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Singularity analysis of fourth-order Møller–Plesset perturbation theory
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Abstract

The usefulness of Møller–Plesset perturbation theory, a standard technique of quantum chemistry, is determined by singularities in the corre-
sponding energy function in the complex plane of the perturbation parameter. A method is developed that locates singularities from fourth-order
perturbation series, using quadratic approximants with bilinear conformal mappings.
© 2006 Elsevier B.V. All rights reserved.
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Many-body perturbation theory is one of the earliest tech-
niques for solving the Schrödinger equation. In the version
developed by Møller and Plesset [1] the Hartree–Fock approxi-
mation is used for the zeroth-order wavefunction and Rayleigh–
Schrödinger perturbation theory is used to determine higher-
order corrections. The fourth-order theory (MP4) was formerly
considered a method of choice for high-accuracy ab initio quan-
tum chemistry on account of an apparently favorable balance of
accuracy and computational cost. However, concerns have been
raised concerning the perturbation series convergence [2–8]. As
a result, this method has largely been replaced in practice by the
CCSD(T) coupled cluster theory [9].

The underlying causes of poor convergence have recently
been elucidated in terms of the singularity structure of the en-
ergy function [10–15], and a summation method for MP4 has
been proposed that improves the summation accuracy by mod-
eling the singularity structure [16,17]. The success of the sum-
mation can depend on having advance knowledge of singularity
locations. However, the singularity analyses were carried out
using full configuration-interaction (FCI) calculations and per-
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turbation series of very high order, which have a much higher
computational cost than MP4. The problem we address here
is how to characterize the singularity structure given only the
fourth-order asymptotic series.

The perturbation theory can be formulated from a partition-
ing of the Hamiltonian [18],

(1)H(z) = H0 + z(Hphys − H0),

in terms of a perturbation parameter z. Hphys is the true
Schrödinger Hamiltonian while H0 is the sum of one-particle
Fock operators. The ground-state energy eigenvalue is obtained
as a power series in z with the physical solution correspond-
ing to z = 1. This power series is the asymptotic series of
a function E(z), and the accuracy with which the series can
be summed depends on the locations of singular points in the
complex z plane. Functional analysis predicts there will be
two classes of singularities [11,13,14,19,20]. Class α singulari-
ties are complex-conjugate pairs of isolated square-root branch
points [19]. They represent avoided crossings of the ground-
state energy and the energy of the first excited state of the same
symmetry for a path along the real z axis. Class β singularities
are critical points that lie on the real axis [11,14,20].

The critical points, in principle, are branch points with a
complicated functional form [20,21]. This would be true, at
least, if the exact Hartree–Fock wavefunction were used as
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the zeroth-order solution. In practice, an approximation to the
Hartree–Fock solution is used, with the wavefunction as a lin-
ear combination in a finite-dimension basis set. In that case,
the function E(z) is approximated as an eigenvalue of a finite
real matrix. This is the full configuration-interaction energy,
EFCI(z), which can only have square-root branch points, in
complex-conjugate pairs [19,21]. Thus, the class α singulari-
ties are accurately modeled but the class β singularities are not.
In practice, EFCI(z) models a class β critical point of E(z) with
a cluster of square-root branch point pairs with small imaginary
parts [14].

In previous work we studied singularities of EFCI(z) using
two approaches. First, we computed the FCI energy spectrum at
many different values of real z and determined the branch point
locations from analysis of avoided crossings with the ground
state [14]. Because each FCI computation is very costly, this
strategy is inefficient, and the analysis was carried out for only a
few systems. Subsequently, we determined singularity structure
for a larger set of systems by analyzing the high-order behav-
ior of the asymptotic series [15]. The series coefficients can be
determined to high order with high precision using intermedi-
ate quantities obtained in the course of an FCI computation [4,
8,22–25]. Thus, a single FCI computation is sufficient to deter-
mine the locations of the several branch points closest to the
origin in the z plane.

Because of the high computational cost, any method requir-
ing an FCI computation is practical at present only for systems
with no more than approximately 10 correlated electrons. For
routine applications one is limited to MP4, which can be effi-
ciently computed from explicit formulas [18]. Fourth order is
too low for standard methods of singularity analysis to be of
much use. Asymptotic methods such as the D’Alembert ratio
test and its more sophisticated variants [26–28] have rigorous
convergence theorems, but for low-order MP series nonsingu-
lar contributions are so large that the theorems are irrelevant.
Furthermore, because these methods have as their foundation
Darboux’s theorem concerning the infinite-order limit of the
series coefficients as determined by the dominant singularity
[26,29], they are poorly suited to studying nondominant singu-
larities. The typical singularity structure of EFCI(z) is to have
singularities in both the negative and positive half planes ap-
proximately equidistant from the origin, and, as a result, the
convergence of the series at fourth order often cannot be ac-
counted for by just the dominant singularity structure [15].

A more promising strategy is to use an approximant, an
arbitrary function containing parameters that are fit to the as-
ymptotic series of the true function. The advantage is that if
the functional form of the approximant is a good match for that
of the true function, an accurate model can be obtained with
very few parameters. We know that the singularities of EFCI(z)

are square-root branch points and we can design the approx-
imant accordingly. A straightforward approach for modeling
square-root branch points is a quadratic approximant [30,31].
However, for MP4 with complex-conjugate branch-point pairs
in both half planes at approximately the same distance from the
origin, these approximants attempt to simultaneously model all
the singularities with one or two branch points approximately
midway between the true ones [10], which is a very poor model
of the true functional form. We demonstrate here a method that
combines a quadratic approximant with a conformal mapping.
The mapping forces the approximant to focus only on the sin-
gularity structure in one half plane at a time.

A quadratic summation approximant is a function

(2)S[L/M,N ](z) = 1

2QM

(
PL ±

√
P 2

L − 4QMRN

)
,

where PL, QM , and RN are polynomials of degrees L, M ,
and N , respectively, with the coefficients of the polynomials
determined from

(3)QMε2 − PLε + RN ∼O
(
zL+M+N+2),

where ε represents an asymptotic power series for the energy.
Eq. (3) leaves one coefficient undetermined. Therefore, we add
an additional condition Q(0) = 1. To the extent that the approx-
imant models the true functional form of the energy, roots of the
discriminant polynomial,

(4)D[L/M,N ] = P 2
L − 4QMRN,

correspond to locations of branch points of EFCI(z).
Let the asymptotic series of the FCI energy be

(5)EFCI(z) ∼
n∑

i=0

Eiz
i,

with MP4 given by n = 4. E0 is the sum of Hartree–Fock orbital
energies. It is convenient to introduce

(6)ε(z) = E0 + [
EFCI(z) − E0

]
/z,

with asymptotic series

(7)ε(z) ∼
n−1∑

i

εiz
i , ε0 = E0 + E1, εi>0 = Ei+1.

The zeroth-order coefficient, ε0, is the Hartree–Fock approxi-
mation for the total energy. ε(z) has the same singularity struc-
ture as EFCI. We have found no advantage to analyzing the
original series, Eq. (5). This is presumably because E0 and E1
are determined primarily by nonsingular contributions, with no
useful information about the singularity structure.

Because Eq. (7) is a series of order n − 1, the polynomial
indices for MP4 must satisfy the condition L + M + N = 2.
Otherwise the particular index choice seems to have no signif-
icant effect on the accuracy. We will use the index [1/0,1] in
the present analysis, which gives branch points

(8)z1 =
(

β

α
+ 2γ

)−1

, z2 =
(

β

α
− 2γ

)−1

,

(9)α = ε2/ε1, β = ε3/ε1, γ = (
β − α2)1/2

.

For MP series it is usually the case that β > α2, implying that
zp and zn are pure real. One can expect that the approximant
should be unable to fit both the real and imaginary parts of
two branch-point pairs, as that would involve determining four
numbers using only the three series coefficients, ε1, ε2, and ε3
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as input. In practice, the approximant fits a complex-conjugate
pair with a single, pure real, point halfway between them. Note
that for a geometric series with Ei−1/Ei = r , we have γ = 0
and z1 = z2 = r , which agrees with the prediction of the ratio
test. Thus γ takes into account the deviation of low-order series
coefficients from simple geometric series behavior.

In order to avoid the problematic situation of singularities in
both half planes approximately equidistant from the origin, the
bilinear mapping,

(10)u(λ, z) = z

1 − λ + λz
,

(11)z(λ,u) = (1 − λ)u

1 − λu
,

will be used to shift the singularity positions. λ is an arbitrary
parameter. The fixed points of this mapping are z = u = 0 and
z = u = 1. Varying λ from −∞ to +∞ moves a point in the
complex plane along the circle containing the point in question
and the two fixed points. The significant singularities of EFCI(z)

typically have a real part less than 0 or greater than 1, with the
imaginary part much smaller than the real part. Therefore, pos-
itive λ in practice shifts singularities in the positive half plane
toward u = 1 and singularities in the negative half plane away
from u = 0. Negative λ does the opposite.

The series coefficients in the u plane are, for i > 0,

(12)ε̃i (λ) =
i∑

j=1

(
i − 1

j − 1

)
λi−j (1 − λ)j εj

with ε̃0 = ε0 [32]. One can show [33] that this mapping is
essentially equivalent to using the Feenberg repartitioning of
the Hamiltonian [34]. However, Feenberg chose the condition
ε̃3(λ) = 0 as the criterion for assigning the value of λ. Here, we
choose λ so that the branch point of S[1/0,1] that is closest to the
origin is an extremum with respect to λ. This choice results in
the MP4qλ approximant [16], which has been shown to be an
effective method for summing MP4 series [35].

There are two such extrema: λp, which leads to a branch
point up in the positive half plane, and λn, which leads to a
branch point un in the negative half plane. They are given by

(13)λp,n = 1

α − 1

[
γ

γ ± (α − 1)
+ α

]
,

with “+” for λp and “−” for λn. Eq. (11) yields corresponding
branch points in the original z plane,

(14)zp = z(λp, up), zn = z(λn, un).

The explicit expressions are

(15)zp,n =
(

α + 2γ 2

α − 1
± 3γ

)−1

,

where “+” gives zp and “−” gives zn.
Table 1 compares zp and zn with benchmark branch point po-

sitions for a variety of small atoms and molecules. The bench-
mark values were determined [15] from quadratic approximants
of high-order MP series computed with FCI methodology [8].2

Also shown are the branch points from the MP4 quadratic ap-
proximant for MP4 without the mapping, from Eqs. (8). We
refer to this as the MP4q approximant. Both of its singularities
lie in the same half plane in all cases. Often, one of these is very
far from the origin and seems to have no physical significance.
The systems in Table 1 are grouped into classes, as discussed
in Ref. [15]. (For example, for a system of class β|α the sin-
gularities with smallest real parts in the negative and positive
half planes are of class β and class α, respectively.) The basis
sets are from the families of correlation-consistent sets devel-
oped by Dunning [37]. The prefix “aug” indicates that the basis
has been augmented with diffuse functions [38].

Although the singularities in the positive half plane are all
outside the unit circle, they can significantly slow the conver-
gence of summation approximants for the energy if they are
close to the physical point z = 1 [16,39]. MP4qλp gives a rea-
sonable estimate for the real part of the singularity closest to the
origin in the positive half plane in almost all cases. The only ex-
ceptions are Cl− and Ar with the compact cc-pVDZ basis set,
which for practical purposes are nonsingular, because their sin-
gularities are far from z = 0 and z = 1. MP4qλp is especially
accurate if the true real part is less than 1.5. Otherwise, the
worst case is F− with aug-cc-pVDZ, for which MP4qλp under-
estimates the singularity position, probably due to interference
from the dominant singularity in the negative half plane, which
has an especially large weight [15]. In the least accurate cases
(F−, Ne, and Cl− with aug-cc-pVDZ and HCl with cc-pVDZ)
the positive singularity is much more distant than the negative
one and should therefore have little effect on summation.

The last column in Table 1 shows the ratio-test estimate,
E3/E4, of the distance between the dominant singularity and
the origin. (The ratio should be negative for a singularity near
the negative real axis.) Clearly, the ratio test is not generally
reliable for these systems at such low order. Its values are an
indication of how far these perturbation series are from their
asymptotic limits.

In the negative half plane there is often a singularity within
the unit circle, which would cause direct partial summation of
the energy—simply adding up subsequent terms—to diverge at
high order. (For this reason it is prudent in general to use con-

2 The series coefficients used here were computed by Leininger et al. as
described in Ref. [8], using the PSI3 software package [36]. The tabulated
coefficients in Ref. [8] were truncated at 6 decimal digits. Tables of series
coefficients with the full precision of the computation (12 digits past the dec-
imal point), including series for a few additional systems (Ne, Cl−, HCl, and
BO+ with the cc-pVDZ basis, and OH− and SH− with the aug-cc-pVDZ ba-
sis) not included in Ref. [8], were provided to us by Dr. Wesley Allen. The
coefficients ε0, ε1, ε2, ε3 for fourth-order analysis of the additional systems
are, for Ne, −182.616100286014, −0.185523281150, −0.002358595941,
−0.002393080524; for Cl−, −459.542220318846, −0.134405350425,
−0.011848758475, −0.001032616281; for HCl, −460.089433045457,
−0.146387976128, −0.015577563996, −0.002713943043; for
BO+, −99.030054115982, −0.271838618315, 0.023829776776,
−0.045620861630; for OH−, −75.395884323005, −0.241056315219,
0.007632415013, −0.019784643683; for SH−, −398.133595979631,
−0.159633804331, −0.016627283826, −0.005562037925.



484 D.Z. Goodson, A.V. Sergeev / Physics Letters A 359 (2006) 481–486
Table 1
Branch points of the ground-state MP energy function from quadratic approximants. Accurate singularity positions, from Ref. [15], are compared with estimates
from fourth-order series [8,36]. MP4 results without conformal mapping are from Eq. (8). MP4qλ results, with conformal mapping, are the values zn and zp from
Eq. (15)

System (basis) Negative singularities Positive singularities MP4 singularity MP4qλ singularities Ratio test

Class α|α:
CN+ (cc-pVDZ) −0.68 ± 0.13i 1.07 ± 0.22i −0.35, −1.33 −0.46, 1.08 −0.56
C2 (cc-pVDZ) −0.955 ± 0.328i 1.187 ± 0.326i −0.33, −0.86 −0.52, 1.11 −0.47

−1.57 ± 0.53i 1.76 ± 0.65i

N2 (cc-pVDZ) −1.505 ± 0.638i 1.66 ± 0.32i −0.25, −0.34 −0.98, 1.50 −0.29
Ne (cc-pVDZ) −2.62 ± 0.90i 3.14 ± 0.51i 0.81, 1.27 −2.84, 3.07 0.99

Class α|β:
Cl− (cc-pVDZ) −2 ± 5i 2.6 ± 0.1i 11 ± 2i 10 ± 3i 11.5

−5.6
Ar (cc-pVDZ) −2 ± 8i 3.3 5.68 ± 7.54i −0.30 ± 7.1i 15.7

1.2 ± 4.0i

Class β|α:
BO+ (cc-pVDZ) −0.5227 ± 0.0131i 1.24 ± 0.26i −0.37, −0.90 −0.63, 1.22 −0.522

−1.2 ± 0.3i

OH− (aug-cc-pVDZ) −0.566 ± 0.002i 1.774 ± 0.873i −0.32, −0.49 −0.96, 1.50 −0.39
−2.0 ± 0.4i 1.863 ± 0.718i

F− (aug-cc-pVDZ) −0.639 ± 0.008i 1.98 ± 1.02i −0.40, −0.71 −0.99, 1.57 −0.51
HF (aug-cc-pVDZ) −0.7595 ± 0.0149i 1.94 ± 1.04i 0.070, 0.073 −1.50, 1.94 0.071
Ne (aug-cc-pVDZ) −0.824 ± 0.007i 3.0 ± 0.6i 0.25, 0.30 −1.84, 2.23 0.27
Cl− (aug-cc-pVDZ) −0.980 ± 0.015i 1.980 ± 0.764i 2.06, 51.0 −3.31, 2.51 3.95

−0.78 ± 3.23i 2.5 ± 0.3i

HCl (aug-cc-pVDZ) −1.13 ± 0.02i 2.20 ± 0.29i 2.15, 559 −3.64, 2.39 4.21
HF (cc-pVDZ) −1.28 ± 0.02i 2.4 ± 0.3i 0.57, 0.85 −2.18, 2.47 0.68
HCl (cc-pVDZ) −1.49 ± 0.05i 2.23 ± 0.78i 2.91, 231 −6.08, 2.90 5.74

Class β|β:
SH− (aug-cc-pVDZ) −0.966 ± 0.005i 1.86 1.55, 40.5 −2.41, 1.94 2.99

2.1 ± 0.5i

Ar (aug-cc-pVDZ) −1.244 ± 0.014 2.576 3.96, 198 −8.94, 3.85 7.76
BH (cc-pVDZ) −4.0 1.45 1.60, 11.7 −6.09, 1.54 2.81

1.58 ± 0.25i

BH (aug-cc-pVQZ) −2.08 1.387 1.27, 2330 −2.00, 1.46 2.53
1.67 ± 0.53i

BH (aug-cc-pVTZ) −2.97 1.42 1.39, 125 −2.54, 1.49 2.75
−2.9 ± 0.8i 1.56 ± 0.63i

BH (cc-pVQZ) −3.2 1.46 1.29, 3 × 105 −2.07, 1.47 2.57
1.69 ± 0.53i

BH (aug-cc-pVDZ) −3.03 1.60 1.56, 13.5 −5.19, 1.53 2.80
1.57 ± 0.48i

BH (cc-pVTZ) −3.80 ± 0.08i 1.43 ± 0.05i 1.41, 88.9 −2.64, 1.49 2.77
1.70 ± 0.45i
vergent summation approximants to evaluate MP energies [10,
16].) A positive class α singularity close to z = 1 is generally
accompanied by a singularity close to the origin in the negative
half plane. In contrast, it is often the case that a negative class β

singularity within the unit circle will not be accompanied by a
positive class α singularity near z = 1. This can occur when the
basis set contains diffuse functions, which allow the wavefunc-
tion to model the dissociation of the system at the critical point
[14] and leads to the dramatic divergence of the high-order se-
ries observed by Olsen and coworkers [4]. However, the class β

singularity has little effect on the low-order series coefficients,
and in such cases the MP4 energy can be summed relatively
easily using appropriate approximants [16,35].

While MP4qλn gives a lower bound to the position of a dom-
inant negative class β singularity, MP4q gives an upper bound,
due to “attraction” by the singularity in the positive half plane.
The approximant attempts to model the positive and negative
singularities with a singularity in between them. This is shown
in Fig. 1. It is interesting that the average of MP4q and MP4qλn
(the open circles) gives a much improved estimate of the class
β singularity position. To better understand this phenomenon,
we reproduce it using a simple model function. Consider

f (z) = a1(1 − z/z1)
1/2 + a∗

1

(
1 − z/z∗

1

)1/2

+ a2(1 − z/z2)
1/2 + a∗

2

(
1 − z/z∗

2

)1/2

(16)+ bwxe
cxz,

which consists of branch points at the dominant singular points
of the FCI energy function with an exponential function added
to provide a nonsingular contribution to the series. We set the
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Fig. 1. Real part of the class β singularity in the negative half plane for systems
in which this is the dominant singularity. The exact result (filled circles and
line) is compared to estimates from the MP4 quadratic approximant (squares),
the MP4qλn approximant (diamonds), and the average of the two (open circles).

parameters of the singularities, ai and zi , to values determined
from quadratic approximant analysis of an actual high-order
MP series [15]. Then, letting b = 1, we set the parameters wx
and cx so that the coefficients of the fourth-order Taylor series
of f (z) gives values for α and β equal to those for the MP se-
ries. Thus, singularity analysis of f with b = 1 gives the same
singularity positions as does analysis of the corresponding MP4
series. Analysis at b = 0 shows how the approximants perform
without interference from the nonsingular part.

The various approximants respond differently to the nonsin-
gular contributions. This is illustrated by Fig. 2, which shows
the singularity analysis of f with the parameters corresponding
to BO+ with the cc-pVDZ basis. The figure shows the effect of
increasing the weight factor b of the nonsingular part. The dot-
ted curves show the exact singularity locations. The solid curve
shows the average of the MP4qλn singularity and the MP4q sin-
gular point closest to the origin. Without the exponential (i.e.,
at b = 0), the MP4qλn singularity and one of the MP4 singu-
larities model the exact dominant singularity, in the negative
half plane, reasonably well while MP4qλp places the positive
singularity somewhat beyond the exact position. As the nonsin-
gular contribution increases, MP4qλp becomes more accurate,
as the effect of the dominant singularity is blunted. Eventually,
the positive singularity is also masked by the exponential and
the MP4qλp result moves out from the origin. The masking
of the negative singularity has opposite effects on MP4q and
MP4qλn. The former moves in the positive direction while the
latter moves in the negative direction, and the average of the
Fig. 2. Singularity analysis of model function f (z) with parameters fit
to BO+ (cc-pVDZ): a1 = 0.142 + 0.486i, z1 = −0.5227 + 0.0131i,
a2 = 0.078 − 0.021i, z2 = 1.24 + 0.26i, wx = −18.3545, cx = 0.228473. The
variable b is the weight of the nonsingular part. b = 1 gives the results for the
actual MP4 series. The singularity positions from the MP4q, MP4qλn, MP4qλp
approximants are shown by the dashed, dash-dot, and dash-dot-dot curves, re-
spectively. The solid curve shows the average of the MP4qλn singularity and
the MP4q singular point closest to the origin. The dotted lines show the exact
real part of the BO+ singular points.

two is an accurate estimate of the exact position over a wide
range of b.

The remarkable stability of this average, despite the diver-
gence of the individual MP4qλn and MP4q values, results from
the nonsingular contribution masking the singularity in the neg-
ative half plane more strongly than the one in the positive half
plane. The contributions to the series coefficients ε1, ε2, ε3 from
the latter singularity are negative while those from the former
alternate in sign, with the contribution to ε2 positive. If the sin-
gularity in the negative half plane is clearly the dominant one,
then α = ε2/ε1 is negative. For the cases in which the MP4q,
MP4qλn average is stable, the nonsingular contribution to ε2
is negative. As b is increased, the effect of the dominant sin-
gularity is blunted, with α eventually becoming positive. The
MP4q result moves in the positive direction, attracted by the
positive singularity as it appears to become dominant. MP4qλn,
by construction, models a singularity in the negative half plane.
It moves away from the origin in the negative direction as the
negative half plane appears to become nonsingular. The average
is extremely accurate for the first five of the class β|α systems,
which are distinguished by an α value less than 0.01 and an
MP4 value less than 0.5.
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The nonsingular effects are qualitatively different when the
singularity in the negative half plane is of class α. In such cases,
MP4qλn is more accurate than the average. The analysis based
on a fourth-order series cannot alone always distinguish the
cases for which the average is reliable. For example, it can be
seen in Table 1 that the MP4 series for OH− and for N2 yield
nearly identical singularities. N2, which has a class α negative
singularity, is not accurately modeled by the average. A nonpo-
lar molecule with a compact basis set is expected not to have a
dominant negative class β singularity [14]. Knowing this, one
can infer that the negative singularity for N2 is of class α and
should be described with MP4qλn itself rather than the average.
At fifth order the two cases are readily distinguished.

MP4 singularity analysis has an immediate practical appli-
cation. We will show elsewhere that it is reliable enough to
enable one to choose an appropriate summation approximant
for summing the MP4 series for the energy. Also, the MP4qλp
singularity position could, in principle, provide a general diag-
nostic for predicting the accuracy of single-reference state ab
initio computations. The class α branch-point pair closest to
z = 1 describes an avoided crossing between the ground state
and the first excited state of the same symmetry. If the branch
points are close to z = 1, then one can expect strong overlap of
the wavefunctions of the two states in the physical solution, at
z = 1. This would imply that the Hartree–Fock solution is an in-
appropriate zeroth-order approximation, and would suggest that
the Hamiltonian be repartitioned to shift the singularity struc-
ture [40,41] or that a more laborious multireference method be
used instead [42]. This applies to MP perturbation theory but
also to other methods, such as coupled-cluster theory [35,39],
that extrapolate from the Hartree–Fock approximation. A class
β singularity, if close to the origin, can also affect the accuracy
of MP summation approximants, although the effect is usually
smaller than that of a class α singularity, and it should not be
expected to affect the accuracy of non-MP methods [35].
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