rather to the exact solution for the lowest eigenvalue
of the finite-dimension Hamiltonian matrix. This ma-
trix eigenvalue is called the full configuration interac-
tion (FCI) approximation to the true energy.

Nevertheless, given a large enough finite-
dimension basis set, E(z) will presumably show singu-
lar behavior close to the real axis in the neighborhood
of the critical point. This was addressed by Sergeev
and coworkers22,23 with FCI computations as a func-
tion of z for a variety of atoms and small molecules.
They used various of the correlation-consistent basis
sets and found that the behavior of the eigenvalue
spectrum at negative z depended strongly on which
basis was used. For Ne with a compact basis set
(cc-pVDZ),24 no critical point was seen. If the ba-
sis was augmented with diffuse functions (aug-cc-
pVDZ),25 a sharp avoided crossing was seen at which
many states almost crossed near a particular nega-
tive real z. For z beyond the critical point, the ground
state was a fully ionized Ne8+ (due to the frozen-core
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FIGURE 3 | Branch points locations of the
ground-state Møller–Plesset energy function23

for the C2 molecule (cc-pVDZ basis), the
chloride ion (aug-cc-pVDZ), the N2 molecule
(cc-pVDZ), and the boron hydride molecule
(aug-cc-pVQZ). C2 and N2 are of class α|α,
Cl− is of class-β |α, and BH has a complicated
singularity structure, technically of class β |β
but best described as x|α. The circle marks the
physical point, z = 1.

approximation only valence electrons are affected)
and, in contrast to Stillinger’s prediction, there was
no electron cluster but rather 8 free electrons. This
was because the basis functions, all centered at the
nucleus, were unable to model a dissociated electron
cluster. By analyzing the large-order MP series, which
were extracted from the FCI computations, they iden-
tified (using approximants, as described in the next
section) clusters of Katz branch points very close to
the negative real axis.

They found that the hydrogen fluoride molecule
had a critical point even with a compact basis set.
Basis functions centered on the H atom were able to
model a bound cluster of the fluorine valence elec-
trons, giving in effect a H7− anion and a F7+ cation
separated by the z = 1 equilibrium bond distance
(which was held fixed for the computation). With the
cc-pVDZ basis, the critical point was far from the ori-
gin, at −1.28. With the aug-cc-pVDZ, it moved in to
−0.76.

There is yet another kind of singularity one can
find in E(z). Consider the effect of increasing z along
the real axis past z = 1. The mean-field potential
becomes attractive but electron correlation becomes
more strongly repulsive. Sergeev and coworkers22,23

found that for some systems, such as Ar with aug-cc-
pVDZ, the latter effect prevailed resulting in a critical
point at positive real z corresponding to one-electron
ionization. For most of the other systems that they
studied, the singularities in the positive half-plane
consisted only of isolated branch points off the real
axis.

Classification Schemes for MP Series
Various classification schemes have been proposed
for characterizing MP series. Schmidt et al.27 clas-
sified series according to the sign patterns of the Ej:
Those for which E3 and E4 have the same sign were

put in ‘class A’ while those for which E3 and E4

have different signs were put in ‘class B’. Cremer
and coworkers10,28–31 identified these sign patterns
with qualitative physical characteristics of the elec-
tronic structure. They noted that molecules for which
the valence electron distribution is spacious, such as
BH and CH2, have monotonic but slow class-A con-
vergence. In contrast, for molecules with a crowded
electron distribution, typically due to the presence of
highly electronegative atoms, the series coefficients
beyond the lowest orders alternate in sign but give
a relatively more accurate value for the energy. Cre-
mer and coworkers28,31 proposed that the spacious
electronic structure be called ‘type I’ and the crowded
structure, ‘type II’. They noted that the series behav-
ior for type II systems varies considerably depending
on the nature of the basis set.

An alternative is to classify systems according to
singularity structure.23,32 Let us describe an isolated
complex–conjugate pair of square-root branch points
as a ‘class-α’ singularity and a critical point on the real
axis as a ‘class-β’ singularity, and let us refer to the
closest singularity to the origin in either half-plane
as the dominant singularity in that half-plane. As
was shown in Figure 1, slow monotonic convergence
is consistent with class α in the positive half-plane
while alternating signs are consistent with class β at
negative z.

We will see that the choice of resummation strat-
egy depends on the nature of the dominant singularity
in each half-plane. One can classify systems as β |α if
the dominant singularity in the negative half-plane
is of class β and that in the positive half-plane is of
class α, as class α|α if both dominant singularities
are of class α, and so on. Examples are shown in
Figure 3. This classification scheme allows for more
subtle distinctions. A system such as boron hydride is
technically of class β |β. However, the dominant sin-
gularity in the negative half-plane is so distant from
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the origin as to be insignificant, while there is a class-α
singularity that is almost as close to the origin as the
class-β singularity in the positive half-plane. This can
be described as class x|βα, or simply as x|α, because
in general a class-α singularity has stronger effect on
series behavior than does a class-β singularity at the
same radius. The magnitude of the contribution of a
singularity to the series coefficients depends on two
characteristics: the distance from the origin and the
magnitude of the prefactor that multiplies the square-
roots. At high order only the distance from the origin
is relevant—the closer to the origin, the more quickly
the singular term dominates the series coefficients. At
low orders the magnitude of the prefactor is relevant.
Singularities of class β have much smaller prefactors
than do those of class α. Another example is the Ne
atom with a compact basis set. It is technically in class
α|α, but both dominant singularities are very far from
the origin, and the conventional sum of the MP series
converges rapidly. This can be described as class x|x.

The effect of the choice of basis on type-II sys-
tems can be explained in terms of singularity analysis.
A correct description for type II in the limit of large ba-
sis set has a dominant class-β critical point at negative
z. For an atom, a compact basis lacks the flexibility to
model the dissociation at the critical point, and thus
in effect converts a system such as Ne or F− into type
I. N2, with a crowded triple bond, in principle ought
to be of type II, but with the cc-pVDZ basis it behaves
as type I with class-α|α singularity structure,33 as is
evident in Figure 3.

These classifications based on the electronic or-
bital structure and singularity structure are more fun-
damental and therefore preferable to the older class
A/B scheme. In fact, the variety of series coefficient
patterns generated by different combinations of sin-
gularities is such that at least five different classes
would be needed for a full description in terms of
sign patterns.31

MODELING THE SINGULARITIES

The nth partial sum is

sn(z) =
n∑

j=0

Ej z j . (10)

It is typical in the literature to report E0 + E1, the HF
energy, rather than the individual values E0 and E1.
It is convenient, then, to write the partial sum as

Sn =
n∑

j=0

ε j z j , ε0 = E0 + E1, ε j>0 = Ej+1; (11)

i.e., Sn = E0 + z−1(sn +1 − E0). Note that MP3 cor-
responds to S2, MP4 to S3, and so on. At the physical
point z = 1, Sn and sn +1 are equal. In practice, it
makes little difference whether one applies resumma-
tion methods to Sn or to sn +1, because the values of
the coefficients E0 and E1 are mostly determined by
nonsingular contributions from E(z).

Seeing as the convergence difficulties come from
trying to model a function E(z) with prominent sin-
gularities using a polynomial Sn(z) that has no singu-
larities, an obvious strategy is to replace Sn(z) with a
functional form that is not entire. We will need a cri-
terion for parameterizing the new functional form. A
useful strategy is to require that the nth-order Taylor
series of the new functional form be equivalent to Sn.
In other words, the coefficient that multiplies zj in the
Taylor series of the new functional form must equal
εj. Because the Taylor series of a function is unique,
this gives a set of equations sufficient to determine n +
1 parameter values. The resulting function is called an
approximant.

This approach was developed by Padé in his
1892 doctoral thesis.34 His name is usually associated
with rational approximants,

S[M/N](z) = P(z)/Q(z), (12)

where P and Q are polynomials of degrees M and
N, respectively, and Q(0) = 1. Linear equations that
determine the coefficients of the polynomials are ob-
tained by collecting terms according to power of z in
the equation QE ∼ P, where E here represents the
power series for E(z). Rational approximants contain
poles at roots of Q, which is not consistent with the
singularity structure of a matrix eigenvalue PT.

A less familiar form of approximant is the
quadratic approximant,35,36 composed of three poly-
nomials, P(z), Q(z), and R(z), of degrees L, M, and N,
with Q(0) = 1. The coefficients of the polynomials are
determined by the linear equations obtained from:

QE2 − P E + R ∼ 0. (13)

The (A closely related technique is to solve for the
roots of an effective characteristic polynomial.37) ap-
proximant resulting from Eq. (13) is

S[L/M,N](z) = 1
2Q(z)

× (P(z) ±
√

P(z)2 − 4Q(z)R(z)). (14)

Given a perturbation series of order n, the degrees of
the polynomials must be chosen such that

L + M + N = n − 1. (15)
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Equation (14) has square-root branch points, at
roots of the discriminant polynomial

D(z) = P2 − 4QR. (16)

This advantage of quadratic approximants was noted
by Vaı̌nberg et al.38 in a study of the PT for an
atom in an electric field in powers of the field
strength. The bound state of the atom is then only
metastable. The ground-state eigenvalue is complex,
with the lifetime of the state determined by the imag-
inary part. Quadratic approximants put a branch
point on the positive real axis, giving a complex en-
ergy in reasonable agreement with the exact result.
Quadratic approximants had earlier been used by
Jordan39,40 to extrapolate diatomic potential energy
curves into regions affected by an avoided crossing.
Quadratic approximants give convergent results14 for
even the most divergent of the MP series of Olsen and
coworkers11,12 and Leininger et al.13

However, the singularity structure of Eq. (14)
is not quite identical to that required by Katz’s theo-
rem. S[L/M,N](z) has just two branches, corresponding
to the plus or minus sign. In fact, the ground-state
energy function E(z) has n different branches, one for
each eigenvalue in the n-dimensional Hilbert space.
Padé noted that approximants could be constructed
from a polynomial in E of any degree. The number of
branches in the approximant equals the degree of the
polynomial. Approximants with multiple branches
can also be constructed from differential equa-
tions (‘Hermite–Padé approximants’).41 In practice,
more complicated approximants perform no better
than quadratic approximants unless the perturbation
series is known to very high order.42,43 At the moder-
ate orders available from MPPT, quadratic approxi-
mants give a reasonable description of the ground-
state branch in the neighborhoods of its branch
points, mimicking the local functional form required
by Katz’s theorem.

Quadratic approximants give convergent results
for singularity positions.23 The convergence is quick-
est for singularities closest to the origin of the z plane,
but with increasing series order the positions gradu-
ally converge for more and more distant singularities.
This allows one to extract estimates of the branch
point positions using high-order MP series extracted
from benchmark FCI computations.8,9,11–13,15 This is
usually more convenient than searching for avoided
crossings22 or solving directly for crossing points in
the complex plane.26

Although the quadratic approximants converge
dependably at large order, their success for directly
summing MP4 is mixed.14 Consider the approximant

with index [1/0,1]. It has two branch points,

z1 =
(

β

α
+ 2γ

)−1

, z2 =
(

β

α
− 2γ

)−1

, (17)

where

α = ε2/ε1, β = ε3/ε1, γ = (β − α2)1/2. (18)

In practice, we usually have β > α2, which means that
z1 and z2 are pure real. This approximant performs
poorly when E(z) has singularities in both the posi-
tive half-plane and in the negative half-plane roughly
equidistant from the origin. The approximant is un-
able to simultaneously model both singular regions.
Instead, it tends to put its branch points approxi-
mately half-way between, close to the origin.33,44 This
problem is remedied by the MP4qλ resummmation
method,44 described in the next section.

Rational Padé approximants, the traditional
‘Padé approximants’, are also able to sum MP
series.10,14,15,45 They are less reliable than the
quadratic approximants for MP4, but at high or-
der they converge to the FCI result about as well as
quadratic approximants, even though the only singu-
larities in the approximants are poles. They accom-
plish this by mapping out branch cuts with nearly
coincident poles and zeros.46,47 However, quadratic
approximants have the advantage at high order of
giving reliable estimates of the branch point locations
as well as an estimate of the energy.14,23

Another approach to determining singularity
positions is to take advantage of Darboux’s theo-
rem, Theorem 2. The D’Alembert ratio test, which
gives the radius of convergence of the partial sums
as |εj/εj +1| in the limit of large j, is a well-known
example of a Darboux-type method, but other more
sophisticated techniques are available.5,6,48–51 The ad-
vantage of these is that Darboux’s theorem provides a
degree of mathematical rigor that approximant meth-
ods lack. The disadvantage is that for low-order se-
ries, approximants tend to work better in practice
than do Darboux methods.

MOVING THE SINGULARITIES

Only two points in the complex z plane have a fixed
meaning: z = 0 represents the zeroth-order approxi-
mation while z = 1 represents the true solution. We
are free to redefine all other points with an arbitrary
mapping. In particular, we can choose a mapping that
avoids the situation of branch points approximately
equidistant from the origin.

Volume 00, January /February 2011 7c© 2011 John Wi ley & Sons , L td .



Advanced Review wires.wiley.com/wcms

Consider a bilinear conformal mapping,52

u = z
1 − λ + λz

. (19)

The complex plane of coordinate z is mapped to the
complex plane of a new coordinate u. The mapping is
characterized by the free parameter λ. Note, however,
that 0 is always mapped to 0 and 1 is always mapped
to 1. The inverse mapping is

z = (1 − λ)u
1 − λu

. (20)

Equation (20) can be expanded in a Taylor series in
u, substituted into the original series, and then the
terms can be collected according to powers of u. The
resulting coefficients of the u series are

ε̃k(λ) =
k∑

j=1

(
k − 1
j − 1

)
λk− j (1 − λ) jε j , (21)

in terms of binomial coefficient
(

k − 1
j − 1

)
.

Because 0 and 1 are fixed points, the new series eval-
uated at u = 1 still corresponds to the physical solu-
tion and u = 0 still corresponds to the zeroth-order
approximation. All other points in the complex plane
are shifted. For real λ ranging from −∞ to ∞ any
given point in the complex plane moves along the cir-
cle that passes through the two fixed points and the
original (λ = 0) location of the point in the z plane,
as shown in Figure 4. Pure real points (other than 0
and 1) are shifted along the real axis.

This mapping has a long history in quantum
chemical PT but under different guises. Schmidt
et al.27 found that Eq. (21) can be obtained by in-
troducing scaling factors into the Hamiltonian, ac-
cording to a procedure developed by Feenberg.53

The Feenberg scaling is itself a special case of a
more general scaling method developed by Dietz and
coworkers,54–56 in which the scaling factor is an op-
erator �̂ rather than just a constant λ. Szabados57 has
shown that the Feenberg scaling is closely related to an
empirical scaling procedure that Grimme developed58

for improving the accuracy of MP2.
The choice of λ is in principle arbitrary.

Goldhammer and Feenberg61 proposed choosing λ so
as to minimize the correlation energy,

Ecorr = E − EHF ≈
n∑

k=2

ε̃k−1(λ), (22)

with the series truncated at specified order n. This is
not justified by any rigorous variational theorem but
it can convert divergent MP partial sums into conver-
gent sums at high order and can often improve the
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FIGURE 4 | Effect of the bilinear mapping on a class α|α system.
The mapping parameter λ ranges from 0 to −1.5 as indicated in
increments of −0.5. The squares show z = 0 and 1, the fixed points of
the mapping.

accuracy of MP4 partial sums. Amos59 noted that the
Goldhammer–Feenberg criterion is equivalent to as-
suming that the high-order terms behave as a geomet-
ric series.60 Forsberg et al.31 showed that it is equiv-
alent to forcing ε̃n−1, the highest-order coefficient
before truncation, to be zero. This ensures that the
truncated series will qualify as an ‘optimal asymptotic
approximation’ (as defined by Bender and Orszag62)
at order n − 2. In practice,31 the Goldhammer–
Feenberg criterion reliably improves the convergence
of the partial sum, Sn, for the many systems in which a
class-β singularity on the negative real axis dominates
the behavior of the perturbation series. It does this by
shifting the dominant singularity, on the negative real
axis, away from the origin.14

However, the Goldhammer–Feenberg criterion
is not optimal for use with quadratic approximants,
because then the goal is not to increase the radius
of convergence but rather to modify the singularity
structure so that it can be modeled by the approxi-
mant. In particular, one needs to avoid the situation
with singularity structure in both half-planes approx-
imately equidistant from the origin. The MP4qλ re-
summation method44 uses a quadratic approximant
to sum the series in u with λ chosen such that the po-
sition of the singularity of the approximant in a given
half-plane is shifted as far as possible from the origin.
Using the [1/0,1] approximant, the optimal λ values
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are33

λp,n = 1
α − 1

[
γ

γ ± (α − 1)
+ α

]
, (23)

with α and γ from Eq. (18). Here λp, the value that
maximizes the branch point position in the positive
half of the u plane, is given by the ‘+’ solution,
whereas the ‘−’ gives λn, which maximizes the posi-
tion in the negative half of the u plane. The resulting
branch point positions in the z plane, after the inverse
mapping of Eq. (20), are

zp,n =
(

α + 2γ 2

α − 1
± 3γ

)−1

. (24)

For dominant class-α branch points, Eqs (24) give
reliable estimates for the real part of the singular-
ity positions.33 Class-β singularities, however, are not
isolated branch points, and therefore are modeled less
accurately by quadratic approximants. Class-β singu-
larity structure consists of clusters of branch points
with very small prefactors.23 Approximant [1/0,1]
models this using an isolated branch point with a
larger prefactor but farther from the origin. The qλ

approximant then exaggerates the effect of the con-
formal mapping and ends up with the singularity too
close to the origin. It is interesting that the average
of these two inaccurate estimates gives a remarkably
reliable estimate of the class-β singularity position.33

Evaluating the [1/0,1] approximant at λp is a
reasonably good method for summing MP4 for type-
I systems, in which the most important singularity
structure, typically of class α, is found in the posi-
tive half-plane. For type-II systems this approximant
is not appropriate. In the limit z → 0, the discrimi-
nant goes to zero and the two branches have the same
energy. This is a qualitatively reasonable zeroth-order
approximation for a type-I system, in which the sin-
gularity corresponds to a crossing of two states that
are close in energy within the HF approximation as
well as in the exact solution. However, a type-II sys-
tem typically has a class-β critical point, which corre-
sponds to a crossing of the ground state with a state
that has a very high HF energy.22 This can be modeled
using a [1/0,2] approximant with an extra parameter
that is chosen by constraining the approximant to
have the desired qualitative behavior.14 The choice
r0 = 0 gives the HF energy for the lower branch at
z = 0 and zero energy for the upper branch. This
approximant has branch points at

u1 = [ε̃3(λ)/ε̃2(λ) +
√

−4ε̃2(λ)/ε0]−1,

u2 = [ε̃3(λ)/ε̃2(λ) −
√

−4ε̃2(λ)/ε0]−1. (25)

The extrema as a function of λ can be solved for nu-
merically. At negative λ the extrema are typically on
the negative real axis, with the one closest to the origin
given by u2. Let us call this dominant singular point
un. Evaluating the [1/0,2] approximant at un gives the
‘constrained’ MP4qλ method, which in practice usu-
ally gives a better result than does MP4qλ [1/0,1] for
type II.44,63

Because singularity structure for type-II systems
is being modeled less accurately than for type I, which
really has isolated branch points, the resummation ac-
curacy for type II is better when the singularity can
be shifted relatively farther from the origin. The max-
imum distance |zn| to which the dominant singularity
of the constrained approximant on the negative real
axis can be shifted is strongly correlated with resum-
mation accuracy and can serve as a diagnostic. For a
benchmark set of type-II systems, the number of ac-
curate digits in the correlation energy was found64 to
follow the linear relation 0.3 + 1.1|zn|.

Despite significant improvement to MP4 from
resummation, there are many systems for which the
accuracy is still rather poor, due to the presence of a
class-α singularity rather close to z = 1 along with sin-
gularity structure of either class in the negative half-
plane with real part significantly closer to the origin
than −1. The MP4 series does not contain enough
information to simultaneously model all these singu-
larities, and the proximity to the fixed points z = 0
and z = 1 makes it difficult to mitigate their effects
by shifting the positions. This problem becomes es-
pecially severe in the description of homolytic bond
cleavage when using a spin-restricted HF zeroth-order
approximation, which has an incorrect dissociation
limit. As the bond is stretched, the energy spacing be-
tween the ground state and the first excited state of
the same symmetry decreases, resulting in intractable
branch points close to the fixed points. This causes
the accuracy of the resummation to depend rather
strongly on bond distance.65 CC theories, described
in next section, seem to be less sensitive to this effect.

The resummation methods described here are
size extensive as long as the underlying theory
(e.g., MPPT) is size extensive. They are not ex-
actly size consistent for dissociation into nonidentical
fragments.57,64,66 However, they are qualitatively size
consistent64 and the small size inconsistency seems
to rapidly decrease with increasing basis size.66 The
size inconsistency results from the dependence of the
optimally shifted singularity positions on molecular
geometry. The resummation can be made exactly size
consistent by choosing a single fixed value for the
mapping parameter λ instead of optimizing λ at each
nuclear configuration.57,67
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Computer algorithms are available for directly
computing MP568,69 and MP6.70,71 Concern over
the potential divergence of higher-order series has
perhaps scared people away from these, and led
them to use more expensive CC methods instead.
However, MP5 and MP6 even without resumma-
tion seem to give dependable results for molecular
energies at equilibrium geometries,72 and the accu-
racy can be improved with a higher-order version of
the Goldhammer–Feenberg transformation27,28,31,73

or with quadratic approximants.14 In principle, re-
summation strategies based on singularity shifting
could also be used for higher-order MP series, but this
has yet to be studied systematically. The singularity
structure of higher-order quadratic approximants is
rather complicated and there are many more ways to
formulate the approximants than at fourth order.

COUPLED-CLUSTER THEORIES

CC theory is a popular alternative ab initio method
for improving an initial HF approximation. In fact, it
is closely related to MPPT.3,4,15,74 The basic idea is to
express the wavefunction in the form

� = eT̂|0〉. (26)

|0〉 is a zeroth-order ground state (typically the HF
approximation) and T̂ is an operator

T̂ = T̂1 + T̂2 + T̂3 + . . . , (27)

where T̂j is proportional to the creation operator a†
j

that transforms |0〉 into |j〉. The exponential of an
operator is defined in the form of a Taylor series,

eT̂ = 1 +
∞∑

m=1

1
m!

T̂m, (28)

where T̂m represents operating m times with T̂. Sub-
stituting Eqs (28) and (27) into Eq. (26), we obtain
the FCI linear combination with coefficients to be de-
termined from the Schrödinger equation.

If we use the z-dependent form of the Hamilto-
nian, Eq. (1), then the creation operators consist of
operators proportional to powers of z. Collecting the
terms in the Schrödinger equation according to power
of z and ignoring degrees greater than n, one obtains
algebraic equations that can be solved analytically for
the wavefunction coefficients. This yields the MPn se-
ries. On the other hand, if one instead truncates the
expansion for T̂, Eq. (27), throwing out all terms be-
yond some specified T̂m, then one obtains a set of
nonlinear equations for the wavefunction coefficients
that can be solved iteratively for a numerical solution.

Truncating after T̂2 gives the CCSD method, truncat-
ing after T̂3 gives the CCSDT method, and truncating
after T̂4 gives the CCSDTQ method.

According to Eq. (28), eT̂ is the exact sum of
an infinite number of terms. Therefore, even the trun-
cated CC wavefunctions contain terms through all
orders of z. In this sense, CC methods can be thought
of a kind of resummation method. However, if the T̂
series Eq. (27) is truncated, then only certain classes
of MP terms are resummed while others are left trun-
cated at low order in z. CCSD includes all MP3 terms
and all terms at higher order of PT that involve only
T̂1 and T̂2, CCSDT includes all MP5 terms and all
higher-order terms involving only T̂1, T̂2, and T̂3, and
so on.74–76

The CC method usually is better than the MPn
method with comparable cost scaling, if the par-
tial sum Eq. (10) without resummation is used for
MPn; typically CCSD is more accurate than MP3
and CCSDT is more accurate than MP5. However,
quadratic approximants reduce the MP5 error by a
factor of approximately 2.5, which makes its accu-
racy comparable to that of CCSDT.14

There have been many attempts to develop
CC methods with a cost scaling comparable to that
of MP4 (proportional to N7 where N is the ba-
sis dimension77,d). By far the most popular is the
CCSD(T) method of Raghavachari et al.78 This is
a hybrid method, in which certain terms from MP4
and MP5, involving triple excitations, are added to
the CCSD energy. CCSD(T) is usually more accurate
than conventional MP4 partial summation76 and on
average appears to be almost as accurate as MP4qλ

summation for atoms and for molecules at equi-
librium geometries and more accurate if bonds are
stretched.44,63

Can resummation methods be applied to the se-
quence of CC methods to obtain even higher accuracy
without increasing computational cost? Empirical
studies of the behavior of CC sequences have found
patterns in the convergence that can be modeled with
simple approximants. Consider the sequence

E(CC) = E(HF) + δSD + δ(T) + . . . (29)

with

δSD = E(CCSD) − E(HF),

δ(T) = E(CCSD(T)) − E(CCSD). (30)

It has been found63,65 that the convergence of this
sequence can often be considerably improved with a
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continued-fraction approximant,

E(CCSD(T)cf) = E(HF)

1 − δSD/E(HF)

1−δ(T)/δSD

. (31)

This approximant, the CCSD(T)cf method, is
not always reliable,63,65,80,81 but it is possible to
predict from the MP series classification the cases
in which it will work well. For type-I systems,
CCSD(T)cf has been found to be consistently more
accurate than CCSD(T) and on average slightly more
accurate than MP4qλ. For type-II systems, the MP4qλ

[1/0,2] constrained approximant has been found to
be on average the best of the methods if |un| is rela-
tively large. Otherwise, various CCSD(T) resumma-
tions seem to give about equally good results. A [1/1]
rational Padé approximant,

E(CCSD(T)r) = E0 + δSD

1 − δ(T)/δSD
, (32)

can also work well, as can a [0/0,1] quadratic
approximant,63

E(CCSD(T)q) = E0 + δ2
SD

2δ(T)

[
1 − (1 − 4δ(T)/δSD)1/2].

(33)

Recommendations for optimal resummation strate-
gies, depending on MP singularity structure, will be
given in the section Conclusions.

A drawback of the CCSD(T)cf approximant
is that it seems to be more sensitive than conven-
tional CCSD(T) to the onset of multireference (MR)
character as bonds are stretched,65 although not
nearly as sensitive as MP4qλ. All of these methods
are expected to fail on the way to homolytic bond
cleavage. For small displacements from the equilib-
rium bond distance, CCSD(T)cf was found to be the
best of the methods, performing quite well, but for
large displacements CCSD(T)cf failed sooner than
did CCSD(T).65 Whether this is due to a fortuitous
concellation of errors in CCSD(T) or to a qualitative
change in the CC convergence pattern is not clear.

Kenny et al.79 proposed a continued fraction
for the sequence HF, CCSD, CCSD(T), CCSDT in
the form

E(CCSDTcf) = E(HF) + δSD

1 − δ(T)/δSD

1−δ
(T)
T /δ(T)

(34)

with

δ
(T)
T = E(CCSDT) − E(CCSD(T)). (35)

They found that this gave results that were about
as accurate as the method of Brueckner doubles with
perturbative treatment of quadruples, BD(TQ), which

in principle improves the CC result by including
contributions from quadruple excitations.82 [How-
ever, Feller and Dixon81 subsequently found that, at
least for atomization energies, BD(TQ) was on av-
erage not any closer to FCI than was CCSD(T)cf.]
Feller et al.83,84 have found that the sequence CCSD,
CCSDT, CCSDTQ can be reliably improved using the
continued fraction

E(CCSDTQcf) = E(HF) + δSD

1 − δT/δSD
1−δQ/δT

(36)

with

δT = E(CCSDT) − E(CCSD),

δQ = E(CCSDTQ) − E(CCSDT). (37)

Although CCSDTQ is very expensive to compute, it
is significantly less expensive than FCI. Feller et al.85

have used this CCSDTQcf method in numerous stud-
ies as a benchmark substitute for FCI.

The mathematical analysis of the sequences
E(HF ) + δSD + δT + δQ + . . . and E(HF ) + δSD +
δ(T) + . . . in terms of the properties of a function in
the complex plane is considerably more murky than
in the MP case. The energy as a function of the per-
turbation parameter z can be written in terms of the
CC approximations as

E(z) ≈ E0 + E1z + z2δSD(z) + z4δT(z)

+z6δQ(z) + O(z8), (38)

or, for CCSD(T),

E(z) ≈ E0 + E1z + z2δSD(z)

+z4δ(T)(z) + O(z5). (39)

The CC computations give the numerical values of the
δ’s at z = 1. Katz16 considered the effect of exactly
summing just certain classes of terms in E(z) to infinite
order for a related model problem. He showed that
the result of this incomplete resummation was to qual-
itatively change the singularity structure, eliminating
the branch points but introducing poles. He obtained
an expansion essentially in the form of Eq. (38) and
showed that the coefficient functions had poles in the
negative half of the z plane. This expansion gave an
excellent approximation to the exact solution except
in the immediate vicinity of the branch points of the
exact energy function and, of course, in the vicinity
of the poles. Katz then argued that this would be a
generic behavior for incomplete infinite-order sum-
mations of many-body perturbation theories.

Replacing the functions δX(z) with their numer-
ical values at z = 1 converts Eqs. (38) and (39) into
asymptotic series about z = 0. However, these se-
ries are not asymptotic to the FCI energy function
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but to some approximation to it. The continued frac-
tion and the rational Padé approximant are functional
forms containing poles. They are perhaps modeling
the poles introduced by the incomplete infinite-order
summations.

Another kind of application of Padé approxi-
mants to CC calculations was devised by Hirata and
Bartlett.15 They used rational approximants to im-
prove the convergence of the CC iterations, treating
the energy increments at each iteration as the ‘series’
coefficients.

OTHER APPLICATIONS

The focus here thus far has been on series ap-
proximations for the molecular electronic structure
problem, and only on methods with the HF approxi-
mation as the reference solution. Other perturbation
theories can be formulated for the electronic structure
problem and for other aspects of molecular behavior,
such as vibration and rotation. These have their own
distinctive singularity structures, usually more com-
plicated than that of the MP energy function.

Consider the quartic oscillator, with potential
energy

V(x) = x2 + bx4, (40)

as a model for molecular vibration, with the energy
expanded in powers of b. The resulting series turns
out to have a radius of convergence of zero,86 due to
an infinite sequence of branch points with limit point
b = 0 in the complex b plane. Such complicated singu-
larity structure is difficult to discern from a low-order
series. However, if the series coefficients are known to
very high order, then the ground-state eigenvalue se-
ries can be accurately resummed on the ground-state
branch and on excited-state branches using algebraic
approximants.43,87,88

Quadratic approximants are appropriate for
summing coupling-constant perturbation series for vi-
brational spectra of polyatomic molecules. In addition
to the singularity at the origin, these systems can have
resonances, of two kinds: those that manifest them-
selves as avoided crossings of bound eigenstates as
a function of the coupling constant, and those cor-
responding to metastable excited states embedded in
the dissociation continuum. For the former, there are
class-α branch points that can have a stronger effect
than the singularity at the origin on the convergence
at low and medium-high orders, and the series can be
accurately summed with a quadratic approximant.89

The latter have complex eigenvalues, with imagi-
nary parts proportional to the spectral linewidths.

Quadratic approximants place a branch point on the
positive real axis between the origin and the physical
value of the coupling constant, which makes the argu-
ment of the square root negative. The approximants
give convergent results for both the real and the imagi-
nary part.90 If resonances are not present then rational
Padé approximants work quite well.91 Another way
to deal with vibrational resonances is to find a similar-
ity transform that reduces the coupling between the
eigenstates,92 followed by summation with rational
approximants.

For atoms and molecules in external fields, PT
in terms of the field strength would seem to be an
obvious method to use. However, this too leads to
a zero radius of convergence with a complicated sin-
gularity at the origin. Even the seemingly simple case
of a hydrogen atom in a magnetic field, with poten-
tial energy B2(x2 + y2)/8 − r−1, has a strongly di-
vergent perturbation series that cannot be efficiently
summed with rational Padé approximants if the field
strength parameter B is moderately large.93 If the se-
ries coefficients are known to high order then the se-
ries can be summed using methods that model the
rate of growth of the coefficients94,95 or with a Borel
transformation,96 which expresses the energy as an
integral of a function for which the Taylor series has
a nonzero radius of convergence.

Resummation is especially important for semi-
classical perturbation theories. These are theories that
include the differential operators from the kinetic en-
ergy within the perturbation. The zeroth-order ap-
proximation has the system confined to the minimum
of an effective potential energy surface, analogous
to a classical mechanical description. The perturba-
tion parameter can be the reciprocal of the particle
mass, or Planck’s constant, or, for a particularly flex-
ible and general formulation, the dimensionality of
space.97 The resulting series have zero radius of con-
vergence, due to a branch point at the origin.46 How-
ever, for Coulombic systems the low-order behavior
for the ground state is dominated by second-order
pole98–100 at a positive value of the perturbation pa-
rameter somewhat beyond the physical value and, for
excited states, by square-root branch points.101 For
the ground state, the low-order convergence can be
substantially improved simply by scaling the energy
to make the pole explicit.102

CONCLUSIONS

Resummation methods work by making use of ad-
ditional information about the mathematical struc-
ture of the theory. Information about the singularity
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structure of the problem can be obtained by analysis
of the eigenvalue equation or by analysis of the series
coefficients. By constructing an approximant with the
expected singularity structure, one can obtain a sig-
nificantly more accurate estimate of the energy eigen-
value at no additional computational cost.

For Møller–Plesset PT, the general nature of the
singularity structure is well understood. The singular-
ities can be class-α isolated square-root branch points
or class-β critical points. The relative positions of
these singularities can be used to choose an appro-
priate resummation method. Tables 1 and 2 summa-
rizethe results of a study in which resummed MP4
and CCSD(T) energies were compared with bench-
mark FCI values.63 It is useful to consider three kinds
of singularity structures:

Class α|α. The dominant structure in both
half-planes is of class α. This is typical of
type-I electronic structure but also can oc-
cur in type-II systems with a basis set that is
too compact to model a critical point. The
optimal method for these systems, and for

TABLE 1 Type-I Systems: Most Accurate Methods with N7 Cost
Scaling

System and Basis MP4qλ CCSD(T) cf r q

BH cc-pVDZ × ×
BH aug-cc-pVQZ ×
AlH cc-pVDZ × × × × ×
AlH aug-cc-pVQZ × × × ×
CH2 X̃ 3B1 DZP ×
CH2 ã 1A1 DZP ×
CH3 X̃ 2 A′′

2 DZP × ×
NH2 X̃ 2B1 DZP × ×
NH2 Ã 2A1 DZP × ×
H2O+ X̃ 2B2 cc-pVDZ × ×
H2O+ Ã 2A1 cc-pVDZ × ×
F− cc-pVDZ ×
Ne cc-pVDZ × ×
N2 cc-pVDZ ×
C2 cc-pVDZ ×
CN+ cc-pVDZ ×

The indicated methods have error within 0.1 mEh of the error from the most accurate
method for that system. The ‘cf’, ‘r’, and ‘q’ columns are resummations of the HF, CCSD,
CCSD(T) sequence (described in the section Coupled-Cluster Theories). The MP4qλ

results are from the [1/0,1] approximant.

TABLE 2 Type-II Systems: Most Accurate Methods with N7 Cost Scaling

System and Basis MP4qλ CCSD(T) avg cf avg r q un

Class β |x
Ar aug-cc-pVDZ × −6.50
Cl− aug-cc-pVDZ × −3.32
HCl aug-cc-pVDZ × −3.19
H2S cc-pVDZ × −3.06
Median absolute error (mEh) 0.157 0.683 0.526 0.594 0.488
Largest error (mEh) 0.229 0.695 0.537 0.609 0.538

Class β |α
HF cc-pVDZ × −2.67
F DZP × × × −2.49
Ne cc-pVTZ-(f ) × × × −2.49
Ne aug-cc-pVDZ × × × × −2.33
H2O cc-pVDZ × −2.32
F− cc-pVTZ-(f ) × × −2.04
HF cc-pVTZ-(f/d ) × × −1.95
HF aug-cc-pVDZ × −1.90
F− DZP × −1.42
F− aug-cc-pVDZ × −1.36
Median absolute error (mEh) 0.463 0.257 0.186 0.214 0.218 0.154 0.144
Largest error (mEh) −2.165 0.735 0.366 −0.635 0.302 0.613 0.566

The indicated methods have error within 0.1 mEh of the error from the most accurate method for that system. The ‘cf’, ‘r’, and ‘q’
columns are resummations of the HF, CCSD, CCSD(T) sequence (described in the section Coupled-Cluster Theories). For the class-β |α
systems, results are also shown for the average of CCSD(T) and CCSD(T)cf and for the average of CCSD(T)cf and CCSD(T)r. The MP4qλ

results are from the constrained [1/0,2] approximant. The last column gives the dominant singularity at negative u of that approximant.
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FIGURE 5 | A flowchart for choosing an
appropriate method for an N7 ab initio
computation.

class-x|α, is usually the CC continued frac-
tion CCSD(T)cf. The only exceptions in this
benchmark set are C2 and CN+. These have
significant MR character, which is evident
from the fact that zp, the dominant positive
branch point from the MP4qλ approximant,
is very close to z = 1, at 1.11 and 1.08,
respectively.33

Class β |x. A dominant class-β singularity on
the negative real axis with any singularity
structure in the positive half-plane well be-
yond z = 1. These are type-II systems with un,
the dominant singularity of the MP4qλ con-
strained [1/0,2] approximant, more negative
than approximately −2.8. MP4qλ [1/0,2] is
the optimal method.

Class β |α. Type-II systems with un > −2.8.
MP4qλ is usually not very effective here be-
cause the singularity structure in the pos-
itive half-plane becomes dominant before
un can be shifted sufficiently far. The CC
methods are to be preferred, but no sin-
gle method is obviously the optimal choice
for all cases. The average of the CCSDT(cf)
and CCSDT(r) approximants appears to give
consistently reliable results.

The flowchart in Figure 5 gives an algorithm
for selecting the optimal N7 method. This is based
only on total energies and might need to be modi-
fied for properties such as atomization energies and

vibrational frequencies. This is not a ‘black-box’—it
requires some subjective judgment. In particular, it
is not always obvious whether to put a type-II sys-
tem in class β |α or α|α. The Ne and F− with the
compact cc-pVDZ basis are in class α|α.33 (Actu-
ally, Ne is better described as x|x, and is the only
system here for which MP4 partial summation gives
the best energy.) Note, however, that hydrogen fluo-
ride with this same kind of basis is in class β |α be-
cause the basis is spread out over two atoms and this
gives enough flexibility to model the class-β critical
point. N2, with a triple bond, is expected to be of
type II, but analysis of the large-order series with the
cc-pVDZ basis clearly shows it to be in class α|α. In
contrast to hydrogen fluoride, the compact basis for
N2 is symmetric and therefore unable to model the
class-β migration of valence electrons. The recom-
mended class-α|α method for this system gives agree-
ment with the FCI energy within 0.350 mEh, whereas
the recommended class β |α method is in error by
0.844 mEh.

Resummation of these N7 methods apparently
cannot by itself resolve the difficulty of modeling ho-
molytic bond cleavage with a theory based on a single-
reference zeroth-order approximation. This is a se-
rious problem, as it can lead to large variations in
accuracy over different regions of a potential energy
surface. As bonds are stretched, this problem mani-
fests itself in the MP4 singularity structure as a class-α
singularity in negative half-plane that moves toward
the origin and a positive class-α singularity that moves
toward z = 1.
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Various strategies for improving the underly-
ing perturbation or CC theory have been proposed.
The most straightforward is to include the effects
of quadruple excitations, via MP6 (resummed with
the Goldhammer–Feenberg transformation or with
a quadratic approximant) or CCSDTQ (resummed
with a continued fraction). However, the added com-
putational cost is so high that these are feasible only
for benchmark computations for small systems. The
cost of coupled clusters with quadruple excitations
can be be significantly reduced by retaining only those
operators that are quadratic in the T̂j in the expansion
of eT̂.103 This works well at equilibrium geometries
but fails badly as bonds are stretched.

Another approach is to use a multireference
perturbation theory (MRPT) or CC theory. With
fourth-order MRPT, the singularity structure inferred
from approximants could be used to optimize the
choice of reference set. Too large a reference set
is counterproductive due to intractable singularities
caused by interaction of the reference set with with
other excited states. (Such excited states are often
called intruder states. A ‘front-door intruder’ corre-
sponds to singular behavior in the positive half-plane
while a ‘back-door intruder’ causes singular behavior
in the negative half-plane.) A small reference set, care-
fully chosen, might work best.4,104–109 However, the
cost of fourth-order MRPT at present appears to be
prohibitive.4 Third order is too low to obtain useful
estimates of singularity positions. However, Hose110

has shown that multireference MP3 summed with a
rational Padé approximant can give a reasonably ac-
curate diatomic potential energy surface over a wide
range of bond distances.

A less costly approach is to allow different
orbitals for different electron spins. Using an un-
restricted HF zeroth-order approximation gives the
correct dissociation limit, and the accuracy of un-
restricted MP4 can be improved with resummation,

but the accuracy at intermediate bond distance is
poor.63,65 Z-averaged PT111,112 seems to be a more
promising way to implement this idea. Another pos-
sibility might be to replace the HF optimized zeroth-
order wavefunctions with approximate wavefunc-
tions optimized at MP2 with a scale factor multiply-
ing the opposite-spin component of the second-order
energy113 and then use this as the starting point for a
higher-order perturbation series.

A fourth approach is to use an unconventional
partitioning of the Hamiltonian. There are infinitely
many ways to do this, which allows for much creativ-
ity. A systematic strategy is to directly manipulate the
spacings of energy levels at zeroth order.54–56,114,115

By adjusting the spacings, class-α singularities, which
correspond to crossings of low-lying excited states
with the ground state, could in principle be shifted to
less harmful positions. Another strategy, which works
well with semiclassical PT,117,118 is to scale the inter-
electron repulsion potential with a function of the
perturbation parameter. It is not necessarily the best
strategy to make the zeroth-order approximation re-
semble the physical solution as closely as possible.119

It is quite possible that a less accurate zeroth-order
energy spectrum will result in a perturbation series
more amenable to resummation.

NOTES
aFor an alternative derivation, see Ref 17.
bThis is a special case of a more general theorem that
was derived earlier by mathematicians, see Ref 18.
cFor a quantum mechanical collection of particles, the
definition of the ‘volume of the system’ needs to be
handled with some care. See Ref 20.
dAlthough MP4 and CCSD(T) formally scale as N7,
in practice, the scaling power is closer to 4. See, for
example, Ref 77.
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67. Szabados Á, Nagy P. Spin component scaling in mul-
ticonfiguration perturbation theory. J Phys Chem A
2011, 115:523–534.

68. Kucharski S, Noga J, Bartlett RJ. Fifth-order many-
body perturbation theory for molecular correlation
energies. J Chem Phys 1989, 90:7282–7290.

69. Raghavachari K, Pople JA, Replogle ES,
Head-Gordon M. Fifth-order Møller–Plesset pertur-
bation theory: comparison of existing correlation
methods and implementation of new methods correct
to fifth order. J Phys Chem 1990, 94:5579–5586.

70. He Z, Cremer D. Sixth-order many-body perturba-
tion theory I. Basic theory and derivation of the en-
ergy formula. Int J Quantum Chem 1996, 59:15–29.

71. He Z, Cremer D. Sixth-order many-body perturba-
tion theory II. Implementation and application. Int J
Quantum Chem 1996, 59:31–55.

Volume 00, January /February 2011 17c© 2011 John Wi ley & Sons , L td .



Advanced Review wires.wiley.com/wcms

72. Cremer D, Kraka E, He Y. Exact geometries from
quantum chemical calculation. J Mol Struct 2001,
567–568:275–293, and references therein.

73. He Z, Cremer D. Sixth-order many-body perturba-
tion theory IV. Improvement of the Møller–Plesset
correlation energy series by using Padé, Feenberg, and
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