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Abstract
Møller–Plesset perturbation theory expresses the energy as a function EðzÞ of a perturbation

parameter, z: This function contains singular points in the complex z-plane that affect the

convergence of the perturbation series. A review is given of what is known in advance about

the singularity structure of EðzÞ from functional analysis of the Schrödinger equation, and of

techniques for empirically analyzing the singularity structure using large-order perturbation

series. The physical significance of the singularities is discussed. They fall into two classes,

which behave differently in response to changes in basis set or molecular geometry. One class

consists of complex-conjugate square-root branch points that connect the ground state to a

low-lying excited state. The other class consists of a critical point on the negative real z-axis,

corresponding to a dissociation phenomenon. These two kinds of singularities are

characterized and contrasted using quadratic summation approximants. A new classification

scheme for Møller–Plesset perturbation series is proposed, based on the relative positions in

the z-plane of the two classes of singularities. Possible applications of this singularity analysis

to practical problems in quantum chemistry are described.
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1. INTRODUCTION

The starting point for most ab initio calculations of molecular energies is the
Hartree–Fock (HF) approximation. Therefore, a central problem of quantum
chemistry is the construction of an extrapolation from the HF energy to the true
energy eigenvalue of the Schrödinger equation. A particularly straightforward
approach, at least in principle, is a perturbation theory proposed by Møller and
Plesset [1] in which the HF wavefunction is taken as the zeroth-order
approximation for the eigenfunction. The theory can be formulated by
partitioning the Hamiltonian according to [2]

H ¼ H0 þ ðHphys 2 H0Þz; ð1Þ

where H0 is the sum of one-electron Fock operators, Hphys is the Schrödinger
Hamiltonian, and z is a perturbation parameter. The energy is then obtained as
a power series EðzÞ ¼ E0 þ E1z þ E2z2 þ · · ·: Thus, in Møller–Plesset (MP)
theory the energy is a function of z; in the complex z-plane, such that Eð0Þ is
equal to the sum of HF orbital energies and Eð1Þ is the extrapolation to the
physical energy.

Traditionally, EðzÞ is calculated by partial summation, i.e., the power
series is truncated at some given order and then evaluated at z ¼ 1:
Truncation at order n yields the ‘MPn’ approximation to the energy. Thus,
EðzÞ is evaluated as a polynomial. The power series is an asymptotic series,
which is a rigorously correct solution only in the z ! 0 limit [3]. The true
functional form of E is much more complicated than a polynomial. In
particular, it has a rich structure of singular points, i.e., points in an
infinitesimal neighborhood of which the first derivative does not exist. Since
a polynomial is a functional form that is nonsingular at any finite z; it cannot
describe the true function in the neighborhood of a singularity or outside the
convergence radius determined by the nearest singularity to the origin. This
is the cause of poor convergence seen in recent high-order MPn studies
[4–6].

Knowledge of the singularity structure of EðzÞ can be used to predict the
convergence behavior of an MP series [7–9]. The singularity positions in the
MP energy function also affect the convergence of the corresponding
coupled-cluster (CC) sequence [10,11]. Since CC theory is another method
that extrapolates from the HF approximation to the exact solution, this is not
surprising. Although the function EðzÞ corresponds to the ground state
energy, its singularity structure contains information about excited states. If
the singularities are not all reasonably far from the points z ¼ 0 and 1, then
this indicates that a single-determinant HF wavefunction will not be a
suitable starting point for describing the true wavefunction.

Our purpose here is to review what is known in advance about the
functional form of EðzÞ and then to describe methods for obtaining detailed
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information about the singularities from analysis of MP series. In Section 2
we present existence theorems that tell us what singularity structure to
expect. Then in Section 3 we describe methods for ‘empirical’ studies in
which information about singularity structure is extracted from high-order
series obtained from full configuration–interaction (FCI) calculations. In
Section 4 we analyze some representative examples and clarify the
connection between singularity structure and convergence ‘class’. MP series
convergence is often described in terms of a classification scheme developed
by Schmidt et al. [12]. Series with monotonic convergence are put in class A
while series in which the Ei alternate in sign are put in class B. We suggest a
modified classification scheme that explains the behavior of molecules with
triple bonds or with distorted geometries, which have previously been
considered anomalous [5,6,13]. Finally, we discuss possible applications of
MP singularity analysis to practical problems in quantum chemistry.

2. FUNCTIONAL ANALYSIS OF THE ENERGY

2.1. Singularities of the energy function

MP perturbation theory is generally used only for the ground state energy.
The zeroth-order approximation for the wavefunction is taken to be the
lowest-energy HF determinant. Nevertheless, the function EðzÞ obtained
from this perturbation series, when considered as a function over the
complex z-plane, contains within it the full energy spectrum of eigenstates
with the same symmetry as the ground state. This is the consequence of a
theorem presented by Katz [14]:

Let Eð0Þ;Eð1Þ;Eð2Þ;… be the spectrum of energy functions of equation (1)
corresponding to a given set of all conserved quantities (e.g., angular
momentum). For any i and j there exist complex-conjugate pairs of branch
points zij; zpij in the complex z-plane at which EðiÞ is equal to EðjÞ: In the
neighborhood of zij

EðiÞðzÞ¼ bij 2 cijð12 z=zijÞ1=2; EðjÞðzÞ¼ bij þ cijð12 z=zijÞ1=2; ð2Þ

where bij and cij are constants, and similarly for zpij:

Now consider the ground state function Eð0ÞðzÞ: Starting at the origin, trace
a path in the z-plane that circles about the point z01: This point is a branch
point singularity, which means that a 3608 circuit will lead to a new Riemann
sheet corresponding to the function Eð1ÞðzÞ: Similarly, following Eð0ÞðzÞ on a
path that circles z02 leads to Eð2ÞðzÞ; and so on.
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This phenomenon was studied by Baker [15] using a model two-body
problem for which an exact solution for EðzÞ can be obtained. Depending
on the choice of parameters, the complex-conjugate branch points
connecting Eð0Þ and Eð1Þ could be in the negative half-plane or in the
positive half-plane. If branch cuts were specified from these branch points
out to infinity, then there were no other branch points. However, if the
branch cut was drawn perpendicular to the real axis, joining the two points,
then some of the other branch points predicted by Katz, connecting the
ground state with higher excited states, were found. The situation is shown
schematically in Fig. 1. If one follows Eð0ÞðzÞ on a path from the origin
along the real axis, there will be an avoided crossing as z passes between
the 0–1 branch points and no additional avoided crossings with
higher states. However, a path that temporarily leaves the real axis to
avoid the 0–1 branch points will show no interaction between Eð0Þ and Eð1Þ

but will have an avoided crossing with Eð2Þ: Since Katz’s analysis does not
depend on the specific form of the potential energy function, we expect this
behavior to be generic.

Re z 

Im z 

Re z
E

(c)

(a)

(d)

(b)

Re z 

Im z 

Re z 
Re E 

Fig. 1. Schematic representation of energy functions Eð0Þ; Eð1Þ; and Eð2Þ for two
paths in the complex z-plane. Branch cuts (dashed lines) are shown for the branch
points z01 and zp01:
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These square-root branch points are not the only kind of singularities in
the energy function. Baker [15] noted that a many-fermion system in which
there are both attractive and repulsive terms in the potential will undergo a
spontaneous autoionization at some point on the real z-axis. He suggested
this is analogous to a critical point in an ðE; zÞ phase diagram. For z beyond
the critical value zc; there can be no eigenstate in which the system is bound.
zc is a branch-point singularity, although presumably of a more complicated
form than equation (2). This was studied by Stillinger [16] for the specific
case of an atom. He noted that a negative real z; in equation (1), implies that
the r21

12 interelectron potential energy terms in Hphys are negative, and hence
electrons are mutually attractive. At the same time the repulsive mean field
central potential in H0 is, on the negative real axis, increased by a factor of
ð1 þ lzlÞ; which works against the nucleus–electron attraction. For
sufficiently large lzl it will be the case that a bound electron cluster infinitely
separated from the nucleus will have a lower energy than any state in which
the nucleus is bound. Thus, at zc the nucleus separates from the atom.

The effect of zc on the behavior of Eð0ÞðzÞ on the real axis will be rather
different from that of the Katz singularities. On a path from the origin along the
negative real axis Eð0ÞðzÞ acquires an imaginary part as it passes through
the singularity. This is because the eigenstate then corresponds to a state in the
scattering continuum. We expect that the derivative of the function along this
path will be continuous.1 This is due to the fact that when z is only slightly
beyond the critical point, there exists a long-range tunneling barrier in the
potential, which yields an exponentially small resonance width. Similar
behavior is seen in the 1=Z expansion, where Z is the nuclear charge, for the
two-electron atom [17].

2.2. Convergence classes

It is common practice to classify MP series in terms of their convergence
patterns. With class A systems the Ei series coefficients are all of the same
sign. The series show monotonic but often rather slow convergence. Class B
series, except at the lowest orders, have Ei that alternate in sign. They often
converge rapidly but sometimes diverge. A physical interpretation of this
classification system was developed by Cremer and He [13]. They examined
the terms in the wavefunction that lead to the sign patterns in the Ei and
concluded that the class B sign alternation is caused by orbital crowding, as
in systems with highly electronegative atoms and closed shells, while class A
behavior results from uncrowded orbitals, as in alkanes and radicals.2

1 The discontinuity of the derivative occurs on paths through zc that leave the real axis.
2 Cremer and coworkers [18] have recently proposed a new nomenclature in which the former classes A and B are now referred to as type

I and II, respectively, based on the orbital structure, and with class designations A through E describing a variety of actual convergence

patterns seen in practice.
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In Ref. [7] it was suggested that these two convergence patterns could be
explained in terms of singularity structure. The sign alternation seen for class
B would result if the dominant singularity lies on the negative real axis, while
class A would result if the dominant singularity is on the positive real axis.
The former is consistent with the Stillinger critical point. The Katz analysis
predicts complex-conjugate pairs of branch points displaced from the real
axis. This would seem to be inconsistent with the class A sign pattern, since a
complex-conjugate pair, z01; zp01 in the positive half-plane will give a periodic
sign pattern with regions in which successive Ei are negative alternating with
regions in which they are positive. However, if the imaginary part of these
singularities is small, then the period, given by [17,19]

n0 ¼ p=arctanðlIm z01=Re z01lÞ; ð3Þ

will be sufficiently large that the series will appear to converge
monotonically up to very high orders.

A connection between singularity analysis and the Cremer–He analysis
can perhaps be made as follows. If the valence electron orbitals are crowded
into a relatively small region of space, then the attractive interaction between
the electrons (for negative z) is especially strong, as is the mean-field
repulsive perturbation. Both of these effects favor autoionization at small lzl:
It is not surprising that of the class B systems for which high-order MP series
have been calculated, the one with the dominant singularity closest to the
origin is F2, with the aug-cc-pVDZ basis set.

It is interesting that the position of zc is strongly dependent on the basis set.
In the case of F2 if the cc-pVDZ basis, which lacks the diffuse functions of
the augmented basis sets, is used instead, then the singularity on the negative
real axis seems to disappear [5,7,20]. Apparently, diffuse functions are
needed to describe the autoionization.

In contrast, the position of the dominant singularity for class A systems is
relatively insensitive to the basis set. This is a Katz branch point pair
connecting the ground state with the first excited state. The interaction
between these two states can be described reasonably well with a small basis
set. The effect of additional polarization functions, representing highly
excited configurations, is small. However, changes in molecular geometries
can have a large effect on the class A singularity [11], with bond stretching
causing the branch points to move in toward the physical point z ¼ 1: The
distance of these branch points from z ¼ 1 is related to the energy gap
between the states at z ¼ 1: As a bond is stretched the energy gap decreases
and the point of avoided crossing along the positive real axis moves closer
to z ¼ 1:

It is important to note that a path along the negative real axis could
also show an avoided crossing between the ground state and the first
excited state. In Section 4.3, we present empirical evidence indicating that
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such a Katz branch point pair, in the negative half-plane, is responsible for
the worst examples of MP series divergence. Thus, there are two distinct
kinds of class B systems. We suggest that classic class B behavior, with
alternating signs in the Ei; is due to a critical point while the complicated sign
patterns in systems such as the C2 molecule or in molecules with bonds
stretched well beyond the equilibrium distance are due to the simultaneous
effects of Katz degeneracies in both the positive and negative half-planes.

3. EXTRACTING SINGULARITY STRUCTURE
FROM PERTURBATION SERIES

There are two general approaches for obtaining information about
singularity structure from a perturbation series [21]: asymptotic methods
and approximant methods. The former category includes such familiar
procedures as the ratio test and the nth-root test as well as some more modern
techniques [22,23], all of which are based on a theorem of Darboux that
states that in the limit of large order the series coefficients of the function in
question become equivalent to the corresponding coefficients of the Taylor
series of the dominant singularity, i.e., the singularity closest to the origin.
The advantage of these methods is that we have for them rigorous
convergence proofs. A disadvantage is that they only provide information
about the one singularity closest to the origin. More distant singularities can
sometimes be studied using conformal mappings [21], but, even for the
dominant singularity, convergence can be significantly slowed by inter-
ference from other singularities.

For analysis of MP series we have found approximant methods to be
more useful than asymptotic methods. The idea is to construct a model
function (a summation approximant) containing parameters that are chosen
so that its Taylor series agrees with the coefficients of the perturbation
series up to some given order. Although there are no generally applicable
convergence theorems for approximants, if the functional form of the
approximant is a reasonable model for the true functional form then the
convergence can be rapid. Approximants can simultaneously fit more than
one singularity. Furthermore, they provide an analytical continuation to
regions of the complex plane where partial sums are poorly convergent or
divergent.

A systematic approach to constructing approximants was proposed by
Padé [24,25]. A set of polynomials A

ðmÞ
k ðzÞ; where k indicates the degree of

the polynomial, is defined by the asymptotic relation:

XM

m¼0

Am
km

Em ¼ OðzKÞ; K ¼ M þ
XM

m¼0

km: ð4Þ
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The notation OðzKÞ means that the coefficients of the Taylor series of the
left-hand side are equal to zero up through order K 2 1: E in equation (4)
represents the perturbation series of the energy function. Collecting terms
according to the power of z yields K linear equations for the K þ 1
coefficients of the polynomials. The final coefficient is set according to an
arbitrary normalization condition, typically, AðMÞð0Þ ¼ 1: Once the poly-
nomial coefficients are obtained, equation (4) is solved for EðzÞ:

With M ¼ 1 we have rational approximants, EðzÞ ¼ Að1ÞðzÞ=Að0ÞðzÞ: The
application of these to perturbation theories of the Schrödinger equation was
pioneered by Brandäs and Goscinski [26]. They proposed using approxi-
mants to determine singularity positions. However, the singularity structure
of rational approximants is not of the form we expect for the MP energy.
They are single-valued functions, containing poles, at the zeros of Að0Þ; but
no branch points. Given enough series coefficients, they can model a branch
cut with combinations of poles and zeros [7,27] but they cannot model more
than one branch.

More appropriate are quadratic approximants [7,27–32], with M ¼ 2;
which have the double-valued solution

E ¼ 1

2

Að1Þ

Að2Þ ^
1

Að2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAð1ÞÞ2 2 4Að0ÞAð2Þ

q" #
; ð5Þ

with a square-root branch point as specified by the Katz theorem. It has two
branches (^ ) connected by branch points at the values of z at which the
discriminant polynomial, ðAð1ÞÞ2 2 4Að0ÞAð2Þ; is zero. In principle, one
branch describes the ground state and the other, the first excited state. More
complicated branch points are, in practice, fit by these approximants with
clusters of square-root branch points. Approximants with M . 2 can describe
additional branches of the function, although the accuracy for higher
branches tends to be poor unless the series is known to be quite high order
[33–36]. Differential approximants, with the powers of E in equation (4)
replaced by derivatives, can describe a wider variety of singularity types
[25,37].

Other kinds of approximants can also be used. For example, Olsen et al.
[20] analyzed MP series convergence using a 2 £ 2 matrix eigenvalue
equation [38,39], which implicitly incorporates a square-root branch point. It
is of course possible simply to explicitly construct an approximant as an
arbitrary function with the singularity structure that EðzÞ is expected to have.
We suggest, for example, approximants of the form3

EðzÞ ¼^PAðzÞ½ð12 z=z01Þð12 z=zp01Þ�1=2 þPBðzÞBðz2 zcÞþPCðzÞ; ð6Þ

3 This is an example of an Hermite–Padé approximant [27].
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where PA; PB; and PC are polynomials and

BðzÞ ¼
ð1

0
ð1þ ztÞ3=2 e2t dt ð7Þ

The function Bðz 2 zcÞ; which can be expressed in terms of an exponential
integral, has the behavior we expect for autoionization in that it has a branch
point at zc at which the function becomes complex but with the derivative
continuous along the real axis. The coefficients of the polynomials can be
chosen so that the Taylor series agrees with the perturbation series.

Note that the gap between the energy of the ground state and that of the
first excited state is given by

EðþÞ 2 Eð2Þ ¼ 2PAðzÞ½ð1 2 z=z01Þð1 2 z=zp01Þ�1=2: ð8Þ
The value of the gap at z ¼ 0 is simply 2PAð0Þ: Since z ¼ 0 corresponds to
the HF solution, this value is easily calculated. By thus constraining PA; we
can include in the analysis additional information about the singularity
structure beyond the information we obtain from the perturbation series. The
quadratic approximant, equation (5), can be similarly constrained.

At present, the highest order for which direct calculations of MP series
have been carried out is only six [40]. However, MP series to arbitrary order
can be computed from elements of the Hamiltonian matrix that are obtained
in the course of an FCI calculation [41,42]. As a result, high-order MP series
are now available in the literature for a variety of systems with as many as 10
correlated valence electrons [5,6]. In principle, the singularity structure of
EðzÞ can be obtained from an FCI calculation directly, without calculating
the perturbation series, by analyzing the characteristic polynomial as a
function of z: This is a polynomial of very high degree, which makes a full
numerical analysis of the z dependence difficult. However, given an initial
estimate of a singularity position one could refine the result with a local
analysis of the characteristic polynomial in the neighborhood of that point.

4. EXAMPLES

4.1. Class A

Consider the molecule BH. Since the boron atom is four electrons short of a
full octet, this should be a clear example of class A according to the Cremer–
He criteria [13]. The MP series has been calculated [5,6] through about 15th
order for several of the correlation-consistent basis sets [43] and all the Ei

have the same sign.
In principle, the zeros of the discriminant polynomial in equation (5)

correspond to branch points of EðzÞ: Since the number of zeros increases
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rapidly with the order of the series, we expect most of these branch points to
be spurious, and in practice most are unstable from order to order and are
often quite distant from the origin or appear as nearly coincident pairs. For
BH, the branch points that are stable from order to order are shown in Table 1.
They are consistent with the predictions of the functional analysis, with a
complex-conjugate pair z01; zp01 with positive real part and a negative real zc:
The former are the dominant singularities, as expected for a class A system.
The z01 values imply that the period of the sign pattern of the Ei is
somewhere between 13 and 17. Since the highest-order coefficients probably
contain significant roundoff error, these values are not inconsistent with the
lack of apparent sign alternation in the series. The basis sets represent two
families, cc-pVXZ and aug-cc-pVXZ. These are equivalent except that the
latter are augmented with diffuse functions. The presence of diffuse
functions seems to shift zc toward the origin but has little effect on z01:

In Fig. 2 we plot the two branches of a quadratic approximant as a function
of z on the real axis, for BH with the largest basis set. A broad avoided
crossing can be seen at Re z01: Also shown is the result from a rational
approximant, which agrees very well with the quadratic approximant for the
lower branch up to the avoided crossing. It then jumps to the higher branch
after passing through the branch cut between z01 and zp01: Very similar
behavior is seen with the other five basis sets.

4.2. Class B

In Table 1 we also list a singularity for BH on the negative real axis, which
presumably corresponds to the critical point. However, the convergence is
rather poor since it is much farther from the origin than are the dominant
singularities. For a better example we consider the class B system F2.
Christiansen et al. [5] found that the MP series for F2 with the aug-cc-pVDZ

Table 1. Singularity analysis of the energy function of the BH molecule from
quadratic approximants

Basis set
Branch point in

positive half-plane Weight
Branch point in

negative half-plane Weight

cc-pVDZ 1.65 ^ 0.43i 0.4 23.6 0.001
cc-pVTZ 1.60 ^ 0.40i 0.3 23.5 0.01
cc-pVQZ 1.60 ^ 0.31i 0.4 23.5 0.04
aug-cc-pVDZ 1.55 ^ 0.41i 0.1 22.5 0.001
aug-cc-pVTZ 1.59 ^ 0.36i 0.4 23 0.01
aug-cc-pVQZ 1.61 ^ 0.35i 0.4 22.1 0.002

The ‘weight’ corresponds to lcijl of equation (2).
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basis is divergent. The only stable branch point from quadratic approximants
is at 20.60, which presumably corresponds to the critical point, zc:

Figure 3 shows EðzÞ for negative real z: Up until zc the rational and
quadratic approximants are in agreement. After passing through zc the
quadratic approximant gains an imaginary part. The rational approximant,
unable to produce a branch point, instead maps out a branch cut

0.5 1 1.5 2
z

−25.5

−25.4

−25.3

−25.2

E
ne

rg
y

Fig. 2. Energy [44] in Eh for BH with the aug-cc-pVQZ basis as a function of real z;
from MP series of Leininger et al. [6]. The solid curves are the two branches of the
quadratic approximant with polynomial degrees 5, 5, and 5, with the values
corresponding to the real part of the branch points marked by crosses. The dashed
curve is from the rational approximant with degrees 8 and 8. The filled circle shows
the physical point.

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
z

−99.4

−99.3

−99.2

−99.1

E
ne
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Fig. 3. Energy [44] in Eh for F2 with the aug-cc-pVDZ basis as a function of real z;
from MP series of Ref. [5]. The solid curve is the quadratic approximant with
degrees 6, 6, and 6. When this approximant is complex, the real part is shown as the
dash-dot curve. The dashed curve is the rational approximant with degree 9 for the
numerator and 10 for the denominator.

Singularity Structure of Møller–Plesset Perturbation Theory 203



with alternating poles and zeros [27] along the real axis starting slightly
beyond zc:

In Section 2.1 we argued that for a path along the real axis the derivative at
zc should be continuous. By construction, the singularity from a quadratic
approximant is a square-root branch point, of the form PðzcÞð1 2 z=zcÞ1=2

where P is nonsingular at zc: This expression has a discontinuous derivative
along any path. However, the quadratic approximant in Fig. 3 restricts the
effects of this discontinuity to the immediate neighborhood of zc by making
the weight of the singularity, lPðzcÞl; rather small, in this case, 0.03. For this
reason, the discontinuity of the derivative is apparent only on close
examination of the curve. Similar behavior is seen for zc of BH, in which
case, as shown in Table 1, the weight of zc is significantly smaller than the
weight of z01: Additional evidence for a qualitative difference between
the singularity on the negative real axis and the complex-conjugate pair in
the positive half-plane is the fact that the quadratic approximants show more
clustering of spurious branch points around the former, suggesting
that isolated square-root branch points are insufficient to accurately model
the function.

4.3. Systems with complicated singularity structure

Molecules such as N2, C2, and CNþ, and in general molecules with bonds
stretched from the equilibrium geometry, do not fit well into the A/B
classification scheme [5,6,13,20,40]. They show irregularities in the sign
patterns and poor convergence. This has been attributed to the presence of
significant singularity structure in both half-planes [7,9,10].

For C2, quadratic approximants show stable branch points at 1.23 ^ 0.35i
and 20.95 ^ 0.33i. The behavior of EðzÞ in the vicinity of these points is
shown in Fig. 4. It is qualitatively similar to the behavior at z01 for BH.

−1.5 −1 −0.5 0
z

−75.6

−75.4

−75.2

−75

−74.8

E
ne

rg
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0.5 1 1.5 2 2.5

z
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−76.2
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−75.8

−75.6

−75.4

Fig. 4. Energy [44] in Eh of C2 for real z with the cc-pVDZ basis. The MP series is
from Ref. [6]. Solid curves are the branches of the quadratic approximant with
degrees 6, 6, and 6. Values corresponding to the real part of the branch points are
marked by crosses. The dashed curve is the rational approximant with degrees 9
and 10. The filled circle shows the physical point.
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In the case of C2 we see no singularity on the negative real axis. This may be
due to the fact that the basis set (cc-pVDZ) lacks diffuse functions.

The anomalous systems have in common a relatively small weight for
the HF reference determinant in the z ¼ 1 wavefunction, which suggests
that Katz branch points will be especially significant. Stretching a bond
decreases the energy gap, which shifts avoided crossings to lower values
of lzl; causing branch point positions to vary significantly along the
potential energy surface. Olsen et al. [20] found that the negative real
singularity for the hydrogen fluoride molecule, determined from the large-
order series, also shifts toward the origin as the bond is stretched, but the
effect is small. An analysis [11] of MP4 series found a significant shift of
singularities toward z ¼ 1 in the positive half-plane and toward z ¼ 0 in
the negative half-plane as the distances increase toward dissociation. The
MP4 analysis could not determine the imaginary part of the singular
points, and therefore could not distinguish the nature of the singularity in
the negative half-plane.

5. DISCUSSION

The MP energy function EðzÞ is expected to have a complex-conjugate pair
of square-root branch points in the positive half-plane, a branch point on the
negative real axis corresponding to a critical point, and, possibly, a complex-
conjugate pair of square-root branch points in the negative half-plane. The
complex-conjugate branch points in either half-plane result from the same
physical phenomenon, avoided crossing between the ground state and a low-
lying excited state. They are insensitive to changes in the basis set but shift
significantly as bonds are stretched. In contrast, the critical point represents
an autoionization process and its position can depend strongly on the basis.

The A/B classification scheme, based on series coefficient sign patterns, is
inadequate for describing this situation. It seems more sensible to classify
MP series according to singularity structure. We suggest that the complex-
conjugate branch points, regardless of the real part, be referred to as ‘class a’
singularities while the critical point be referred to as ‘class b’. An atom or
molecule in which the class b singularity dominates the perturbation series
can be called a class b system. If the class a singularities in the positive half-
plane dominate, then we have a class a system. Systems in which the
positive class a singularities are approximately the same distance from the
origin as the other class a or the class b singularities can be called,
respectively, class aa or ab:

Since for most applications to systems of chemical interest, it is not
feasible at present to compute MP series beyond fourth or fifth order,
methods will have to be developed for estimating singularity positions from
low-order series. For clear class a or class b systems, quadratic
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approximants at MP4 can give a reasonably accurate result [7]. Difficulties
arise with aa and ab systems because the approximants tend to model the
multiple singularities with a single branch point halfway between them [9].
One approach for dealing with this is to use a conformal mapping to shift the
singular points so that one will always be somewhat closer to the origin than
the other [21]. This is the basic idea behind the MP4-ql method [8], which
makes quadratic approximants in most cases a dependable tool for summing
the series. In contrast, conformal mappings are less effective with partial
summation, since then one must shift all singularities away from the origin.

An important potential application to practical quantum chemistry is to
use singularity positions as a diagnostic criterion for predicting the accuracy
of a calculation. This has already been implemented to some extent, using
the MP4-ql singularity positions to identify cases in which aa and ab
effects adversely affect energy accuracy. The positions of singularities in
the negative half-plane seem to be an excellent diagnostic of the accuracy
of the MP energy summation [8,9]. CC calculations with the CCSD(T)
method are relatively insensitive to the class b singularity but are affected
by aa singularity structure. The MP4-ql singularity analysis can apparently
distinguish, to some extent, between aa and ab systems, and thereby serve
as an accuracy diagnostic for CC methods [10].

Another application is to multireference perturbation theory (MRPT).
A key question in choosing the reference set of eigenstates is the extent of
interaction between different states [45–48]. Positions of the complex-
conjugate branch points provide a measure of this [49]. One could monitor
singularity structure along a path on the potential energy hypersurface,
changing the reference set as needed to eliminate harmful branch points. At
present, software is readily available only for third-order MRPT [50], which
is likely not sufficient for reliable singularity analysis. A fourth-order MRPT
with a small reference set might benefit significantly from a quadratic
approximant analysis, both for summation and for determining branch point
positions.
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